
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

E2E Automation from JENKINS to LISA

Project: CLIENT_MICROSERVICE

Ram Aurovind

Abstract: The CLIENT_MICROSERVICE Trade Tools team's initiative, E2EAUTOMATION, stands out as a forward-thinking

response to the persistent inefficiencies in international CRM, SRM, shipping, and banking systems. Rather than following traditional,

error-prone methods, the project proposes an intelligent, microservices-driven platform capable of classifying commodities and accurately

predicting duties, taxes, and transit times all in just one click. This isn’t merely a technical shift; it signals a deeper movement toward data

democratization and operational agility. The fusion of Big Data pipelines, machine learning, and parameterized Jenkins pipelines has

streamlined workflows, drastically cut down manual coding and approvals, and introduced reusable, modular architectures. What’s

particularly noteworthy is how the team tackled real pain points fragmented development, delayed testing, and complex deployments by

consolidating job executions, reducing pipeline code by over 60%, and implementing a shared Jenkins library for scalable, consistent

integrations. This suggests that E2EAUTOMATION isn’t just about code efficiency; it’s about reimagining how automation can elevate

the entire user journey, from back-end logic to real-time decision-making. It is evident that this architecture offers a replicable blueprint

for any enterprise aiming to modernize their trade and logistics operations while ensuring traceability, governance, and rapid deployment.

Keywords: microservices automation, intelligent pipeline, Jenkins shared library, Big Data integration, commodity classification

1. Introduction

CLIENT_MICROSERVICE Trade Tools team began a

groundbreaking new initiative named E2EAUTOMATION to

simplify the international CRM / SRM / SHIPPING /

BANKING experience for CLIENT_MICROSERVICE

customers. So have to build an innovative, intelligent

platform that classifies commodities to a fully qualified code

with a single click.

By applying Big Data, Micro services and data science

techniques to historical shipment and tariff data, we were able

to deliver a simplified, streamlined customer experience with

more accurate estimated duties, taxes and transit time Any

Operating company looking for accurate commodity

classification and accurate duties, tax and transit and also

other non-clearance and brokerage platforms can leverage

Trade Tools intelligent micro services

E2EAUTOMATION involves innovative idea of improving

the customers experience by providing accurate product code,

estimated duties, estimated taxes, transit time, and digitalized

experience by utilizing the cutting-edge technologies like Big

Data and Analytics. To be responsible for ingesting data from

various data sources into the Big Data Lake, preparing Data

engineering pipelines and machine learning models to create

datasets which will be used to render data to Business services

2. Summary

• A Jenkins file is a text file that is written using Groovy

syntax for defining

• Continuous Integration, Continuous Deployment and

Continuous Testing (CI/CD/CT) pipeline as Code.

• supporting version control, code review and automation of

the build, test and deployment process within Jenkins.

• It encapsulates the importance of pipelines configuration

for providing consistency and repeatability across

multiple software development projects.

3. Pre-Requisites

• Jenkins :

https://jenkins.ENV(dev/stage/prod).cloud.customer.com

:8443/jenkins/job/CLIENT_MICROSERVICE/job/Micro

Services/

• LISA Server:

c0008666.ENV(dev/stage/prod).cloud.customer.com

4. Pipeline

• Pipeline as a code

5. Location

• Common for all services:

https://jenkins.ENV(ENV(dev/stage/prod)/stage/prod).cl

oud.customer.com:8443/jenkins/job/CLIENT_MICROS

ERVICE/job/MicroServices/job/Scripted_Microservice/j

ob/

• Below is an example for HSValidation path:

https://jenkins.ENV(ENV(dev/stage/prod)/stage/prod).cl

oud.customer.com:8443/jenkins/job/CLIENT_MICROS

ERVICE/job/MicroServices/job/Scripted_Microservice/j

ob/HSV_DSL/

Paper ID: SR25529234731 DOI: https://dx.doi.org/10.21275/SR25529234731 72

http://www.ijsr.net/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/HSV_DSL/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/HSV_DSL/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/HSV_DSL/
https://jenkins.prod.cloud.fedex.com:8443/jenkins/job/CASCADE/job/MicroServices/job/Scripted_Microservice/job/HSV_DSL/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

6. Current Problem Statement Faced in the

Project

• Lack of a version control system, resulting in developers

writing and manually integrating code independently.

• Slow and ineffective testing due to manual execution.

• Limited collaboration resulting from developers working

on completely separate code branches.

• Infrequent integrations and testing that introduce

significant risks during software releases.

• Manual deployments and Approvals from the

Loadmaster (Sr. Project manager) across development,

staging, and production environments.

7. Proposed Solution

In order to remove the manual job creation and management,

Pipeline as Code with a parameterized build has been

proposed and implemented

It allows the Release Team and Developers to run

parametrized pipeline job based upon the environment’s

processes which will be stored as code (Jenkins File), stored

and versioned in a source repository

8. Pipeline Summary and Execution

• Parametrized build will help customizing the build and

deployment process with minimum code

• Single Job Triggered across Multiple Environments in 3

levels (L1-Dev1, L2-Dev2 and L3-Stage1) in a single

stage, (L4-STAGE2, L6-PROD) in 2 different stages as

shown below

• Application components under HS-Validation in git lab,

which was created as a separate pipeline has been merged

into a single pipeline where in it will execute the code

based upon the selection of Application component

parameter

• please find below

• Pipeline code has been decreased more than 60% lines of

code as compared to the existing code

• Stages are rather executed based on the

condition/parameter

• We can use Jenkins shared library which will give more

benefits across the projects, Single shared library will be

access all the projects.

• Through Shared library Jenkins file/Pipeline code will

decrease a lot, only reference of the shared library will be

given in pipeline code

9. Pipeline Details

1) Single parameterized based on ENV and Application

2) Pipeline runtime based on stages

3) Now based one the conditions/approvals we will be

running/executing stages with proper email notifications

4) No. of lines of Pipeline as a code decreased less than

50% from previous code

5) Multiple jobs merged to single job with parameterized

build

a) Now the pipeline code is completely modularized

with specific method

b) Can send build log after each and every stage

completion for Load Master Approval

6) Load master Can approve the pipeline by Email or

through Pipeline stage

7) Single method is used for multiple activities with the

parameter at run time

8) Easy to Debug the Pipeline stages

9) Each and every stage can be viewed across pipeline

10) The method used is Single Build Multiple deployments

11) Build and deploy the code in L1 and deploy the same

code across L2, L3, L4 and L6

 Note: Below is the detailed description of each

pipeline stage

10. Screenshots of pipeline stages (for HS

Validation) is the Name of the Micro

Service Application

• Single parameterized based on ENV and Application

Paper ID: SR25529234731 DOI: https://dx.doi.org/10.21275/SR25529234731 73

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Selection of Application and Env for Approval

• Selection of ENV starting with DEPLOY_L1_L2_L3, Same code built in L1 will be deployed across L2 and L3 for based

upon LOAD MASTER Approval

• Load Master receives email with Build Logs and Build approval

• Load Master validates the build logs and Click on the email approval Link

Paper ID: SR25529234731 DOI: https://dx.doi.org/10.21275/SR25529234731 74

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Link in email will take the user to following Jenkins page

• Load Master gets the following options to Pass or Fail the builds

• If the Load Master Select Failed, the build will get failed and email will be sent to the stake holders

• If the build logs along with ENV(dev/stage/prod) cases are passed, Load Master should approve for deployment to next

level. The same process is repeated for remaining levels too.

Paper ID: SR25529234731 DOI: https://dx.doi.org/10.21275/SR25529234731 75

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

11. Automation Testing-CA Lisa-CI CD CT

Micro Service Implementation Guide

E2EAUTOMATION.do

cx

12. Conclusion

• The Pipeline as code is a flexible and scalable framework

for implementing CI/CD/CT workflows.

• By implementing best practices for organizations, we are

able to accelerate the delivery cycles, mitigate risks and

improve the quality of the software, optimize internal

processes,

• And it did eradicate human error. we are able to resolve

the issues and increase the productivity by doing

CI/CD/CT without any major Outage across Multi

Environments.

Paper ID: SR25529234731 DOI: https://dx.doi.org/10.21275/SR25529234731 76

http://www.ijsr.net/

