
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Benefits of Site Reliability Engineering (SRE) in

Modern Technology Environments

Sibaram Prasad Panda1, Subramanya Bharathvamsi Koneti2, Mohanraju Muppala3

1Email: spsiba07[at]gmail.com

2Email: subramanyabkoneti[at]gmail.com

3Email: mohanraju. m[at]outlook.com

Abstract: Site Reliability Engineering (SRE) has its origin in efforts to help the IT operations organization prioritize and develop

software solutions that would reduce the toil and inefficiencies inherent in traditional operations work. By automating operations using

software, engineers can improve dynamic and constantly evolving systems, while engineers in traditional IT organizations tend to

manage systems that are static and relatively unchanging. The term SRE was coined by a leader who started by hiring a small number

of software engineers to write software to help manage its growing fleet of production systems. Since that time, thousands of SREs

specializing in many different technical areas of expertise have been hired, and SRE has evolved into a substantial organization.

Keywords: Site Reliability Engineering (SRE) Terraform, AWS CloudFormation, MTTR. Service Level Objectives (SLOs)

1. Introduction

As the name implies, an SRE is much more than an

engineer, a sysadmin don, a gray beard coder. SREs have

abilities and responsibilities that reach into several

disciplines including coding and technical skills, DevOps,

systems engineering, Linux and Solaris expertise, and

performance monitoring. What makes SRE different from

other engineering and operations disciplines is the emphasis

on deploying and maintaining production systems by

leveraging the same software and abstraction techniques

used in their development. Using coding efforts to achieve

efficiencies in production and be able to process more work

as a product, to not burden an overworked operations

organization, is the central tenet behind the SRE concept. In

true DevOps tradition, SRE is a culture, a mindset, that

seeks to unify the goals of development and operations and

solve the inherent conflicts that too often separate these two

essential functions.

2. Historical Context of SRE

To determine SRE’s place in the world of engineering, you

must understand the larger picture of modern technology

environments and the evolution of strategies for operating

them. First, however, a brief discussion of the general

hacker culture that birthed the idea of SRE: it is one of open

collaboration, exploration of the new territory of modern

technology, encouragement (and, on occasion, gentle

ridicule) of peers who invent new techniques and apply

them for the first time to real - world problems, and sharing

findings for the benefit of others. While this ethos is often

compromised in the wider, more commercial technology

world, the pioneering engineers who embraced it during its

formative years continue to exert a powerful influence on

the technology industry.

3. Core Principles of SRE

Service Reliability Engineering (SRE) communicates the

core principles of SRE, along with the mindset, fluency, and

skills necessary to understand and exploit these powerful

concepts. The key idea is to manage the reliability of the

services owned by a team. In the implementation of SRE,

reliability is an explicit component of the service definition.

The services that an SRE team is responsible for include

cost, latency, availability, capacity, communication

reliability, and correctness. Other definitions of reliability

may vary in writing but embrace the same underlying

concepts.

3.1 Service Level Objectives (SLOs)

A Service Level Objective (SLO) is a specific and

measurable performance goal for a service. It determines an

actual target value, and a threshold on, a metric. Usually,

SLOs are expressed as "The service will be less than X%

error over Y time period". This gives an indication of how

stable a service is. A naive user would think it is good for a

service to have 99.99999999% availability year long, but

that can very well be the service doing almost nothing at all

for that year. A simple fake example of an SLO would be

"For search engine

Besides deciding how to calculate an SLO, teams must also

figure out what SLO to create. Since optimization is

expensive, choosing the right one is very important. By

doing so, Dev and SRE teams would be ensuring they

choose metrics that give value to the service and its users. In

this way, users are not discouraged from using the service

while internal deadlines on launch and feature

implementations are being met. The SLO metric would help

reduce and invalidate the amount of technical debt.

3.2 Error Budgets

Error budgets allow engineering teams to find the sweet spot

between releases and reliability. To get an error budget, you

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 284

http://www.ijsr.net/
mailto:spsiba07@gmail.com
mailto:subramanyabkoneti@gmail.com
mailto:mohanraju.m@outlook.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

start with SLOs, which provide an upper limit on allowable

service downtime. As a rough analogy, if your SLO is 99%

availability over a given budget period, your error budget is

that during that period the service is allowed to have been

down for (100 - 99) % of the period length. Larger budgets

are good for frequent, low - impact changes, while smaller

budgets are more appropriate for critical code that does not

change frequently. A two - week change window has an

error budget of 150 minutes—easily exceeded by a single

DoS attack or a minor service configuration error.

4. SRE vs. Traditional Operations

Site Reliability Engineering (SRE) was originally created as

a new way of managing services. SRE can be seen as "a new

approach to operations, " which uses some ideas from

traditional operations teams, software development, and

DevOps in new ways. SRE is not a descriptive term for

SaaS or "web scale" businesses; nearly all of those

companies have traditional operations teams as well.

4.1 Key Differences

The world of computers has been around for a long time, but

the world of computers at scale is relatively new. Internet -

facing services with a user base of billions are an entirely

different story than the data center operations that came

before them. Such services require different tools, different

operations; not just faster optimization of what came before.

Reliability, availability, and scalability cannot come after

the fact. They must be planned from the very beginning,

with specific consideration paid to how failures will occur

and how systems will respond.

4.2 Key Differences

Site Reliability Engineering was born out of necessity at a

company with a tremendous number of services running at

substantial scale. The company had already implemented a

site operations team within its Software Engineering

department (which mostly worked on tooling problems), but

when faced with the growth rate of its services, the need for

applying a more engineering - oriented discipline to address

this challenge became apparent. Lacking a name for this

team, the initial engineers came up with a way to express it

in a humorous way: “SRE – It’s like Ops, but with really

large Data Sets.” A few years later, several companies

started paying attention to this new discipline and began

applying its principles to help them solve their scalability

needs.

4.3 Advantages of SRE Approach

When engineers first discover SRE, they often have an Aha!

moment. SRE allows the insights gained from decades of

experiencing, developing, deploying, supporting, and

scaling web and distributed systems at both startups and

large companies to be synthesized into actionable software

engineering and product management practices that change

how a company operates. Different companies will

emphasize different parts of SRE, and inevitably you will

have to make tradeoffs that suit your environment, but the

SRE approach describes how one company decided to

interpret and implement SRE. Before defining SRE, it is

worth describing our perspective on software engineering.

Any engineer who has worked on large systems for a while

realizes that it’s usually at least an order of magnitude more

work to build a large system from scratch than to keep an

existing system operating. But there are no easy shortcuts to

scalable, distributed, and complex systems black box

solution that can be reused. Additionally, there is a real and

complicated problem. Scalable systems are difficult, if not

impossible, to build. New frontiers emerge and old

paradigms shift. What we do requires carefully coordinating

teams building and managing components but on a much

smaller scale. Therefore, we have had to painstakingly

document patterns, practices, and tradeoffs as talking to

other engineers.

5. Impact of SRE on System Reliability

The most common metric used to measure system reliability

is uptime or availability. A reliable system is accessible,

functional, and performing well about its Service Level

Objectives over an expected duration of time. The principles

and practices of SRE help organizations improve system

reliability. Several high - profile websites that suffered

traumatic outages partnered with experts who had launched

the original SRE teams that pioneered necessary roles,

books, and practices. Using the detailed postmortem

processes championed by SREs, such organizations learned

to diagnose the reasons for incidents and how to take

measures to prevent them in the future, resulting in better

MTTD and MTTR for the overall service. Several of these

individuals were CTOs and technology leads at

organizations we might consider SAAS pioneers.

5.1 Improved Uptime

Most websites have grown to be so essential today that even

a few minutes of downtime can cause immeasurable

damage. Major companies have reported thousands of

dollars lost due to an unexpected outage. Instead of awaiting

crises and reacting to them as they occur, SRE focuses on

reducing the amount of time and energy developers spend

fighting fires. SRE Teams employ various techniques such

as redundancy, automated failover, graceful degradation,

and monitoring. These techniques help prevent situations

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 285

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

from arising in the first place, reducing service interruption

and prolonged downtime.

5.2 Faster Incident Response

In any technological environment, incidents are inevitable.

Things happen, and sometimes they lead to outages,

slowdowns, or reduced functionality. User experience

suffers, and the organization loses money at least in lost

productivity. Efforts are put in place to monitor service

performance. Alerting is set up for on - call engineers to

receive notifications when something goes wrong. The on -

call engineer experiences varying levels of success in

identifying what’s going on, finding the right people to help,

communicating with users, and implementing a mitigation

or fix. With SRE, this time is reduced significantly.

Environments are instrumented with the right tools to help

correlate alerts, allow for debugging, and scale. Service

behavior is defined within service APIs and make

debugging easier. In recent years, the information

technology environment is changing. New capabilities are

added, such as container orchestration, microservices, and

serverless to allow for scaling and rapid rollouts. But they

also bring higher complexity and more chance for incidents.

SREs find themselves relying more on algorithms to help

reduce the incident time. Artificial intelligence and machine

learning or heuristics are used for anomaly detection.

Developers are implementing canaries, red/black and dark

launches to allow for automatic or manual cutovers to new

capabilities. SREs help define the governing aspects of the

tools, such as service - level indicators and service - level

objectives so that effective monitoring can be implemented,

which lead to faster incident detection and resolution.

6. SRE in Cloud Environments

Cloud computing has lowered the barrier for implementing

modern service architectures, especially for microservices.

Organizations can now move from on - premises data

centers to the cloud, where they can solve many issues

automatically through cloud constructs, orchestration, and

automation. This shift also can offer the possibility of

avoiding full internal staffing for many functions. Yet

reliability needs to be considered as the volume of services

increases. Site reliability engineering is the scientific

approach to solving these issues in cloud environments.

Cloud service offerings greatly facilitate taking advantage of

SRE principles and practices, but organizations must choose

them wisely.

Scalability Benefits

SRE at scale in cloud environments means being able to

build automations once and have work done to keep things

running done for the organization and the users around the

clock. Well - built, well - tested automation and tools can

handle the load of many human operators, with the added

advantage of having very few individuals needed at times of

heavy load. Tools can give sites assistance storing their

infrastructure as code while using CI/CD to enable change

management. Additionally, cloud vendors provide many on

- demand or near - demand services that can automate

operational functions. DNS, load balancers, databases, and

other services can scale without organizational interaction.

Cost Efficiency

Cost - efficiency is another focus for many sites. If a service

can run in a cloud vendor’s hosting environment more

cheaply than on - premises, organizations should consider

using it. Using a vendor means dealing with the vendor’s

outage since their organizations have no visibility during an

event and little recourse if numbers deviate from contractual

SLAs. Creating cloud environments to run internal systems

such as websites that promote a business or collaborative

services to assist employees makes economic sense for

many organizations. These are generally non - revenue

generating services whose downtime can lead to missed

sales opportunities or lost workforce time.

6.1 Scalability Benefits

Scalability is defined as the ability to grow, handling a

progressively larger load. An example of scalability would

be a restaurant where, as customer demand increases, the

owner can hire more cooks and servers to accommodate

growth. With online services, one big catalyst of growth is a

spike in demand, where a site experiences a sudden influx of

new users. As their needs increase, the challenges are

twofold. First is keeping the service running smoothly

during the spike. Secondly, it is how to capitalize on that

moment, ensuring that what such services do symbolizes

great value when those users are most likely to require and

use it onboard effectively.

Scalability is important because it makes SRE

fundamentally different from traditional IT. In addition to

making sure a service is available to meet current demand,

SREs also take the long view and coordinate across teams to

optimize systems and procedures so that the service can

handle higher and higher loads. Unfortunately, the transition

to managing more loads introduces problems: as more

people use a service, its infrastructure becomes more

complex. What was composed of a handful of servers and

systems operated by a few people turns into thousands of

systems, possibly located in multiple data centers and rented

from different cloud providers and operated by an army of

people working in different time zones. Because these

systems are more complicated, a greater chance exists that

some components will fail or be misconfigured, temporarily

making the service unavailable or degrading its

performance. Meeting the operational requirements of a non

- exploding service has become the technical challenge for

teams building and scaling such systems.

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 286

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

6.2 Cost Efficiency

SRE designs eliminate wastage, leading to better use of

budgets. Because SRE employs tools such as SLI, SLO, and

risk budgets, engineering teams can identify the metrics that

matter to the business and its customers. SRE promotes a

method of collaborative goal setting for service health based

on customer satisfaction. Knowing the SLO and error

budget helps the teams prioritize their work better and get

rid of the queues in request - response systems. Analyzing

errors can help engineering teams explicate flaws in tech

stack choices as well as system performance.

7. Cultural Shifts with SRE Implementation

SRE was born from a cultural belief that operations could be

done differently than it had been in the past. Operations had

historically been a dry, boring job, a career for people who

did not want to write code. In our opinion, operations should

be different — it should be a rewarding job, one that

talented people want to do. Most importantly, it should be a

part of the software engineering career path. We want the

people who build our systems to also be responsible for

keeping them up. We think this idea is the key to building

reliably and operating at a high level of efficiency.

7.1 Collaboration Between Dev and Ops

Site Reliability Engineering originated, in most cases, as a

near - hands - on effort between the developers of a product

and the team responsible for Operations. DevOps, as a

hybrid culture, had transformed some engineering teams

into mini streets on the road to production. The introduction

of SRE as an exemplary of best practice, support for the

goal of production quality development, and the sharing of

operational coverage in the team allowed developers to buy

into their mentioned mini - side support teams.

7.2 Emphasis on Continuous Learning

It is of utmost importance that SREs devote time to continue

to build their skill set. Educating their workforce is likely

the best investment they can make and have established a

formal program called “20% time. ” Twenty percent of the

time allows engineers to spend one day a week, or 20% of

their workweek, on projects outside of their normal

responsibilities. These can either be personal projects or

company - related projects that will add value to the

ecosystem but are solely employee - driven. This program

has become highly regarded throughout the technical world.

Often, other companies want to replicate the power that

comes from 20% time, and the developers are known

specifically for pushing the envelope with their projects

from 20% time. Whenever a new, innovative idea is

introduced, it is likely that the origin of that idea was

conceived during 20% - time efforts.

8. Challenges of Implementing SRE

While developing a strong SRE practice or an SRE team can

provide significant benefits to an organization, there are

typical challenges along the way. In this chapter, we will

discuss some of the organizational challenges that you may

encounter as you scale your SRE efforts.

8.1 Resistance to Change

Organizational change is never easy. Corporate and research

alike are filled with stories of initiatives that have stalled or

failed. Some of the challenges have to do with inertia:

organizations tend to find it easier to just continue doing

what they are doing. People want to feel confident in their

understanding of how the world works and that their efforts

are aligned with the broader goals of the organization. In

practical terms, this means that change must be driven from

above, who must not only set the vision and the tone for the

change but also show a willingness to make waves and to

drive the effort forward. Foundational work — making

organization - wide changes to how systems and services are

monitored and managed, building tools to consolidate and

improve developer access to operations data — can be

difficult to fund and staff, especially if they’re only seen as

improvements to how the company performs maintenance

on existing systems. While such proactive maintenance is an

important part of SRE, organizations must also make moves

to shift production risk from the operations group to the

development group and then back again.

That means that the wider organization needs to be prepared

to make changes to its perception of its own culture.

Developers need to expect that issues will arise in their

services even after they’ve been deployed, that fixing those

issues is a part of their jobs, and that talking about failures

will lead to better reliability. They need to believe that SRE

is there to work with them and help them improve their

systems over time, to better enable a product and feature set

that meets the company’s goals. And they need to believe

that they have the necessary authority to make changes,

especially if those changes are to the products and services

of their colleagues in other teams. Otherwise, work you’re

doing will not help.

8.2 Skill Gaps in Teams

The Team Topologies model helps teams understand their

interactions, the cognitive load they carry, and the

importance of shaping a team's culture to help implement

the organization’s strategy faster. The model defines four

team types, enabling fast flow from idea to production:

Enabling teams, who help a Stream - aligned team to clear

obstacles; Complicated Subsystem teams, who provide

capabilities that are too complicated to be managed by

Stream - aligned teams; Stream - aligned teams, aligned to a

flow of change for a single, valuable work product; and

Platform teams, grouping together the capabilities to

accelerate the delivery by Stream - aligned teams of digital

services. The company involved in this case study had

implemented a DevOps and platform architecture alongside

the Platform team model, and yet Neurodivergent and Early

Career hires were still finding it hard to break into customer

- facing and technical solution architect roles.

Why is that? It turns out that the customer - facing

Development team was expecting a level of expertise on the

technical solutions provided that was unrealistic at that level

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 287

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

and not in alignment with the idea of any platform. This was

generating a higher than expected turnover of Early Career

and Neurodivergent hires from Technical Solution Architect

customer - facing roles. These hires were considered to be in

learning hubs; they were picking up the processes and

systems, the expectations of the role, and starting to gain the

technical knowledge necessary for the post, but the

company was not applying the appropriate timeframes or an

appropriate onboarding process for these roles. There was

no mapped knowledge creation plan to support role

incumbents through the transitionary period. Given the

culture of the organization and the reluctance to embrace

more psychometrically aligned automated recruitment tools,

it became clear that if the reluctance to create a more

equitable onboarding/knowledge creation plan continued,

the company was always going to struggle.

9. Case Studies of Successful SRE Adoption

This section outlines some real world successful adoption of

SRE and DevOps. While no tool, training, certification, or

concept push can guarantee successful DevOps adoption,

previous experience from other teams and companies can

provide inspiration, pointers to potential pitfalls, models for

success, and navigation aid for the DevOps journey.

9.1. Tech Giants' Approaches Google was the pioneering

company to brand its Site Operations and Software

Engineering collaboration roles as Site Reliability

Engineering. Watching the brilliant pages at SRE: the Book

is an inspiration to any operationsing or development team –

DevOps or not! Netflix is famous for its resilience

engineering. The company adapted the Chaos Monkey tool

from its earliest service disruptions using the Netflix

platform in its home to foster resilience through chaos

experiments at scale. The company compiled its engineering

approach to diversification, experimentation, observability,

availability, and scaling latency. Facebook has many teams

involved with production operations, reliability, and security

– but it calls none of them site reliability engineering.

Instead they adapt SRE practices to their many - hats

rotating on - call support teams that reply to alerts and check

the reliability dashboards. The company publishes many

technical posts through their engineering blog, including its

artificial intelligence - driven platform for managing

infrastructure.

9.2. Startups Implementing SRE On the developer side,

Github argues for embracing SRE as a multiple stakeholder

approach to production. Pinterest hired SRE teams rooted in

software engineering and coding that collaborate with

developers in all areas of reliability – from SLIs to testing in

production, and together they onboard on - call

responsibilities. Salesforce discusses embracing Continuous

Delivery and DevOps principles, practices, and tools while

still maturing as a company with site reliability engineering

inside a hybrid - cloud model. Workable, a simpler SRE

implementation rooting developers on product engineering

and operations has adapted a lighter touch with success with

all dev team hands on deck during outages.

9.1 Tech Giants' Approaches

Before many of us even used the Internet, companies were

already leveraging thousands of servers in datacenters to

deliver services to customers all over the world. From

workflow search to Internet search, ads delivery, and many

other services besides, companies had been scaling their

infrastructures for over a decade before we started thinking

about building our own cloud infrastructures. Over those

years, they had to solve many difficult problems—like

creating a system that could withstand a specifically planned

Global Wide Area Network outage while continuing to

serve requests—that we now can ingest as best practices

codified in books and standards. One company became one

of the first to produce unified distributed fault tolerance and

load balancing solutions to solve such challenges and

evolved all of its services towards SLO - driven

architectures. In doing so, it created a formalized role

through which to operate its services.

9.2 Startups Implementing SRE

Just like bigger enterprises, a number of startups explore the

opportunities in shaping their "post - MVP" web services

and related/extended mission critical services upon the solid

grounds of SRE. Unlike bigger companies that have SRE as

a mature established team or even a number of matured

specialized teams, smaller startups embrace the philosophy

and outline presented by the SRE discipline in less than a

few years of their journey. Nevertheless, the impact is

extremely significant and may appear in the following

forms:

10. Tools and Technologies Supporting SRE

All the standard processes or practices of Site Reliability

Engineering outlined above require the implementation of

some operational tool or technology to support it; otherwise,

it'd be just a set of abstract ideas with little concrete,

actionable guidance. In this section, we outline the existing

or available tools and technologies supporting some of the

important key practices of SRE.

10.1 Monitoring Tools

The first principle of any Site Reliability Engineering team

is to instrument the software or product you are operating

for visibility into key parameters and monitoring data. Thus,

the first duty of the SRE team is to establish extensive

monitoring for a product with systems that aid the product

owners and developers in understanding what the product is

doing, easy to bring up new instances of existing services,

and make it easy to scale it up. Use a common set of tools

and packages for infrastructure management and monitoring

to minimize knowledge transfer and make the organization

less brittle.

10.2 Monitoring Tools

Standard automated and manual monitoring tools are critical

to the success of SREs. To monitor task completion times

and system features that are critical to user happiness,

synoptic views of those properties via dashboards and flat -

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 288

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

file logs are the obvious starting point for SRE monitoring

technology.

Tools are not true monitoring tools, in that they do not allow

the user to specify arbitrary metrics of interest for arbitrary

test intervals, nor do they automatically trigger

asynchronous alerts. Monitors based on these tools are often

augmented by a combination of cronjobs scheduled on

remote machines, simple time - interval polling of

availability and transactional service properties, agent -

programmed counters or submissions tied to service events,

log - file scanning, and traffic and performance accounting.

A more elegant model of monitoring permits an arbitrary

software event counter and interval time accumulation in an

easily accessible bucket or accumulator. Time intervals and

event counter resets would be triggered by system events or

be administratively configured. Both centralized and

distributed monitoring architectures have their benefits and

costs. In a centralized architecture, buckets for all monitored

events are hosted on a single server; alerting and monitoring

policy commands and metric queries have no network

latency. In a distributed architecture, program - generated

bucket updates are forwarded by machines as service events

occur to a few collector servers, where queries and alerts are

processed.

While there is no single tool that is appropriate for

monitoring all metrics of interest to an SRE, there are two

tools that fill large niches: a distributed monitoring tool

designed for monitoring clusters. It's designed to do one

thing extremely well: to show the real - time state of a

cluster's qualities. It maintains six wide - area ganglia, a

general - time - scale mosaic of heavy extractions from

many clusters, and a static international client.

10.2 Incident Management Software

SRE is concerned with the availability, latency,

performance, efficiency, change management, monitoring,

emergency response, and capacity planning of services.

While there is a significant amount of effort needed to

prevent incidents, by thoroughly addressing each of these

areas, no matter how much effort is made, failures will

eventually occur. In reality, in these complex modern

systems, service outages are inevitable. As a consequence,

one of the critical responsibilities of an SRE is an incident

response. Incident management tools and technologies exist

to minimize the impact of outages when they do occur.

11. Metrics for Measuring SRE Success

While metrics monitoring should help give SREs and those

dependent on service health a baseline understanding of

service health, there are also a smaller number of metrics

that are geared toward assessing the performance and

success of the SRE function itself. These metrics can be

useful in answering the question: “How well is our SRE

team doing?” They allow senior management and the SRE

team to assess whether the SRE team’s efforts are aligned

with the needs of the organization and if the team has the

resources and support necessary to be successful. These

metrics also help to determine whether to phase in SRE

gradually or to go for break and jump in with both feet.

These metrics are also helpful for individual engineers

trying to answer the question: “Can an SRE team succeed

here?”

11.1. Key Performance Indicators (KPIs) Different SRE

teams may have special indicators that reflect the unique

circumstances of their environment. However, the most

important of these Key Performance Indicator (KPI)

categories are:

Balance between effort spent on new features and

maintenance: An initial goal is to decrease the amount of

effort spent on maintenance. This is typically depicted as a

percentage of engineering effort going into maintenance, as

opposed to producing new features. State (or age) of the

known problems list: Most mature organizations will have a

“known problems” list. This is an active list of defects or

requested enhancements that users have pointed out that

need to be rectified. The length and age of this list is an

indicator of the responsiveness of the SRE team. “Heroics”

required: In the early evolution of a service, “heroics, ” or

periods of frantic activity to resolve a service outage, may

be necessary. This is indicative of an infrastructure that is in

an unstable state. Having to drop everything and focus on

fixing a service for prolonged periods of time may be

indicative of a service that is screaming, “Please help, I need

your attention!” SRE teams ideally want the number of

heroic incidents to go down over time, indicating that they

are doing a good job.

11.1 Key Performance Indicators (KPIs)

Someone once remarked, "What gets measured, gets done. "

The success of the SRE approach relies on assuming

responsibility for the availability of a service and its

performance as a business capacity. A lack of attention to

and improvement of these characteristics, particularly as the

organic growth of a service continues, would put the

business at risk. Therefore, measuring these business

capabilities is essential. Moreover, it's critical to make sure

service owners possess insight into their service's

performance and to support them in meeting the expected

availability and performance levels. Just as SLOs are fuel

for the SRE engine, Key Performance Indicators (KPIs) are

SLOs' older and, some would say, less powerful relatives.

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 289

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

11.2 Feedback Loops

While KPIs, SLIs, and SLOs provide a far clearer

mechanism for aligning specific efforts to both company -

wide objectives as well as day - to - day engineering efforts,

the real - time push - pull feedback mechanism also provides

a powerful way of observing and reacting to the state of

complex systems in operation. In a constantly changing

environment, there is an on - going need to ask some basic

questions: How closely are we operating within our defined

SLIs/SLOs? When was the last time we operated close to

that boundary? If we have changed our code, architecture,

cloud provider, or host configuration, what effect has it had

on our operating characteristics? If we didn’t make those

changes with the intention of changing those things we’d be

best advised to fix them, presumably we made specific

changes to make some of these operating characteristics

change.

12. Future Trends in SRE

Although Site Reliability Engineering (SRE) is well

established in most technological companies, its products,

practices, and experiences will continue to evolve. With

SRE maturing, many of our support practices merge directly

into the general community of development and operations

engineers. While new implementations of SRE as a practice

still emerge, we’re also seeing some organizations invent

their own variations and focus, thereby recasting the SRE

role back into a specialized operations engineer or site

operations specialist.12.1. AI and Machine Learning

Integration

One of the main focuses of every Site Reliability Engineer's

work is to maintain and develop a stable production

environment while keeping the support costs to a minimum.

Unfortunately, this is not an easy business when every year

(to some extent, every month) your application is getting

bigger with new features, and the growing complexity of

every SRE - support job doesn't match with the diminishing

size of the team. To further cap this geometric growth of the

complexity of support tasks for SRE, we try to automate as

much as we can, applying the same techniques that were

used to solve the original task to the resulting SRE -

generated systems. This last step opens a feedback loop,

which drives us towards increasing automation of the

monitoring - tuning - load - balancing process. However,

creating the automated systems is a somewhat laborious

process especially for specific jobs like tuning caches or

load balancers. In order to further reduce the costs of

operations we vision that eventually it will be possible to

translate our intention of reducing latency into an

acquisition cost of the automated system that can then learn

how to perform these specific sub - tasks.

12.2 Evolution of DevOps Practices

Over the past 10 years, there have been many suppositions

and presumptions about the definitions of SRE and DevOps,

often leading to confusion and delaying agreement on what

sets the methodologies apart from each other, and how

organizations of varying infrastructures and business needs

could benefit from either alone or from both in combination.

As the skills and resources shortages for basic platform

operations have begun to impact all businesses adopting

cloud and microservice - based architectures for their

infrastructure, the exploration of the SRE model in

organizations previously leveraging pure DevOps principles

has gained renewed attention. An inherent misunderstanding

is that the methodology of DevOps demands the removal of

all traditional platform operations, i. e., lack of SILO

awareness and shared accountability. The commonality of

all business operations is heavily reliant on platforms, and

the mediating service lives of all microservices become a

dependency cycle that will only grow in complexity. The

evolution of mature and successful DevOps practices has led

organizations to invest in microservices modeling,

implementing, CI/CD tooling, and operational shared

tooling across multi - discipline teams. As initial tooling has

enabled rapid product releases, and organizations are now

learning from applying these principles for products also

applied to internal tooling, platform technology is not a

stagnant resource.

13. Conclusion

SRE promises to deliver inputs to design, but it is also an

opportunity to build a discipline that understands inputs

from design as well.

References

[1] Tabbassum, A., Malik, V., Singh, J., & Surendranath,

N. (2024, October). Integrating Site Reliability

Engineering Principles with DevSecOps for Enhanced

Security Posture. In 2024 International Conference on

Intelligent Systems and Advanced Applications

(ICISAA) (pp.1 - 6). IEEE.

[2] Beyer, B., Jones, C., Petoff, J., & Murphy, N. R.

(2016). Site reliability engineering: how Google runs

production systems. " O'Reilly Media, Inc. ".

[3] Oviedo, E. I. (2021, May). Software Reliability in a

DevOps Continuous Integration Environment. In 2021

Annual Reliability and Maintainability Symposium

(RAMS) (pp.1 - 4). IEEE.

[4] Beyer, B., Jones, C., Petoff, J., & Murphy, N. R.

(2016). Site reliability engineering: how Google runs

production systems. " O'Reilly Media, Inc. ".

[5] Erich, F. M., Amrit, C., & Daneva, M. (2017). A

qualitative study of DevOps usage in practice. Journal

of software: Evolution and Process, 29 (6), e1885.

[6] Villamizar, M., Garcés, O., Ochoa, L., Castro, H.,

Salamanca, L., Verano, M., & Lang, M. (2017). Cost

comparison of running web applications in the cloud

using monolithic, microservice, and AWS Lambda

architectures. Service Oriented Computing and

Applications, 11, 233 - 247.

[7] Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola,

T., Heikkilä, V., Itkonen, J., & Lassenius, C. (2019).

DevOps in practice: A multiple case study of five

companies. Information and software technology, 114,

217 - 230.

[8] Malawski, M., Gajek, A., Zima, A., Balis, B., &

Figiela, K. (2020). Serverless execution of scientific

workflows: Experiments with hyperflow, aws lambda

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 290

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

and google cloud functions. Future Generation

Computer Systems, 110, 502 - 514.

[9] Jamil P (2022) A Survey on Infrastructure as Code

(IaC) Security. IEEE Transactions on Dependable and

Secure Computing 1.

[10] Farley N (2010) Continuous Delivery: Reliable

Software Releases Through Build, Test, and

Deployment Automation. Addison - Wesley

Professional.

[11] Beyer P (2016) Site Reliability Engineering: How

Google Runs Production Systems. O'Reilly Media.

[12] Botvich A (2020) Machine Learning for Resource

Provisioning in Cloud Environments. IEEE

International Conference on Cloud Engineering

(ICEE) 1 - 10.

[13] Chen M (2019) AI for Anomaly Detection in IT

Infrastructure. IEEE International Conference on Big

Data (Big Data) 5303 - 5307.

[14] Mao Y (2021) Reinforcement Learning for Cloud

Resource Allocation. Proceedings of the 2021 ACM

Symposium on Cloud Computing 185 - 196.

[15] Patel P (2022) Containerization and Cloud Security: A

Survey. IEEE Transactions on Engineering

Management 1.

[16] Singh, C., Gaba, N. S., Kaur, M., & Kaur, B. (2019,

January). Comparison of different CI/CD tools

integrated with cloud platform. In 2019 9th

International Conference on Cloud Computing, Data

Science & Engineering (Confluence) (pp.7 - 12).

IEEE.

[17] Zampetti, F., Geremia, S., Bavota, G., & Di Penta, M.

(2021, September). CI/CD pipelines evolution and

restructuring: A qualitative and quantitative study. In

2021 IEEE International Conference on Software

Maintenance and Evolution (ICSME) (pp.471 - 482).

IEEE.

[18] Rangnau, T., Buijtenen, R. V., Fransen, F., & Turkmen,

F. (2020, October). Continuous security testing: A case

study on integrating dynamic security testing tools in

ci/cd pipelines. In 2020 IEEE 24th International

Enterprise Distributed Object Computing Conference

(EDOC) (pp.145 - 154). IEEE.

[19] Spence, J. T., Helmreich, R., & Stapp, J. (1973). A

short version of the Attitudes toward Women Scale

(AWS). Bulletin of the Psychonomic society, 2 (4), 219

- 220.

[20] Villamizar, M., Garces, O., Ochoa, L., Castro, H.,

Salamanca, L., Verano, M., & Lang, M. (2016, May).

Infrastructure cost comparison of running web

applications in the cloud using AWS lambda and

monolithic and microservice architectures. In 2016

16th IEEE/ACM international symposium on cluster,

cloud and grid computing (CCGrid) (pp.179 - 182).

IEEE.

[21] Holmes, J., Sacchi, L., & Bellazzi, R. (2004). Artificial

intelligence in medicine. Ann R Coll Surg Engl, 86,

334 - 8.

[22] Hunt, E. B. (2014). Artificial intelligence. Academic

Press.

[23] Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O.

(2022). Quo vadis artificial intelligence? Discover

Artificial Intelligence, 2 (1), 4.

[24] Winston, P. H. (1984). Artificial intelligence. Addison

- Wesley Longman Publishing Co., Inc. .

[25] Holzinger, A., Langs, G., Denk, H., Zatloukal, K., &

Müller, H. (2019). Causability and explainability of

artificial intelligence in medicine. Wiley

Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, 9 (4), e1312.

[26] Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966).

Artificial Intelligence Through.

[27] Russell, S. J., & Norvig, P. (2016). Artificial

intelligence: a modern approach. pearson.

[28] Nilsson, N. J. (2009). The quest for artificial

intelligence. Cambridge University Press.

[29] Nilsson, N. J. (2014). Principles of artificial

intelligence. Morgan Kaufmann.

[30] Szolovits, P. (2019). Artificial intelligence and

medicine. In Artificial intelligence in medicine (pp.1 -

19). Routledge.

[31] Minsky, M. (2007). Steps toward artificial intelligence.

Proceedings of the IRE, 49 (1), 8 - 30.

[32] Berente, N., Gu, B., Recker, J., & Santhanam, R.

(2021). Managing artificial intelligence. MIS

quarterly, 45 (3).

[33] Minsky, M. (2007). Steps toward artificial intelligence.

Proceedings of the IRE, 49 (1), 8 - 30.

[34] Negnevitsky, M. (2005). Artificial intelligence: a

guide to intelligent systems. Pearson education.

[35] Brynjolfsson, E., & Mcafee, A. N. D. R. E. W. (2017).

The business of artificial intelligence. Harvard

business review, 7 (1), 1 - 2.

[36] McCarthy, J., & Hayes, P. J. (1981). Some

philosophical problems from the standpoint of

artificial intelligence. In Readings in artificial

intelligence (pp.431 - 450). Morgan Kaufmann.

Paper ID: SR25603182226 DOI: https://dx.doi.org/10.21275/SR25603182226 291

http://www.ijsr.net/

