
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Using CQRS and Event Sourcing in the

Architecture of Complex Software Solutions

Mantu Singh

Software Architect, Reged, Acton, USA

Abstract: The article explores the theoretical and practical aspects of migrating complex software solutions built on traditional Domain

- Driven Design to an architecture based on Command Query Responsibility Segregation (CQRS) combined with Event Sourcing. The

analysis focuses on the key advantages and existing limitations of these approaches, including their impact on code complexity metrics,

system performance, and infrastructure requirements (Event Store, message brokers). As an example, the article references the results of

an experiment conducted by other researchers, comparing an initial task - tracking system with its CQRS and Event Sourcing - based

version, demonstrating improved scalability alongside increased infrastructure complexity. The study provides recommendations on

migration strategies (evolutionary or "cold"), methods for ensuring idempotency, and best practices for configuring monitoring and

testing tools. The findings presented in the article will be of interest to researchers, software architects, and practitioners involved in the

development of distributed systems seeking to implement CQRS and Event Sourcing paradigms to enhance scalability, fault tolerance,

and consistency in complex software solutions within dynamic business environments.

Keywords: CQRS, Event Sourcing, Domain - Driven Design, cyclomatic complexity, architecture migration, high - load systems,

idempotency, monitoring.

1. Introduction

Information systems are increasingly facing challenges

related to the growing complexity of domain logic and the

rising demands for scalability and fault tolerance. Traditional

monolithic architecture or the classic Domain - Driven Design

(DDD) approach can lead to dependencies, increased

maintenance costs, and difficulties in rapidly updating

functionality. As a result, in recent years, attention has shifted

toward the Command Query Responsibility Segregation

(CQRS) and Event Sourcing approaches, which enhance

architectural flexibility by clearly separating read and write

operations while preserving all state changes as a sequence of

events.

Lytvynov O. and Frolov M. [1] propose a model for migrating

domain - driven design principles to a CQRS context with

Event Sourcing, aiming to enhance architectural flexibility

and extensibility. The scientific novelty of their study lies in

formulating a new paradigm for adapting existing domain

models to event streams. In parallel, Shkryabin G. D. [6]

focuses on applying CQRS and Event Sourcing in high - load

systems, substantiating the hypothesis that performance can

be improved through parallel processing of commands and

events, addressing the existing research gap in ensuring the

scalability of distributed computing processes. Additionally,

Youssfi M. et al. [8] introduce a middleware model for multi

- agent systems, where the scientific novelty lies in integrating

a microservices approach with event - based architectures,

enabling dynamic system management and adaptation to

changing loads. Their methodology is based on a combined

analysis of architectural patterns and empirical hypothesis

testing.

Alongside integration research, some authors focus on

optimizing performance and designing event - driven

systems. Ok E. and Eniola J. [2] demonstrate the use of event

- driven architecture for real - time data streaming in

microservice - based systems, where the goal is to enhance

the responsiveness of information processing. Similarly,

Stopford B. [4] systematizes the principles of designing event

- driven systems, hypothesizing that applying these principles

can contribute to the development of adaptive and resilient

architectures.

A separate area of research in the literature is dedicated to

analyzing event logs and identifying causal relationships in

CQRS and Event Sourcing - based architectures. Lytvynov O.

A. and Hruzin D. L. [3] focus their study on significant events

that directly impact system correctness and stability, allowing

for the identification of bottlenecks in command and event

flows. Breitmayer M. et al. [5] propose advanced methods for

extracting event logs from legacy software systems using

process mining, representing a significant step forward in

reconstructing event streams and transforming outdated

architectures, thereby filling the gap in systematic analysis

and modeling of evolutionary processes.

Finally, in the context of formalizing architectural approaches

and defining modalities, Jejić O., Škembarević M., and

Babarogić S. [7] propose a systematic methodology for

classifying architectural solutions based on the Event

Sourcing pattern. Their objective is to develop a unified

terminology framework and formal criteria for evaluating the

efficiency of architectural models, which, according to the

authors, facilitates the optimization of development and

implementation processes for complex systems.

The research gap arises from the fact that despite the existing

studies on DDD, CQRS, and Event Sourcing, there is no

comprehensive analysis demonstrating the relationship

between code complexity metrics, scalability, and actual

performance improvements when transitioning from a

traditional DDD architecture to CQRS with Event Sourcing.

A systematic study is needed that considers the staged

migration process and risk mitigation methods (e. g.,

idempotency issues and event versioning).

The objective of this study is to develop and experimentally

validate a methodological approach for migrating complex

Paper ID: SR25529083855 DOI: https://dx.doi.org/10.21275/SR25529083855 138

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

software solutions based on DDD to a CQRS and Event

Sourcing architecture, evaluating the impact of this transition

on complexity metrics, performance, and system

manageability.

The scientific novelty lies in analyzing existing research on

CQRS and Event Sourcing in the architecture of complex

software solutions, identifying strengths and weaknesses, and

providing recommendations for their implementation.

The author's hypothesis is that transitioning to CQRS and

Event Sourcing for systems initially built on classic DDD

enhances performance by reducing write conflicts and

optimizing read operations. While the overall number of

modules and lines of code increases, the overall system

complexity either decreases or remains the same due to a

clearer separation of concerns.

A comparative analysis of previous studies was conducted as

part of this research.

2. Theoretical Foundations of CQRS and event

sourcing in the context of complex systems

Domain - Driven Design (DDD) was introduced in 2004 and

has become one of the most influential approaches to

designing complex systems. The core idea of DDD is to focus

on the domain and develop a model that accurately reflects

business rules and logic.

One of the key concepts in DDD is "bounded contexts, "

which define boundaries of responsibility within a system.

Each context contains its own domain model and ensures that

modules within it evolve independently of other parts of the

system. Objects in DDD are grouped into aggregates—

aggregate roots—with defined lifecycles and encapsulation

rules [1].

Experience shows that DDD is valuable in developing

enterprise applications with complex business logic [3].

However, as the number of entities and interactions within a

domain increases, transaction management becomes more

challenging, and scaling under high loads presents additional

difficulties. As a solution, the literature increasingly discusses

combining DDD with Command Query Responsibility

Segregation (CQRS) and Event Sourcing [1].

Command Query Responsibility Segregation (CQRS) was

introduced in the context of event - driven systems as a way

to offload monolithic logic by dividing it into two clearly

separated parts:

• Commands: Modify the system state (create, update,

delete).

• Queries: Return data in a read - only format.

The fundamental idea is to eliminate resource contention

when attempting to read and modify the same objects

simultaneously. CQRS allows for specialized optimization of

the write model and read model, enhancing overall system

performance [8].

CQRS, when combined with microservices, improves

scalability: services handling commands can be deployed

separately from services processing read requests, allowing

independent resource allocation for different workloads.

However, careful planning of API contracts and event formats

is necessary to maintain data consistency between the write

and read sides.

Event Sourcing replaces traditional CRUD - based snapshots

of domain entities with a sequential record of immutable

events. The current state of an entity can be reconstructed by

replaying events from its creation onward [4].

To provide a structured comparison of the three approaches—

DDD, CQRS, and Event Sourcing—Table 1 presents their

key characteristics.

Table 1: Comparative characteristics of DDD, CQRS, and Event Sourcing [1, 3, 4, 7].
Criterion DDD CQRS Event Sourcing

Main Focus
Domain model considering business logic

(bounded contexts, aggregates)

Separation of reading (queries) and

writing (commands)

Storing a sequence of events (event

log) instead of "state snapshots"

Advantages
- Unified object model - Convenience with

moderate complexity

- Independent scalability - Full history

of changes - Flexibility in integration -

Easy "rollback" (replay)

- Optimized for reading and writing

Challenges

- Complexity growth during scaling - Clear

aggregation model needed - Difficulty

synchronizing read/write models

- More complex architecture - Large

volumes of stored data - Migration and

replay complications

- Requires thoughtful idempotency

mechanisms

Use Cases
Corporate systems with moderate

complexity

High - load microservices with large

numbers of operations

Systems requiring full history

(fintech, auditing, analytics)

Relationship to

DDD
This is a basic conceptual framework

Supplement to DDD focusing on

responsibility segregation

Often used in combination with

DDD/CQRS to enhance

transparency and manageability

Thus, CQRS and Event Sourcing represent an evolution of

DDD principles, addressing scalability challenges and the

increasing complexity of business logic. Their application is

effective in systems that need to process high data volumes

while ensuring a high level of auditability and traceability.

However, successful implementation of these patterns

requires consideration of additional factors, including the

increased number of modules and events, infrastructure

demands for storage and replication, and the need to ensure

idempotency and event version consistency.

3. Practical Aspects of Migrating Complex

Systems to CQRS and Event Sourcing

This section explores the main stages and methodologies for

transitioning from a traditional architecture (e. g., DDD

without an event - driven approach) to CQRS and Event

Sourcing. It addresses migration strategy selection,

infrastructure preparation, as well as risks and metrics that

help evaluate the effectiveness of the changes. Below, Figure

Paper ID: SR25529083855 DOI: https://dx.doi.org/10.21275/SR25529083855 139

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

1 illustrates the process of implementing CQRS and Event

Sourcing.

Figure 1: The process of implementing CQRS and Event

Sourcing [1].

As shown in Figure 1, the first stage in implementing CQRS

and Event Sourcing involves analyzing the existing

architecture, taking into account:

• The level of module coupling (tight coupling), which

manifests through high cyclomatic complexity and

difficulty in making changes [1, 6].

• Load characteristics (number of concurrent write

operations, read request volume, latency requirements),

which indicate scalability bottlenecks.

• Business logic complexity: the more dynamic and intricate

the model, the greater the value of an event - driven

approach with full change history storage [3, 7].

Different migration strategies are described in the literature:

incremental/evolutionary migration and "cold turkey"

migration, where the system is temporarily shut down and

restarted with a new repository and business logic [5]. The

incremental approach mitigates risks for critical systems but

requires simultaneous support of both the old and new storage

models. Table 2 compares the characteristics of evolutionary

and "cold" migrations.

Table 2: Comparative features of evolutionary and "cold"

migration [1, 3, 5].
Criterion Evolutionary (Incremental) "Cold Turkey"

Migration

Principle

Gradual transfer of

functionality, parallel

operation of old and new

models

Complete system

shutdown with

subsequent launch on

new architecture

Risks

- Synchronization

difficulties - Increased

infrastructure requirements

(dual data storage) -

Potential version conflicts

- Prolonged system

downtime - Extensive

preparatory work needed

Advantages

- No long downtime -

Rollback to previous stage

in case of problems - Quick

migration finalization -

Cleaner adaptation to

Event Sourcing

- Faster migration

completion - More

"clean" transition to

Event Sourcing

Use Cases

Systems where prolonged

downtime is not acceptable

(e - commerce, SaaS

platforms)

Internal corporate

systems with planned

downtime capability

(some ERP systems)

As seen in Table 2, the strategy choice depends on the ability

to support parallel data storage and event processing

(evolutionary migration) or the team's readiness for

temporary system shutdown ("cold" migration). In industrial

practice, a hybrid approach is often used: some systems are

migrated incrementally, while others undergo a "cold turkey"

transition [4, 5].

The next stage of implementation involves infrastructure

development and code adaptation. CQRS and Event Sourcing

require specialized infrastructure for event storage and

processing:

• Event Store: A storage solution must be selected (e. g.,

relational databases, specialized NoSQL solutions, or

ready - made options like EventStoreDB). The main

requirements include fault tolerance, support for large

event logs, and replication capabilities.

• Message Broker: Kafka, RabbitMQ, or AWS Kinesis

facilitate event stream separation and subscriber

scalability. In CQRS, message brokers simplify read

model projections through asynchronous message

delivery [2].

• During domain service modification, the following

processes take place:

• Separation of domain logic: Operations modifying system

state are implemented as command handlers, while read

operations are assigned to query handlers. Classic DDD

services are split into narrower functional classes.

• Command creation: Each command represents an

intention to modify system state (e. g.,

CreateOrderCommand). Command objects contain the

necessary business logic data.

• Event processing: Upon successful command execution,

corresponding events are generated (e. g.,

OrderCreatedEvent). These events are stored in the Event

Store and published to the message queue for subscribers.

• Read models (projections) are built to ensure quick data

access and are typically stored in separate tables or

databases. Event consumers process events and update

"flattened" structures optimized for querying. In some

cases, read models aggregate multiple tables based on

business rules [4].

• The next step involves implementing idempotency and

error handling. In distributed systems, duplicate event

deliveries can occur due to network failures or retry

mechanisms. Each event handler must ensure

idempotency: repeated processing should not disrupt data

consistency or lead to duplicate operations. Fault tolerance

mechanisms include:

• Dead - letter Queue (DLQ): If an event cannot be

processed correctly, it is placed in a special queue for

manual review or delayed processing [4].

• Manual or semi - automated replay: In case of critical

failures, events can be "replayed" from a specific

checkpoint. This requires strict monitoring of event

sequence and, if schema changes occur, transformation

logic [1, 5].

• During the migration quality assessment, cyclomatic

complexity analysis is conducted to determine whether

module dependencies have decreased and whether system

architecture has become more transparent. To enhance

performance, it is recommended to:

Paper ID: SR25529083855 DOI: https://dx.doi.org/10.21275/SR25529083855 140

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Analyze command (Create, Update, Delete) and query

(Read) execution time—measured using standard

scenarios in a test environment.

• Evaluate event - to - view latency: If the read model is built

asynchronously, a time lag may be required for data

consistency.

• Monitor resource consumption (CPU, I/O, memory) in the

Event Store and message broker.

Thus, transitioning to CQRS and Event Sourcing requires a

comprehensive approach, starting with a detailed analysis of

the existing architecture, selecting a migration strategy, and

concluding with ensuring idempotency and a reliable

monitoring system. The next section will explore the

effectiveness of migration by analyzing experimental data

obtained from conducted research [1], comparing complexity

and performance metrics, and discussing identified

advantages and limitations.

4. Evaluation of effectiveness and practical

results

Litvinov O. and Frolov M. [1] conducted an experiment

comparing a task tracking system (TaskTrackingSystem)

implemented using "classic" Domain - Driven Design (DDD)

with a system that adopted CQRS and Event Sourcing. The

quality of migration was assessed based on the following

parameters:

• Number of classes and lines of code (SLOC).

• Cyclomatic complexity.

• Number of modules in business logic.

As a result of implementing CQRS and Event Sourcing, the

total number of classes increased significantly (from

approximately 47 to 213); however, the overall cyclomatic

complexity of the system decreased (from 534 to 522). The

reason for this is that while additional infrastructure classes

(commands, event handlers, etc.) are introduced, each

individual module becomes simpler and is responsible for

only a limited portion of the logic. Table 3 presents

summarized results for key operations.

Table 3: Comparison of average execution times (in

milliseconds) for basic operations [1]

Method DDD (ms)
CQRS+ES

(ms)
Performance Gain

getUsers 281 43
Read speed increased

more than sixfold

addUser 28 48
Slight increase in write

time

updateUser 119 46 Almost 2.5 times faster

deleteUser 71 52
Around 25%

improvement

getUser 37 37
No change in single

record read time

From Table 3, the following conclusions can be drawn:

• Faster read operations (getUsers, getUser). CQRS and

Event Sourcing significantly benefit bulk read operations

(list queries). Specifically, getUsers performed on average

more than six times faster.

• Write performance (create/update/delete) varies. Some

operations demonstrate acceleration (updateUser), while

others experience slight slowdowns (addUser). Overall,

the CQRS concept optimizes read queries by shifting logic

to projections, whereas the command processing layer

may introduce infrastructure overhead (event generation,

storage, and notification of other services).

While the overall cyclomatic complexity may decrease, the

number of classes and lines of code increases, which implies:

• Additional requirements for version control and testing.

Larger codebases require extensive module validation,

especially when dealing with event - based workflows.

• Higher training costs for developers. Understanding Event

Store principles, microservices communication, and

CQRS patterns is necessary.

When transitioning from a traditional storage model to Event

Sourcing, careful migration of historical data is required. A

common approach involves an interim phase where new

changes are recorded in the Event Store while queries

continue reading from the "old" database until query modules

are fully refactored.

It is recommended to maintain a complete event log, which

simplifies the implementation of real - time analytics, for

example, using Kafka Streams or Apache Flink. This enables

the development of predictive models and timely responses to

system state changes. Monitoring (observability) through

centralized logging (e. g., ELK Stack) and event tracing

systems (Jaeger, OpenTelemetry) facilitates faster failure

detection and performance tracking. For large - scale projects,

mechanisms such as Event Store and broker replication,

distributed event processing, and geographic data center

partitioning may be required. At the same time, ensuring

idempotency of event handlers and designing an intelligent

retry system are crucial for maintaining system reliability.

Thus, the final effectiveness and benefits of implementing

CQRS and Event Sourcing largely depend on proper

migration planning, a well - configured infrastructure (Event

Store, message brokers), and effective management of testing

and monitoring processes.

5. Conclusion

This study conducted an extensive analysis of the transition

from a traditional DDD architecture to CQRS and Event

Sourcing, covering theoretical foundations, practical

implementation aspects, and an evaluation of results based on

an experimental project. The findings confirm that the

combined use of CQRS and Event Sourcing provides:

• Improved read performance due to dedicated projections

and asynchronous query processing.

• Enhanced scalability and flexibility in managing domain

logic through the separation of commands and queries, as

well as by storing the complete history of changes as

events.

• Increased transparency and auditability, as the system

retains all events, simplifies state recovery (replay), and

facilitates integration with other services.

At the same time, the study highlights risks and challenges

associated with migration:

Paper ID: SR25529083855 DOI: https://dx.doi.org/10.21275/SR25529083855 141

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Increased infrastructure and code complexity due to the

addition of components such as command handlers, event

stores, and event handlers.

• The need for a reliable data migration strategy when

transitioning from a traditional database to an event -

based storage model.

• Higher requirements for monitoring and testing, including

ensuring idempotency and correct handling of duplicate

events.

Thus, the decision to adopt CQRS and Event Sourcing should

be based on system scale, the criticality of fast read

operations, and the necessity of maintaining a complete

change history. To mitigate risks, a phased migration

approach is recommended, along with the use of centralized

observability tools and the early preparation of development

teams for event - driven patterns. The obtained results can

serve as a foundation for further research into optimizing

Event Store performance and expanding analytical

capabilities for real - time event stream processing.

References

[1] Litvinov O., Orlov M. On the transition from domain -

specific design to CQRS with Event - Sourcing software

architecture //Information technology: computer

science, software engineering and cybersecurity. - 2024.

– Vol.1. – pp.50 - 60.

[2] Ok E., Eniola J. Optimizing Performance:

Implementing Event - Driven Architecture for Real -

Time Data Streaming in Microservices. – 2024. – pp.1 -

15.

[3] Lytvynov O. A., Hruzin D. L. Critical causal events in

systems based on CQRS with event sourcing

architecture //Radio Electronics, Computer Science,

Control. – 2024. – Vol.3. – pp.119 - 119.

[4] Stopford B. Designing event - driven systems. –

O'Reilly Media, Incorporated. - 2018. – pp.5 - 40.

[5] Breitmayer M. et al. Deriving event logs from legacy

software systems //International Conference on Process

Mining. – Cham: Springer Nature Switzerland, 2022. –

pp.409 - 421.

[6] Shkriabin G. D. Application of CQRS and Event

Sourcing patterns in Event - Driven architecture:

experience in developing highly loaded systems

//Bulletin of Science. – 2025. – Vol.1 (82). – pp.280 -

295.

[7] Jejić O., Škembarević M., Babarogić S. Defining

Software Architecture Modalities Based on Event

Sourcing Architecture Pattern //European Conference

on Advances in Databases and Information Systems. –

Cham: Springer International Publishing. - 2022. –

pp.450 - 458.

[8] Youssfi M. et al. Multi - Micro - Agent System

middleware model based on event sourcing and CQRS

patterns //Smart Trajectories. – CRC Press. - 2022. –

pp.25 - 46.

Paper ID: SR25529083855 DOI: https://dx.doi.org/10.21275/SR25529083855 142

http://www.ijsr.net/

