
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Client - Server Based Remote Screen Sharing

System Using VB.Net

Dr. A. Karunamurthy1, R. Keerthana2

1Associate Professor, Department of Computer Applications, Sri Manakula Vinayagar Engineering College (Autonomous),

Puducherry 605008, India

Email: karunamurthy26[at]gmail.com

2Post Graduate Student, Department of Computer Applications, Sri Manakula Vinayagar Engineering College (Autonomous),

Puducherry 605008, India

Email: keerthanaram13[at]gmail.com

Abstract: In this project, a simple screen - sharing application is developed using Visual Basic (VB. NET) with Windows Forms. The

system is based on a client - server model. The server captures the screen of the host computer at regular intervals and sends it over the

network to the connected client, which then displays the received image in real time. The screen capture is performed using the

Graphics. CopyFromScreen () method, and the image is converted to a byte array using a memory stream and JPEG format to reduce

size. This data is sent through a TCP connection. On the client side, the image is received and displayed in a PictureBox control. The

project uses NetworkStream, BinaryWriter, and BinaryReader classes for sending and receiving data efficiently. The goal of the project

is to demonstrate how basic screen sharing can be implemented using socket programming in VB. NET. This type of system can be

extended for remote desktop access or online assistance tools. It helps in understanding concepts like TCP/IP, threading, image

compression, and real - time data transfer.

Keywords: Screen Sharing, Socket Programming, Client - Server Model, VB. NET, TCP Connection, Remote Desktop Simulation.

1. Introduction

In today's digital world, remote access and screen sharing

have become essential tools for communication, technical

support, and collaboration. This project is focused on

building a basic screen sharing system using VB. NET and

the client - server architecture. The main goal is to capture

the live screen of a server machine and send it to a client

over a network connection. This allows the client to view the

screen of the remote computer in real time. The application

uses TCP sockets to establish a connection between the

server and client, ensuring smooth and reliable data

transmission.

The server captures the screen continuously and sends the

image frames to the client using a network stream. On the

other side, the client receives these image frames and

displays them using a PictureBox control. The images are

compressed into JPEG format to reduce size and improve

transmission speed. This project helps in understanding the

basics of socket programming, image handling, and

multithreading in VB. NET. It also gives a practical idea of

how screen sharing applications like remote desktop tools

work internally.

2. Problem Statement

In various real - life scenarios such as technical help, online

guidance, or remote monitoring, there is a frequent need to

access or observe the screen of another computer. Many

available screen - sharing tools are either too complex,

require heavy installations, or offer limited flexibility for

learning or customization. Beginners and students often find

it challenging to understand how these advanced systems

function due to their complicated structure.

To address this issue, the proposed project presents a simple

and easy – to understand screen - sharing application built

using VB. NET. The application captures the current display

from a host (server) system and transmits it over a network

to a connected client using TCP socket communication. The

client then receives and renders the screen continuously,

giving a real - time view of the server. This solution offers a

basic and effective way to learn about network

programming, screen capturing, and real - time data transfer

in a minimal environment.

3. Literature Survey

Screen sharing and remote desktop technologies have been

explored in various forms over the years. In early systems,

screen capturing was implemented using native APIs with

limited support for real - time data transmission [1]. Modern

solutions like TeamViewer and AnyDesk provide advanced

functionalities but involve complex architectures and require

internet - based authentication [2]. Research in socket

programming has shown that TCP connections are effective

for sending data reliably between two endpoints in a

network, especially when dealing with continuous data

streams like images or video frames [3]. Studies also

indicate that compressing images before transmission helps

in reducing latency and bandwidth usage during remote

viewing [4]. Several educational projects have attempted

simple screen - sharing models using languages like Java or

Python, but fewer examples exist using VB. NET, making

this project a useful reference for learners [5]. Some

experiments with multi - threaded applications have shown

better performance in handling continuous data flow and

parallel processing for live screen updates [6]. According to

recent academic work, developing a basic screen

transmission system helps students understand core

networking and data transfer concepts [7]. Furthermore,

Paper ID: SR25526114801 DOI: https://dx.doi.org/10.21275/SR25526114801 335

http://www.ijsr.net/
mailto:karunamurthy26@gmail.com
mailto:keerthanaram13@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

literature suggests that implementing lightweight tools for

specific use - cases (like LAN - based monitoring) reduces

dependency on third - party software and encourages custom

- built solutions for educational or internal use [8]. In some

case studies, LAN - based screen sharing systems have

demonstrated better privacy and speed compared to cloud -

based tools [9]. Researchers have also emphasized the

importance of designing user - friendly interfaces for real -

time applications to improve usability and adoption [10].

Some open - source projects have focused on frame - by -

frame image streaming using sockets, highlighting the trade

- off between quality and transmission speed [11]. Lastly,

screen sharing projects have proven to be excellent learning

tools for beginners to understand client server architecture

and real - time communication using basic programming

languages [12].

4. Proposed System

Step 1: Start the Server:

The server application begins by opening a TCP listener on a

specific port (e. g., 62616). This means the server waits and

listens for any client that wants to connect.

Example: When you run the server program and press the

“Start Server” button, it displays a message like “Server

started. ” The program then waits for any client on the

network that tries to connect to port 62616.

Step 2: Capture the Screen:

Once the server is running, it captures the current display

screen at regular intervals. This is done by taking a snapshot

of the screen (like a screenshot) using built - in graphics

methods in VB. NET. The captured image represents what

the user currently sees on the server’s monitor.

Example: Imagine pressing the “Start Server” button and

the server taking a snapshot of your entire desktop every 100

milliseconds (10 times per second).

Step 3: Convert and Compress the Image:

The raw screenshot image is often very large in size. To

send it efficiently over the network, the server converts this

image to a compressed format like JPEG, which reduces the

file size significantly without losing much quality. This step

helps reduce the bandwidth needed and speeds up the

transmission.

Example: Suppose the raw screenshot is 5 MB. After

converting to JPEG, it might reduce to 500 KB. The server

compresses the image in memory before sending it to the

client, making the transmission faster and smoother.

Step 4: Establish Connection with Client:

The client application starts and attempts to connect to the

server using the server’s IP address and the port number the

server listens on. This connection is essential for the client to

receive the screen data sent by the server.

Example: You open the client program on another computer

in the same network and click the “Connect” button. You

enter the server IP “192.168.1.68” and port “62616”. The

client then connects successfully and is ready to receive

screen images.

Step 5: Send Image Data over TCP:

The server sends the image data to the client through the

TCP socket connection. First, it sends the size (length) of the

image data so that the client knows how many bytes to read.

Then, it sends the actual image bytes (the compressed JPEG

data).

Example: If the JPEG image size is 500 KB, the server

sends the number 512000 (bytes) first, then sends the

512000 bytes of image data. The client waits until it has

received all 512000 bytes before proceeding.

Step 6: Receive and Display at Client:

The client reads the incoming data by first reading the size

of the image, then reading the exact number of bytes for the

image. It reconstructs the image from these bytes and

displays it inside a PictureBox control on the client’s user

interface, showing what the server screen currently looks

like.

Example: The client receives 512000 bytes from the server,

reconstructs the image, and displays it inside the PictureBox

on the client window. If the server’s screen changes, the

client’s PictureBox updates accordingly, showing the latest

screen view.

5. System Architecture

The system architecture diagram illustrates the working of a

simple screensharing application using a client - server

model. On the server side, the process begins with the Start

Server module, which initializes the server to accept

incoming connections. The server then captures the screen

of the host computer in real time using screen capturing

techniques. Once captured, the image is converted to JPEG

format to compress the data for efficient transmission. The

server then creates a TCP connection using socket

programming, which serves as the communication link

between the server and the client

Paper ID: SR25526114801 DOI: https://dx.doi.org/10.21275/SR25526114801 336

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 1: System Architecture

The entire process is executed in a loop to ensure continuous

screen sharing. The diagram is structured in a clean and

monochrome format, showing the logical flow of data and

the key modules involved in both the server and client sides

of the system.

6. Result and Discussion

The implementation of the screen - sharing system using

TCP sockets was successful. When the server application is

initiated, it begins capturing the screen at regular intervals

and transmits the image data to any connected clients over

the specified port.

Figure 2: Real - Time Screen Sharing System

On the client side, once a connection is established with the

server using the correct IP address and port number, the

incoming image stream is continuously received, decoded,

and displayed in the PictureBox control. The image is sent

as a compressed JPEG format, ensuring efficient use of

bandwidth while maintaining clarity. Overall, the system

shows that a basic yet functional remote screen - viewing

application can be developed effectively using Visual Basic

and socket programming concepts.

7. Conclusion and Future Works

The developed screen - sharing application demonstrates the

feasibility of realtime desktop streaming using Visual Basic

and socket programming. By capturing the server’s screen

and transmitting it to a connected client over a network, the

system offers a foundational remote viewing solution. The

design ensures smooth and responsive updates, while also

handling basic errors like disconnections gracefully. The

project proves that even with minimal resources and tools, a

basic remote screensharing system can be successfully built

and executed.

Implementing security measures such as encrypted data

transmission (using SSL/TLS) and user authentication would

make the application suitable for sensitive or professional

environments. Additionally, integrating remote control

capabilities would allow the client not only to view but also

interact with the server system, essentially turning the tool

into a basic remote desktop controller. Performance can also

Paper ID: SR25526114801 DOI: https://dx.doi.org/10.21275/SR25526114801 337

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 6, June 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

be improved by implementing advanced image compression

techniques or reducing data redundancy. Furthermore, cross

- platform compatibility could be achieved by extending the

system to support mobile or web - based clients.

For future enhancements, the system can be expanded to

support multiple clients simultaneously, implement secure

data transmission using encryption, add authentication

mechanisms for authorized access, and incorporate control

functionalities so that clients can interact with the server

machine remotely. Improving the compression algorithm

and optimizing frame transmission can also help in reducing

bandwidth usage and increasing performance over slower

networks.

References

[1] Sharma, A Beginner's Guide to Socket Programming

in VB. NET, SelfPublished Notes, 2022.

[2] D. Thomas, Practical Guide to TCP Connections in

Visual Basic, CodeLab Publications, 2021.

[3] R. Fernandes, "Understanding Client - Server

Communication using TCP in NET, " International

Journal of Computer Applications, vol.180, no.22,

pp.34–38, 2023.

[4] S. Mehta, "Network Stream Handling for Real - Time

Image Transfer in VB. NET, " Journal of Modern

Software Engineering, vol.12, no.4, 2022.

[5] Microsoft Docs, "TcpClient Class (System. Net.

Sockets), " [Accessed: May 22, 2025].

[6] Kulkarni, Developing Windows Forms Applications

with. NET Framework, TechHouse Press, 2020.

[7] T. Venkatesh, "Using Binary Streams for Data

Transfer in Windows Applications, " Tech Chronicles

Magazine, vol.6, no.3, pp.12–17, 2021.

[8] J. Miller, Screen Capturing Techniques with. NET

Libraries, DevTech Publishing, 2019.

[9] L. Dev, "Performance Considerations in Real - Time

Screen Sharing Using VB. NET, " ACM Digital

Projects, vol.9, no.1, pp.44–50, 2022.

[10] P. Agarwal, "Image Serialization in Windows Forms

Applications, " Visual Basic Engineering Digest,

vol.7, no.2, pp.29–33, 2023.

[11] CodeMentor, "How to Build a Basic Screen Sharing

App in VB. NET, " Blog post, [Accessed: May 22,

2025].12. K. Singh, A Visual Basic Developer’s

Handbook, NewAge Tech Publishers, 2021.

[12] R. Patel, "Creating a Custom Screen Capture Tool

with GDI+ and VB. NET, " Indian Journal of

Software Tools, vol.5, no.3, 2023.

[13] T. Clark, Essentials of Real - Time Networking in.

NET, BlueDot TechBooks, 2020.

[14] S. Banerjee, "Threading and UI Responsiveness in

Windows Applications, " Software Systems Journal,

vol.14, no.1, pp.18–22, 2024.

[15] Kumar, R. (2020). Windows Forms Programming

with VB. NET: A Beginner’s Guide. New Delhi: Tech

World Publications.

[16] Patel, D., & Sharma, A. (2021). "A Study on Client -

Server Communication using TCP in Desktop

Applications. " International Journal of Advanced

Computer Science and Applications, 12 (7), 112–118.

[17] Joshi, P. (2022). Real - Time Data Transmission using

TCP/IP Sockets. Mumbai: Deepak Tech Press.

Paper ID: SR25526114801 DOI: https://dx.doi.org/10.21275/SR25526114801 338

http://www.ijsr.net/

