
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Zero-Day Vulnerabilities in Container Images:

Risks and Detection using Generative AI

Karthikeyan Thirumalaisamy

 Independent Researcher, Washington, USA

Corresponding Author Email: kathiru11[at]gmail.com

Abstract: Containerization has changed the way we deploy software by giving us the ability to deploy lightweight, portable, and scalable

applications. However, it has also introduced a larger attack surface were risk surfaces from usage of unpatched or unknown

vulnerabilities in containers. Zero-day vulnerabilities are those flaws that are exploited before being made public or patched, they can

pose a serious threat to anything running in a containerized environment because they can easily propagate without any detection.

Conventional security scanners are heavily reliant on the known vulnerability databases and do not detect zero-day risks. This paper

examines the zero-day vulnerabilities, describes the boundaries of known detection mechanisms, and proposes a new way to identify and

reduce risks utilizing generative AI. Using large language models (LLMs) and generative systems, it illustrates how generative AI can

enhance both static and dynamic analysis, automate threat pattern recognition, identify relationships between threats, and produce real-

time contingent remediation. We argue that generative AI as a solution in DevOps provides a better level of proactivity and reactivity to

address the ever-evolving threat landscape in containerized applications.

Keywords: Zero-day, Zero-day vulnerabilities, Container Image vulnerabilities, AI mitigation, AI detection

1. Introduction

Container technology is rapidly replacing traditional methods

and becoming the primary way of developing and deploying

software. Tools like Docker and Kubernetes have given

developers the ability to "containerize" applications and

dependencies in portable, lightweight units called containers.

Containers are technologies that allow the packaging and

isolation of applications with their entire runtime

environment (all the files necessary to run). This makes it

easy to move the contained application between environments

(dev, test, production, etc.) while retaining full functionality.

As enterprises increasingly adopt cloud-native and

microservices based architecture, the usage of containers in

both the enterprise and open source communities have grown

exponentially.

Despite the advantages that containers provide, it also creates

its own significant security challenges. Container images

contain full operating systems, third-party libraries, and

custom code from the application. Each of these are an entry

point for an attack, and the most pernicious attack vector are

zero-day vulnerabilities. A zero-day vulnerability is a

software bug or defect not previously known (to the

developers/security team) and is exploited by an attacker prior

to the organization becoming aware of its existence. Once a

zero-day vulnerability exists within a container image, it can

spread across multiple environments and possibly result in

thousands of deployments from a single compromised base

image.

Normal security tools, including static-image scanning or

signature-based threat detection, are not really capable of

detecting the exploitation of zero-day threats. Current tools

are all fundamentally reactive - they look for vulnerabilities

from what's in the database (e.g., CVE lists) and, as such, will

work only against what vulnerabilities are known and

published. Zero-day vulnerability exploit will usually be

either a new exploit or an obfuscated exploit. Secondly,

containers are ephemeral and distributed; once a container is

instantiated, exploited, and destroyed there is literally no

timeframe for static detection programming to ascertain what

is an adequate response to a containerized malicious exploit

ahead of a threat actor.

To fill the gaps in traditional tools for security, Generative AI,

most notably large language models (LLMs) is ascending as

a viable option. Generative AI has the ability to analyze

terabytes of code at high speeds; recognize patterns that

indicate unusual behavior; and even posit the existence of

vulnerabilities that had not yet been reported. Trained on an

array of datasets, including open-source repositories and logs,

Generative AI gets an overall feel for how software systems

behave.

The primary advantage is the speed of detection. The sooner

you can detect a potential threat, the sooner you can begin

looking for anomalies in static code, segregating unsafe

binaries, and replacing insecure components with secure

components. Generative AI can also help to automate (or

semi-automate) security policies, generate remediation, and

repair faulty configurations - allowing you to eliminate or

decrease risk before it gets exploited.

This paper talks about the threat of zero-day vulnerabilities

that may be present in container images and presents a new

method of using Generative AI to identify and reduce them.

We will describe existing security tool limitations, explain

how AI can enhance and extend the current layers of

protection, and conclude with a few actionable steps

organizations can take to minimize the risk to zero-day

vulnerabilities in a containerized environment.

2. How Zero-Day Vulnerabilities Are

Exploited in Container Images

Container images are convenient, but they also can contain

undiscovered zero-day exploits. Container images include

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 309

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

applications, but they also include all dependencies, libraries,

and possibly part of the operating system, all packed up

together. Here are examples of how attackers can exploit

zero-day vulnerabilities within the container images:

a) Pre-Packaged Vulnerable Components in Base

Images: When creating a container image, many

developers use the publicly available base images (i.e.,

Ubuntu, Alpine, Node.js, etc.) to include their application

into a container. If the base image contains an existing,

yet undiscovered zero-day exploit vulnerability (think,

Linux kernel, system library, network utility, etc.), when

the container starts, it can be exploited.

b) Compromised Dependencies: Often containerized

applications depend on additional open-source libraries

and tools. If one or more dependencies that are zero-day

is included in the container, it can become a very well

hidden backdoor that can be exploited.

c) Malicious or Compromised Container Images: An

attacker can publish or inject a malicious container

images within a public or private registry. Malicious

container images can contain zero-day exploits to be

executed when the container runs the image, bypassing

the normal security checks, as the zero-day vulnerability

is unknown.

d) Supply Chain Attack: The supply chain can also

introduce zero-day exploits if the CI/CD pipeline or

container registry is compromised. Attackers can easily

introduce zero-day exploits into the image unknowingly

to the developer.

e) Attackers exploiting the container at runtime: When

a container with a zero-day exploit is running, attackers

can exploit that container to:

• Escape the container to the host system

• Escalate privilege within the container

• Execute arbitrary code or install malware

• Move laterally across a cloud environment or cluster

f) Delayed Detection: As zero-minus days are unknown,

container vulnerability scanners and traditional security

tools will generally not flag zero-day vulnerabilities.

Because of the unknown, a zero-day exploit can go

undetected for some amount of time in containerized

environments.

3. The Importance of Container Vulnerability

Scanning

Container vulnerability scanning is critical for several reasons

as it is a foundational element in identifying and managing

the risk associated with containerized applications.

Containers have become ubiquitous in today’s software

development and deployment practices, necessitating a focus

on security.

Here are some reasons container vulnerability scanning is

critical:

a) Identify Vulnerabilities Earlier: Vulnerability

scanning for containers allows organizations to identify

security vulnerabilities in container images before they

ever enter a production environment. Identifying the

vulnerabilities early allows organizations to address them

prior to release, reducing their risk around security

breaches.

b) Ensure Compliance: Many organizations are bound to

various regulatory compliance requirements with very

established regulatory requirements around controls and

practices. Vulnerability scanning for containers provides

organizations with the ability to demonstrate compliance

by scanning their container images for known

vulnerabilities.

c) Reduce Attack Surface: Scanning for vulnerabilities in

container images aids organizations to strive for

minimizing attack surface while ensuring that potential

codes/packages/dependencies that could create risk are

removed.

d) Continuous Security within DevOps: Software is

developed, tested and released rapidly in today’s DevOps

or CI/CD (Continuous Integration/Continuous

Development) practices. Vulnerability scanning provides

continuous security at each stage of the pipeline by

scanning container images while ensuring that security is

always current with rapid release delivery models.

e) Third-party dependencies: Container images often rely

on various third-party libraries, packages, base images,

etc. that have known vulnerabilities. Scanning container

images lays the groundwork to identify and access risks

around this third-party sourced software.

4. Current Method of Containers Scanning

Container vulnerability scanning is typically an established

process that scans containers from the build stage to the

runtime stage. Integrated scanning through DevOps pipelines,

container registries, and orchestration layers ensures that the

transient workloads are as secure as the more permanent

workloads. The diagram below depicts the current method of

scanning containers as well as the breakdown of the primary

scanning stages and how they form a coherent security cycle.

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 310

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4.1 Scan Source code and dependencies

The initial step of the build pipeline is scanning the

application's source code and dependencies for

vulnerabilities. This approach makes sure that no new

vulnerabilities are introduced. It scans the source code to

identify hardcoded secrets (API token, password), unsafe

functions or patterns (command injection, SQL injection),

insecure configurations (missing input validation, open ports)

and potential logic flows that may be exploited in production

using known vulnerabilities databases. Static Application

Security Testing (SAST) tools are often used for code

scanning. The goal of static scanning is to review the source

code without executing it and helps to identify vulnerabilities

and fix it early in the development lifecycle which is easiest

and cheapest to fix.

4.2 Dependency Scanning

Applications are typically reliant on open-source libraries,

frameworks, and modules, which means that dependencies

will likely comprise a significant portion of the application

code. Dependencies are most frequently packaged or included

in:

• package.json (JavaScript/Node.js)

• requirements.txt or Pipfile (Python)

• pom.xml (Java)

• Gemfile (Ruby), etc.

Dependency scanning will scan the above mentioned files and

generate a Software Bill of Materials (SBOM) listing all

components used. It also cross-reference the included

packages and their versions against available vulnerability

databases (NVD, GitHub Security Advisories, etc.). Finally,

it will locate the deprecated and outdated packages and

recommend the updated or safer package versions. The next

step (Build docker image) will be executed only when these

steps are completed without any detections.

4.3 Scanning Container Images

Once the application code and dependencies are packaged

into a container image, it is necessary to scan that image to

ensure it will not inject vulnerable code into our production

environments. The images are often built using the base

images (e.g., Ubuntu, Alpine, or Debian) that may themselves

contain vulnerable packages or dependencies.

Container image scanning tools, such as Anchore, Clair, and

Trivy, are commonly used with the purpose of improving

container security by scanning each individual layer of a

container image. These container scanning tools efficiently

and methodically scan everything that has been bundled

together including the base image, application code, and any

added dependencies for security vulnerabilities.

These tools not just identify these issues, but also generally

provide risk severity ratings, remediation recommendations,

and integration capabilities with CI/CD pipelines, which

includes the ability for developers and DevOps teams to

automatically scan images as part of a development

workflow. Therefore, vulnerabilities will be caught early and

remediate before the application is deployed to production.

Container images are created as layers, and each layer is an

individual change or addition applied to the base image

throughout the image build process. This layered format is

critical to the functioning of containers, but also provides a

good degree of efficiency, modularity, and reusability.

Usually, each image build starts with a base image (e.g., from

a Linux distribution flavor such as Ubuntu, Alpine, or

Debian), which provides the core operating system files and

utilities the application is expected to run against. Once a base

image is established, the developer incrementally adds

application-specific code, third-party libraries, runtime

dependencies, environment variables, configuration files, and

potentially some initialization or application run-time scripts.

Each instruction in a Dockerfile (e.g., RUN, COPY, ADD)

implements a new layer in the final container image.

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 311

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

During the scanning phase, scanning tools analyze the image

layers against a multitude of vulnerabilities and issues, such

as:

After container scanning is completed successfully, the

image will be published to registries such as Docker, Azure

Container Registry, Amazon Elastic Container Registry,

Google container registry or private registries. If the

container scanning fails then developer must fix the

vulnerabilities in the application code, dependencies or even

base images and restart the whole process again.

4.4 Scanning Images in Container Registry

Image scanning in a container registry is the process of

automatically scanning the container images stored in a single

registry (ex. Docker Hub, Amazon Elastic Container Registry

(ECR), Azure Container Registry (ACR), or private

registries) for potential security vulnerabilities prior to them

being pulled into production.

Container registries are centralized locations for the storage

and distribution of container images. When a developer builds

an image, they will almost always push it to a registry so the

image can be commonly shared, reused, and deployed into

various environments. However, these images in registries

might still be outdated, misconfigured and contain

vulnerabilities. This, obviously, can cause problems.

Periodic, consistent and ongoing scanning will ensure any

image, whether that image is new or old and whenever it was

built, can be scanned for vulnerabilities.

Most private and cloud container registries offer the

following capabilities for scanning stored images:

• Automated scanning triggers

• Most contemporary container registries offer automated

scanning, with the following triggers:

• With an image being added or pushed to the registry

(push-time scanning)

• Following a defined schedule (i.e. daily, weekly, etc.)

• When a new CVE is published (event-driven scanning)

4.5 Scanning images in Kubernetes

Container images are the basic building blocks for deploying

applications in Kubernetes. The images are pulled from the

registry and deployed as pods. Thus, we need to make sure

that the images are safe to run and do not contain known

vulnerabilities. Scanning images in Kubernetes allows you to

only run secure, compliant, trusted container images in the

clusters. Images can be scanned at pre-deployment or during

deployment in the cluster to identify any vulnerabilities in the

images.

An image scan can be integrated at different stages in the

Kubernetes lifecycle:

• Admission Controller Scanning

• In-cluster Image Scanning

4.5.1 Admission Controller Scanning

Admission Controller Scanning is a powerful security

mechanism utilized in Kubernetes to enforce policies at the

time a workload is submitted to the cluster. Admission

controllers are different than pre-deployment scanning

because they perform their inspections at deploy time—

during the request's lifecycle—before the request persisted to

etcd or allowed to run in the cluster.

This real-time inspection into a workload ensures that only

compliant and secure workloads are placed into a Kubernetes

environment. An Admission Controller is a Kubernetes

component that intercepts (validating or mutating) requests to

the Kubernetes API after authentication/authorization has

succeeded but before the object persisted. Admission

controllers can enforce image scanning, can reject workloads,

can enforce workloads to have certain conditions to be placed

(e.g., not have high-severity CVEs, not be a root user, etc.).

4.5.2 In-cluster Image Scanning

In-cluster image scanning helps organizations perform

security assessments on container images in running

Kubernetes clusters. Rather than pre-deployment scans that

take place as part of the build or CI/CD process, in-cluster

scanning provides organizations visibility into what has been

deployed to their environment in real-time. This helps

organizations uncover vulnerabilities that may have not been

deployed with the image at the time in builds or workflows or

that have been identified with the release of new CVEs after

they were deployed.

In-cluster image scanning deploys a scanning agent (e.g.

Trivy Operator, Starboard) into the Kubernetes cluster. The

scanning agent will discover workloads by querying through

the Kubernetes API for running Pods, Deployments,

StatefulSets, etc. For each container, the scanning agent will

extract the image digest (SHA) and related metadata.

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 312

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Optionally pull and scan the image locally, or use existing

scans located in the external database or other store. The

scanning agent will compare each image layer against known

CVE databases (NVD, GitHub Advisories, vendor advisories,

etc.). The resulting data will be stored in a centralized storage,

dashboards, or within an external security system. This data

will also be used to trigger alerts and remediation

automatically.

4.6 Summary

Container vulnerability scanners that work on the traditional

method are good at identifying known threats and improving

baseline security; however, they may provide limited or no

protection against zero-day vulnerabilities, which are

unknown at the time of scanning. In order to reduce the risk

of zero-day vulnerabilities, organizations should combine

traditional scanning with real-time continuous monitoring,

behavioral anomaly detection, and AI-driven scanning.

5. Container Scanning using Generative AI

Traditional container vulnerability scanning tools like Clair,

Anchore, and Trivy have been important in exposing known

vulnerabilities. Their function involves obtaining the contents

of container images (like OS packages, libraries, binaries) and

checking them against public vulnerability databases like the

common vulnerability and exposures (CVE) list. These tools

are effective, they operate quickly, are automated, and are

well integrated into CI/CD pipelines, making them a crucial

part of secure DevOps process.

However, traditional scanners are naturally reactive and can

only find things that have already been reported and recorded.

There will always be a gap with zero-day vulnerabilities,

flaws that may have been recently introduced or are

undiscovered to the security community. Any unknown

vulnerabilities can persist undetected within container

images, only to be found through active exploitation in the

wild.

This is where Generative AI, particularly large language

models (LLMs) and code-based AI systems, provide

significant value. Generative AI leverage semantic,

behavioral, and contextual analysis of container image

contents and AI models have been trained on vast data that

includes source code, configuration files, logs, threats and

vulnerability reports. It can also identify the code snippets that

may lead to vulnerable software, unsafe configurations or

anomalous patterns regardless of established CVEs or

signatures. Generative AI can reason through complex code

logic, identify insecure callable and usage practices, suggest

remediations, as well as rewrite portions of code or

configuration in a more secure manner. This allows security

teams to address not only known issues but also the potential

risks associated with previously unidentified vulnerabilities,

a significant improvement in the integration of scanning and

exploitation, even when the specific vulnerability has not

been discovered.

5.1 Integrate Traditional Container Scanning Tools with

LLMs Based AI

The best way to improve container security and fill the gap in

the detection of zero-day vulnerabilities is to use the hybrid

approach of combining traditional container scanning tools

with LLM’s based AI systems such as GPT, Gemini, Claude.

This hybrid approach uses the strengths of signature-based

scanners and combines them with the reasoning, context-

awareness and predictive capabilities of generative AI. We

will use LLM based GPT API, but this can be replaced with

any LLM based AI APIs.

This approach can be implemented using any traditional

scanning tools and here we are using Trivy as a selected tool.

Trivy is an open source, comprehensive, cross platform and

versatile security scanner. Trivy has scanners that look for

security issues such as OS packages, known vulnerabilities

(CVEs), Sensitive information and secrets, and targets

including Container Image, File system, Git repository,

Kubernetes. Trivy will provide an output with details of

vulnerability and fixes.

The below section explains the details of the diagram,

provides the high-level overview and explanation of

integration with Trivy (traditional container scanning tool)

and LLM based GPT AI.

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 313

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5.1.1 Scan Images with Trivy

The first step is to scan the container images against the

known vulnerabilities databases (e.g., NVD, Red Hat, Debian

Security Tracker) and provide an output with Vulnerability Id

(e.g., CVE-2025-xxxx), affected package version, severity

(Low/Medium/High/Critical) and suggested fix if its

available as a json format.

5.1.2 Pre-process Scanning results for LLM input

Container vulnerability scanners (like Trivy, Clair, or

Anchore) output the results in structured and meaningful

format (.json, .csv, etc.) that a Large Language Model (LLM)

cannot understand or contextualize better. So, pre-processing

step is required to convert scanner output to AI readable

format which consists of the following steps,

a) Parse the Output: Take the raw scan output (csv or json)

and clean up and organize it into a simple format like

tables or lists.

b) Filter by Severity: Only focus on the most severe issues

(e.g. high or critical vulnerabilities), or those that impact

standard components.

c) Add Additional Context: Add further details about what

the package is being used for, what service it is part of

and where is it located in the container.

d) Summarize the Vulnerabilities: Reformat each CVE in

a way that is easier to consume. As part of the

summarization, be sure to include, the CVE ID, a general

description of what it impacts, how severe it is, if there is

a fix, and how easily it can be exploited.

e) Flatten Deeply Nested Data: If the output is complex

(i.e. multi-layered, standard dependencies), re-organize it

into flat or more easily consumable format.

f) Add Environment Context: As part of the vulnerability

context for recommended actions, add details about the

operating system, application stack and where it will be

deployed (i.e. Kubernetes cluster).

5.1.3 Sending Pre-processed Input to GPT API to

identify zero days vulnerabilities

After preprocessing completes, send the preprocessed input

to GPT API to identify potential zero days vulnerabilities.

GPT reads the information and tries to spot signs of deeper

risk, GPT can connect the links between different risks. It can

predict weaknesses that attackers might exploit even if they

aren’t officially reported. It brings contextual awareness (e.g.,

“this misconfiguration + this service = potential exploit”). It
will look at the suspicious behaviors that lead to zero-day

exploits. Connect the dots with configurations mistakes,

unpatched software, insecure behaviors that attackers may

exploit before existing public CVEs become available. Model

an attacker's thinking based on a known attack path (i.e., TTPs

from the MITRE ATT&CK framework).

Once an in-depth contextual analysis of the preprocessed

input is completed, GPT will then provide a full vulnerability

report including potential zero-day vulnerabilities. These

vulnerabilities are not only based on existing CVEs, or

common vulnerabilities and exposures, but also inferred

vulnerabilities based on patterns of insecure

misconfiguration, lack of appropriate patch management of

core components or application dependencies, or exposed

secrets, as well as behavior combinations that attackers may

exploit even if the CVEs have not been reported or published.

Every report typically includes:

a) Vetted Vulnerabilities: GPT will indicate both known

vulnerabilities and inferred vulnerabilities based on the

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 314

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

container image structure, behavior, detailed source code,

and configuration.

b) Risk Assessment Levels: GPT will assign a risk level to

each actual or inferred vulnerability based upon context

such as whether the container is running root, what

sensitive services it may be communicating with, or if it is

exposed on the public internet etc.

c) Inferred Zero Day Indicators: GPT will infer/recognize

possible zero-day by utilizing reasoning and pattern

matching either using insecure defaults, or un-patching

behaviors, and recognizing combinations or dependencies

with possible unusual patterns, inconsistency, or poor

permission.

d) Remediation Guidance: For each identified or suspected

vulnerability, GPT offers detailed, human-level

recommendations for remediation. These include

instructions on how to proceed, what updates are

necessary, and guidance on reconfiguring settings

appropriately. These may include:

• Updating to a safer base image

• Patching or replacing outdated packages

• Removing unused exposed ports or services

• No hard coded secrets

• Using non-root users in docker files.

Providing not only detection, but contextually aware

explanations and actionable fixes, GPT becomes a powerful

resource for security and DevOps teams to help secure

containers even against emerging, or unknown (zero-day)

threats.

5.2 Scan source code and configuration files using LLMs

Based AI

Generative AI, and especially large language models (LLMs)

trained on enormous codebases, inherently offers a model

shift in the way we analyze code for containerized

applications. Unlike traditional scanners which will only rely

on pattern matching and known signatures, generative AI can

understand a code's logic, intent, and structure. This enables

generative AI to detect a wider range of vulnerabilities

including zero-day vulnerabilities, risky coding patterns,

insecure configuration, etc., that static tools may miss.

Below diagram explains the flow of scanning the source code

and configuration using GPT API:

As shown in the above diagram, the process starts with

feeding the source code, the Dockerfiles, and the

configuration files (e.g., the Kubernetes manifests) to GPT

API. The model then performs a semantic and contextual

analysis of the inputs; the model is not just searching for

known vulnerabilities and risks, it identifies potential zero-

day vulnerabilities for input examples through its ability to

recognize unusual patterns, unsafe logic, or insecure

configurations that may be missed by traditional analysis

tools. The output is a comprehensive security report that

describes the potential risks and vulnerabilities (including

zero-day vulnerabilities, i.e., not documented yet) and offers

potential alternatives securely based on secure coding best

practices and the AI model's rationale.

6. Proposed Approach: Generative AI powered

Container Scanning

In this section we will discuss a complete approach to detect

zero-day vulnerabilities by integrating multiple scanning

points into the AI powered container image scanning pipeline.

This will include scanning of the source code, scanning of the

reports from CI/CD pipeline, container registry scan reports,

and Kubernetes cluster scan report data. All reports and

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 315

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

artifacts will be preprocessed and submitted to the Generative

AI model (e.g., GPT) for analysis.

When combining static analysis (e.g., code scans), container

image scan results, and the runtime environment information,

the Generative AI could show the hidden patterns,

misconfigurations, or risky behavior that might reflect the

existence of zero-day vulnerabilities, even if they are not

known or able to be identified through a public database.

In addition, we could maintain continuous monitoring and

proactively detect these risks before exploitation occurs. The

AI model runs complex reasoning across the different layers

and there is the potential to identify risks, prioritize them

based on severity and remediate it before any attacker could

act on them.

Refer the diagram below for fully integrated AI powered

Scanning pipeline:

7. Conclusion

This paper provides an overview of the emerging challenge

of securing containerized applications against growing threat

landscapes, especially in relation to zero-day vulnerabilities.

Conventional container scanning tooling is also effective at

preventing known vulnerabilities with static databases and

signature matching but is incapable of contextualizing or

anticipating novel or evolving threats.

This paper outlined a solution for zero-day vulnerabilities in

the containers with Generative AI, specifically large language

models (LLMs) like GPT, introduced a new paradigm around

container security. By analyzing programming source code,

container images, and runtime config through

contextualization and prediction, AI predicts possible

vulnerabilities, misconfigurations, and anomalous behavior

that otherwise may go unnoticed. With the implementation of

CI/CD pipelines, Container Registry scanning, and

Kubernetes image scanning enables near real-time prevention

of zero-day vulnerabilities and misconfigured containers.

This is achieved through continuous and proactive security

measures, allowing for the association of new findings to an

evolving landscape of potential threats.

This paper also explored an option to combining traditional

scanning tools with AI-powered analysis. Thus, organizations

have a new and powerful defense mechanism to not only

detect known risks but predict future risks. The proposed

method advanced the performance of threat detection, reduces

zero-days exposure and improves security posture by better

securing containerized applications in cloud-native

environments.

References

[1] IBM security, What is a zero-day exploit?, 2024.

[Online]. Available:

https://www.ibm.com/think/topics/zero-day

[2] Wikipedia, Zero-day vulnerability, 2024. [Online].

Available: https://en.wikipedia.org/wiki/Zero-

day_vulnerability

[3] TIGERA, What Is Container Vulnerability Scanning?.

[Online]. Available:

https://www.tigera.io/learn/guides/container-security-

best-practices/container-vulnerability-scanning/

[4] Jeffrey Schwartz, 87% of Container Images in

Production Have Critical or High-Severity

Vulnerabilities, 2023. [Online]. Available:

https://www.darkreading.com/vulnerabilities-

threats/87-of-container-images-in-production-have-

critical-or-high-severity-vulnerabilities

[5] James Berthoty, How Container Vulns Get Fixed, 2024.

[Online]. Available: https://pulse.latio.tech/p/how-

container-vulns-get-fixed

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 316

http://www.ijsr.net/
https://www.ibm.com/think/topics/zero-day
https://en.wikipedia.org/wiki/Zero-day_vulnerability
https://en.wikipedia.org/wiki/Zero-day_vulnerability
https://www.tigera.io/learn/guides/container-security-best-practices/container-vulnerability-scanning/
https://www.tigera.io/learn/guides/container-security-best-practices/container-vulnerability-scanning/
https://www.darkreading.com/vulnerabilities-threats/87-of-container-images-in-production-have-critical-or-high-severity-vulnerabilities
https://www.darkreading.com/vulnerabilities-threats/87-of-container-images-in-production-have-critical-or-high-severity-vulnerabilities
https://www.darkreading.com/vulnerabilities-threats/87-of-container-images-in-production-have-critical-or-high-severity-vulnerabilities
https://pulse.latio.tech/p/how-container-vulns-get-fixed
https://pulse.latio.tech/p/how-container-vulns-get-fixed

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[6] Google Cloud, Container scanning overview, 2025.

[Online]. Available: https://cloud.google.com/artifact-

analysis/docs/container-scanning-overview

[7] OWASP, Container Vulnerability Scanning, 2023.

[Online]. Available: https://owasp.org/www-project-

devsecops-guideline/latest/02f-Container-

Vulnerability-Scanning

[8] NVIDIA-AI-Blueprints, NVIDIA AI Blueprint:

Vulnerability Analysis for Container Security. [Online].

Available: https://github.com/NVIDIA-AI-

Blueprints/vulnerability-analysis

[9] Babula parida, Docker vulnerability assessment with

Trivy and Azure DevOps, 2022. [Online]. Available:

https://blog.devgenius.io/docker-vulnerability-

assessment-with-trivy-and-azure-devops-

60c95a2d05c5

[10] Microsoft, Scan registry images with Microsoft

Defender for Cloud, 2024. [Online]. Available:

https://learn.microsoft.com/en-us/azure/container-

registry/scan-images-defender

[11] SentinelOne, Container Vulnerability Scanning: A

Comprehensive Guide, 2025. [Online]. Available:

https://www.sentinelone.com/cybersecurity-101/cloud-

security/container-vulnerability-scanning/

[12] OWASP, Source Code Analysis Tools. [Online].

Available: https://owasp.org/www-

community/Source_Code_Analysis_Tools

[13] The Jit Team, Top 10 Container Scanning Tools for

2025, 2025. [Online]. Available:

https://www.jit.io/resources/appsec-tools/container-

scanning-tools-for-2023

[14] Chainguard Academy, Using Trivy to Scan Software

Artifacts, 2024. [Online]. Available:

https://edu.chainguard.dev/chainguard/chainguard-

images/staying-secure/working-with-scanners/trivy-

tutorial/

[15] Ramkrushna Maheshwar, Scanning Docker Images for

Vulnerabilities: Using Trivy for Effective Security

Analysis, 2023. [Online]. Available:

https://medium.com/@maheshwar.ramkrushna/scannin

g-docker-images-for-vulnerabilities-using-trivy-for-

effective-security-analysis-fa3e2844db22

[16] Andrew Blooman, Container Security Scanning, 2024.

[Online]. Available: https://itnext.io/container-security-

scanning-f16b438db58d

[17] Liron Biam, When and How to Use Trivy to Scan

Containers for Vulnerabilities, 2024. [Online].

Available: https://www.jit.io/resources/appsec-

tools/when-and-how-to-use-trivy-to-scan-containers-

for-vulnerabilities

[18] Vaishnavi, Can AI Be Used for Zero-Day Vulnerability

Discovery? How Artificial Intelligence is Changing

Cybersecurity Threat Detection, 2025. [Online].

Available: https://www.webasha.com/blog/can-ai-be-

used-for-zero-day-vulnerability-discovery-how-

artificial-intelligence-is-changing-cybersecurity-threat-

detection

[19] Zscaler, Can AI Detect and Mitigate Zero Day

Vulnerabilities?, 2025. [Online]. Available:

https://www.zscaler.com/blogs/product-insights/can-

ai-detect-and-mitigate-zero-day-vulnerabilities

[20] Casey Charrier, James Sadowski, Clement Lecigne,

Vlad Stolyarov, Hello 0-Days, My Old Friend: A 2024

Zero-Day Exploitation Analysis, 2025. [Online].

Available: https://cloud.google.com/blog/topics/threat-

intelligence/2024-zero-day-trends

[21] SentinelOne, Zero-Day Attack Vectors: A Complete

Guide, 2025. [Online]. Available:

https://www.sentinelone.com/cybersecurity-101/threat-

intelligence/zero-day-vulnerabilities-attacks/

[22] Venu Shastri, What is a Zero-Day Exploit?, 2025.

[Online]. Available: https://www.crowdstrike.com/en-

us/cybersecurity-101/cyberattacks/zero-day-exploit/

[23] ZerodayInitiative, Published Advisories, 2025.

[Online]. Available:

https://www.zerodayinitiative.com/advisories/publishe

d/

[24] Microsoft, Mitigate zero-day vulnerabilities, 2025.

[Online]. Available: https://learn.microsoft.com/en-

us/defender-vulnerability-management/tvm-zero-day-

vulnerabilities

[25] Zero-day, Zero-day Vulnerability Database, (2006-

2025). [Online]. Available: https://www.zero-

day.cz/database/

[26] Nedim Marić, 5 Examples of Zero Day Vulnerabilities

and How to Protect Your Organization, 2024. [Online].

Available: https://www.brightsec.com/blog/5-

examples-of-zero-day-vulnerabilities-and-how-to-

protect-your-organization/

[27] Defendify, How To Respond to Zero Day

Vulnerabilities Once They Become Public. [Online].

Available: https://www.defendify.com/blog/how-to-

handle-zero-day-vulnerability/

Paper ID: SR25603123105 DOI: https://dx.doi.org/10.21275/SR25603123105 317

http://www.ijsr.net/
https://cloud.google.com/artifact-analysis/docs/container-scanning-overview
https://cloud.google.com/artifact-analysis/docs/container-scanning-overview
https://owasp.org/www-project-devsecops-guideline/latest/02f-Container-Vulnerability-Scanning
https://owasp.org/www-project-devsecops-guideline/latest/02f-Container-Vulnerability-Scanning
https://owasp.org/www-project-devsecops-guideline/latest/02f-Container-Vulnerability-Scanning
https://github.com/NVIDIA-AI-Blueprints/vulnerability-analysis
https://github.com/NVIDIA-AI-Blueprints/vulnerability-analysis
https://blog.devgenius.io/docker-vulnerability-assessment-with-trivy-and-azure-devops-60c95a2d05c5
https://blog.devgenius.io/docker-vulnerability-assessment-with-trivy-and-azure-devops-60c95a2d05c5
https://blog.devgenius.io/docker-vulnerability-assessment-with-trivy-and-azure-devops-60c95a2d05c5
https://learn.microsoft.com/en-us/azure/container-registry/scan-images-defender
https://learn.microsoft.com/en-us/azure/container-registry/scan-images-defender
https://www.sentinelone.com/cybersecurity-101/cloud-security/container-vulnerability-scanning/
https://www.sentinelone.com/cybersecurity-101/cloud-security/container-vulnerability-scanning/
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://www.jit.io/resources/appsec-tools/container-scanning-tools-for-2023
https://www.jit.io/resources/appsec-tools/container-scanning-tools-for-2023
https://edu.chainguard.dev/chainguard/chainguard-images/staying-secure/working-with-scanners/trivy-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/staying-secure/working-with-scanners/trivy-tutorial/
https://edu.chainguard.dev/chainguard/chainguard-images/staying-secure/working-with-scanners/trivy-tutorial/
https://medium.com/@maheshwar.ramkrushna/scanning-docker-images-for-vulnerabilities-using-trivy-for-effective-security-analysis-fa3e2844db22
https://medium.com/@maheshwar.ramkrushna/scanning-docker-images-for-vulnerabilities-using-trivy-for-effective-security-analysis-fa3e2844db22
https://medium.com/@maheshwar.ramkrushna/scanning-docker-images-for-vulnerabilities-using-trivy-for-effective-security-analysis-fa3e2844db22
https://itnext.io/container-security-scanning-f16b438db58d
https://itnext.io/container-security-scanning-f16b438db58d
https://www.jit.io/resources/appsec-tools/when-and-how-to-use-trivy-to-scan-containers-for-vulnerabilities
https://www.jit.io/resources/appsec-tools/when-and-how-to-use-trivy-to-scan-containers-for-vulnerabilities
https://www.jit.io/resources/appsec-tools/when-and-how-to-use-trivy-to-scan-containers-for-vulnerabilities
https://www.webasha.com/blog/can-ai-be-used-for-zero-day-vulnerability-discovery-how-artificial-intelligence-is-changing-cybersecurity-threat-detection
https://www.webasha.com/blog/can-ai-be-used-for-zero-day-vulnerability-discovery-how-artificial-intelligence-is-changing-cybersecurity-threat-detection
https://www.webasha.com/blog/can-ai-be-used-for-zero-day-vulnerability-discovery-how-artificial-intelligence-is-changing-cybersecurity-threat-detection
https://www.webasha.com/blog/can-ai-be-used-for-zero-day-vulnerability-discovery-how-artificial-intelligence-is-changing-cybersecurity-threat-detection
https://www.zscaler.com/blogs/product-insights/can-ai-detect-and-mitigate-zero-day-vulnerabilities
https://www.zscaler.com/blogs/product-insights/can-ai-detect-and-mitigate-zero-day-vulnerabilities
https://cloud.google.com/blog/topics/threat-intelligence/2024-zero-day-trends
https://cloud.google.com/blog/topics/threat-intelligence/2024-zero-day-trends
https://www.sentinelone.com/cybersecurity-101/threat-intelligence/zero-day-vulnerabilities-attacks/
https://www.sentinelone.com/cybersecurity-101/threat-intelligence/zero-day-vulnerabilities-attacks/
https://www.crowdstrike.com/en-us/cybersecurity-101/cyberattacks/zero-day-exploit/
https://www.crowdstrike.com/en-us/cybersecurity-101/cyberattacks/zero-day-exploit/
https://www.zerodayinitiative.com/advisories/published/
https://www.zerodayinitiative.com/advisories/published/
https://learn.microsoft.com/en-us/defender-vulnerability-management/tvm-zero-day-vulnerabilities
https://learn.microsoft.com/en-us/defender-vulnerability-management/tvm-zero-day-vulnerabilities
https://learn.microsoft.com/en-us/defender-vulnerability-management/tvm-zero-day-vulnerabilities
https://www.zero-day.cz/database/
https://www.zero-day.cz/database/
https://www.brightsec.com/blog/5-examples-of-zero-day-vulnerabilities-and-how-to-protect-your-organization/
https://www.brightsec.com/blog/5-examples-of-zero-day-vulnerabilities-and-how-to-protect-your-organization/
https://www.brightsec.com/blog/5-examples-of-zero-day-vulnerabilities-and-how-to-protect-your-organization/
https://www.defendify.com/blog/how-to-handle-zero-day-vulnerability/
https://www.defendify.com/blog/how-to-handle-zero-day-vulnerability/

