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Abstract: The first and second Zagreb polynomials are defined as [1]:M1(G,x)  =  ∑ 𝒙 𝒅𝒖+𝒅𝒗   𝒖𝒗∈𝑬(𝑮)  and M2(G,x)  =  ∑ 𝒙 𝒅𝒖𝒅𝒗
𝒖𝒗∈𝑬 (𝑮) , 

where  𝒅𝒖 is degree of a vertex u. In this paper, Zagreb polynomials, fifth M-Zagreb polynomials, hyper fifth M-Zagreb polynomials, 

first, second K-Banhatti polynomials and general Zagreb polynomials of silicate network are studied. 
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1. Introduction 
 

Let G = (V,E) be a graph with vertex set V(G) and edge set 

E(G). The degree of a vertex u∈V(G) is denoted by du and is 

the number of vertices adjacent to u. The edge connecting 

the vertices u and v is denoted by uv [2].A topological index 

is a numerical parameter mathematically derived from the 

graph structure. Many topological polynomials appear in the 

molecular topology [3-4]. Hosoya, Schultz, Modified 

Schultz polynomials and their indices of PAHs were studied 

in [5]. The Zagreb polynomial was studied for different 

molecular graphs in [6-12].M-Zagreb polynomials and 

corresponding degree-based topological indices have been 

considered in many papers such as [13-16]. Augmented 

Revan index and its polynomial of certain families of 

benzenoid systems, hyper-Revan indices and their 

polynomials of silicate networks and arithmetic–geometric 

reverse indices of certain networks were studied by V. R. 

Kulli [17-19].Degree-based topological indices and 

topological polynomials of silicate network have been 

computed in many papers [20-24].  

 

The degree-based Zagreb polynomials are defined as [25-26] 

M1(G,x) = ∑ xdu+dv
𝐮𝐯∈𝐄(𝐆) . (1) 

M2(G,x) = ∑ xdu×dv
𝐮𝐯∈𝐄(𝐆) . (2) 

M3(G,x) = ∑ x|du−dv|
𝐮𝐯∈𝐄(𝐆) . (3) 

M4(G,x) = ∑ xdu(du+dv)
𝐮𝐯∈𝐄(𝐆) . (4) 

M5(G,x) = ∑ xdv(du+dv)
𝐮𝐯∈𝐄(𝐆) . (5) 

In addition, two polynomials related to first Zagreb index are 

defined as 

M1
∗(G,x) = ∑ dvxdv   v∈V( G) and M0(G,x) = ∑ xdv   v∈ V ( G ) (6) 

 

The fifth M-Zagreb polynomials are defined as [27-29] 

M1G5(G,x) = ∑ x  Su+Sv .uv∈E(G)  (7) 

M2G5(G,x) =∑ x Su×Sv .uv∈E(G)  (8) 

 
The fifth hyper M-Zagreb polynomials are 

HM1G5(G,x) = ∑ x  (Su+Sv)2
.uv∈E(G)  (9) 

HM2G5(G,x) = ∑ x  (Su×Sv)2
.uv∈E(G)  (10) 

 
And general fifth M-Zagreb polynomials are defined as  

M1
G5(G,x) = ∑ x  (Su+Sv) .uv∈E(G)  (11) 

M2
G5(G,x) = ∑ x  (Su×Sv) ,uv∈E(G)  (12) 

where  is a real number and Su = ∑ dvv∈Nu
 with Nu =

{u ∈ V(G)|uv ∈ E(G)}. We use the following lemma for 

defining dG(e). 

 

Lemma 1. Let G be a graph with u,v∈V(G) and e = uv∈E(G) 

then dG(e) = de = du+ dv -2. 

 

The first and second K-Banhatti polynomials are defined as 

[30-31] 

KB1(G,x) = ∑ x(du+de).uv∈E(G)  (13) 

KB2(G,x) = ∑ x(du×de).uv∈E(G)  (14) 

 

General Zagreb polynomial is defined as 

Ma, b(G,x) = ∑ x(adu+bdv)
𝐮𝐯∈𝐄(𝐆) . (15) 

 

And modified general Zagreb polynomial is  

Ma,b
′ (G,x) = ∑ x(du+a)(dv+b)

𝐮𝐯∈𝐄(𝐆) , (16) 

where a and b are suitably chosen real number parameters. 

 

The complement of G̅ of a graph G is a graph whose vertex 

set is V(G) and two vertices of G̅ are adjacent if and only if 

they are nonadjacent in G [32-36]. Therefore G̅ has n vertices 

and   (
n
2

) - m edges. The degree of a vertex v in G̅ is   

dG̅(v) = n − 1 − dG(v). 
 

The first, second and third Zagreb polynomial of 

complement graph (G̅) of G are defined as   

M1(G̅,x) = ∑ xdG̅(u)+dG̅,(v)
𝐮𝐯∈𝐄(G)  .  (17) 

M2(G̅,x) =∑ xdG̅(u)×dG̅,(v)
𝐮𝐯∈𝐄(G) . (18) 

M3(G̅,x) = ∑ x|dG̅(u)−dG̅,(v)|
𝐮𝐯∈𝐄(G)  . (19) 

 

In this paper, Zagreb-polynomials, fifth M-Zagreb 

polynomials, hyper fifth M-Zagreb polynomials, first, 

second K-Banhatti polynomials and Zagreb polynomials of 

complement graph (G̅) of silicate network are studied. Our 

notations are standard and mainly taken from standard books 

of topology [37-39].  
 

2. Materials and methods 
 

A molecular graph is constructed by representing each atom 

of a molecule by a vertex and bonds between atoms by 

edges. Graph polynomials are polynomials assigned to 

molecular graphs. The molecular graph of silicate network 
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of dimension two is shown figure (1). Let G be the graph of 

silicate network. It is observed from figure that there are 

15n2+3n vertices and 36n2 edges and the vertices either of 

degree 3 or 6. The (du,dv) partition of silicate network is 

represented in table (1) and sum-degree partition in table (2). 

To compute K-Banhatti polynomials lemma number (1) is 

used. 

 

3. Results and discussion 
  

Zagreb polynomials of silicate network 

 It is observed from figure (1) that there are three 

edges corresponding to vertices with degree 3 and 6.The 

degree-based Zagreb polynomials can be computed as 

follows.  

 

Theorem 1.1: First Zagreb polynomial of silicate network is 

6nx6+(18n2+6n)x9+(18n2-12n)x12. 
 

Proof. By using table (1) and figure (1), we have  

M1(G,x)  =  ∑ x du+dv    uv∈E(G)   

= ∑ x3+3 +  3,3∈E(G) ∑ x3+6   + 3,6∈E(G) ∑ x6+6   6,6∈E(G)   

= 6nx6+(18n2+6n)x9+(18n2-12n)x12. 
 

Theorem 1.2.Second Zagreb polynomial of silicate network 

is 6nx9+(18n2+6n)x18+(18n2-12n)x36. 

 

Proof: By using table (1) and figure (1), we have  

M2(G,x)  =  ∑ x du×dv    uv∈E(G)   

= ∑ x3×3 +  3,3∈E(G) ∑ x3×6   + 3,6∈E(G) ∑ x6×6   6,6∈E(G)   

= 6nx9+(18n2+6n)x18+(18n2-12n)x36. 
 

Theorem 1.3: Addional first Zagreb polynomial of silicate 

network is (18n2+18n)x3+(54n2-18n)x6. 
 

Proof. Silicate network with 15n2+3n vertices and 36n2 

edges, has vertices either of degree 3 or 6.By using equation 

(6) and figure (1), we have 
M1

∗(G,x)  =  ∑ dvxdv     v∈V(G)  = ∑ 3 × x3   +3∈V(G)

 ∑ 6 × x6   6∈V(G)  

= (18n2+18n)x3+(54n2-18n)x6. 
 

Fifth M-Zagreb polynomials of silicate network 

 

Theorem 2.1: Fifth M1-Zagreb polynomial of silicate 

network is 6nx30 +  24x39 + 24(n − 1)x42  +
12(n − 1)x45  + (18n2 − 30n + 12)x48 + 12x51  +
6(2n − 3)x54  + 12(n − 1)x57  + (18n2 − 36n + 18)x60. 
 

Proof: By using equation (7) and table (2), we have  

M1G5(G,x)  =  ∑ x Su+Sv   uv∈E(G)  

= ∑ x15+15  15,15∈E(G) + ∑ x15+24  15,24∈E(G) +

 ∑ x15+27  15,27∈E(G) +  ∑ x18+27  18,27∈E(G) +

 ∑ x18+30  18,30∈E(G) +  ∑ x24+27  24,27∈E(G) +

 ∑ x27+27  27,27∈E(G) +  ∑ x27+30  27,30∈E(G) +

 ∑ x30+30  30,30∈E(G)  

=6nx30 + 24x39 + 24(n − 1)x42  + 12(n − 1)x45  +
(18n2 − 30n + 12)x48 + 12x51  + 6(2n − 3)x54  +
12(n − 1)x57  + (18n2 − 36n + 18)x60. 
 

 

Theorem 2.2: The fifth hyper M1-Zagreb polynomial of 

silicate network is 6nx900 + 24x1521 + 24(n − 1)x1764  +
12(n − 1)x2025  + (18n2 − 30n + 12)x2304 + 12x2601  +
6(2n − 3)x2916  + 12(n − 1)x3249  + (18n2 − 36n +
18)x3600. 
 

Proof: By using equation (9) and table (2), we have   

HM1G5(G,x)  =  ∑ x  (Su+Sv)2
   uv∈E(G)  

= ∑ x(15+15)2
  15,15∈E(G) + ∑ x(15+24)2

 15,24∈E(G) +

 ∑ x(15+27)2
 15,27∈E(G) +  ∑ x(18+27)2

  18,27∈E(G) +

 ∑ x(18+30)2
  18,30∈E(G) + ∑ x(24+27)2

  24,27∈E(G) +

 ∑ x(27+27)2
  27,27∈E(G) + ∑ x(27+30)2

  27,30∈E(G) +

 ∑ x(30+30)2
  30,30∈E(G)  

=6nx900 +  24x1521 + 24(n − 1)x1764  + 12(n −
1)x2025  + (18n2 − 30n + 12)x2304 + 12x2601  +
6(2n − 3)x2916  + 12(n − 1)x3249  + (18n2 − 36n +
18)x3600. 
 

K-Banhatti polynomials of silicate network  

 

Theorem 3.1: First K-Banhatti polynomial of silicate 

network is 6nx14+ (18n2+6n)x23+(18n2-12n)x32. 

 

Proof: By equation (13) and using table (3), we have first K-

Banhatti polynomial  
KB1 (G,x) =  ∑ x(du+de)   uv∈E(G)  

= ∑ x(3+4)+(3+4) +  3,3∈E(G) ∑ x(3+7)+(6+7)   +3,6∈E(G)

 ∑ x(6+10)+(6+10)   6,6∈E(G)   

= 6nx14+ (18n2+6n)x23+(18n2-12n)x32. 
 

Theorem 3.2: Second K-Banhatti polynomial of silicate 

network is 6nx24+ (18n2+6n)x63+(18n2-12n)x120. 
 

Proof: By equation (14) and using table (3), we have second 

K-Banhatti polynomial  

KB2(G,x) =  ∑ x(du×de)   uv∈E ( G )  

= ∑ x(3×4)+(3×4) +  3,3∈E(G) ∑ x(3×7)+(6×7)   +3,6∈E(G)

 ∑ x(6×10)+(6×10)   6,6∈E(G)   

= 6nx24+ (18n2+6n)x63+(18n2-12n)x120. 
 

General Zagreb polynomials of silicate network 

 

Theorem 4.1: General Zagreb polynomial of silicate 

network is 6nx3a+3b + (18n2  + 6n)x3a+6b + (18n2 −
12n)x6a+6b.  
 

Proof. By using equation (15) and table (1), we have  

 Ma, b(G,x) = ∑ x(adu+bdv)
𝐮𝐯∈𝐄(𝐆)    

= ∑ xa3+b3
3,3∈E(G)  +  ∑ xa3+b 6

3,6∈E(G)   +  ∑ xa6+b6
6,6∈E(G)    

= 6nx3a+3b + (18n2  + 6n)x3a+6b + (18n2 − 12n)x6a+6b.  
 

Theorem 4.2: Modified general Zagreb polynomial of 

silicate network is 6nx(3+a)(3+b) + (18n2  +

6n)x(3+a)(6+b) + (18n2 − 12n)x(6+a)(6+b). 
 

Proof. By using equation (16) and table (1), we have   

Ma,b
′ (G,x) = ∑ x(du+a)(dv+b)

𝐮𝐯∈𝐄(𝐆)    
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= ∑ x(3+a)(3+b)
3,3∈E(G)   +  ∑ x(3+a)(6+b)

3,6∈E(G)   +  

∑ x(6+a)(6+b)
6,6∈E(G)    

= 6nx(3+a)(3+b) + (18n2  + 6n)x(3+a)(6+b) + (18n2 −

12n)x(6+a)(6+b).  
 

Zagreb polynomial of complement graph(G̅) 

 

Theorem 5.1.First Zagreb polynomial of complement graph 

(G̅) of silicate network is  

6nx(2n−8) + (18n2 + 6n)x(2n−11) + (18n2 − 12n)x(2n−14). 
 

Proof. By using equation (17) and table (1), we have  

M1(G̅,x) = ∑ xdG̅,(u)+dG̅,(v)
𝐮𝐯∈𝐄(G)   

= ∑ x(𝑛−1−3).+(𝑛−1−3)
𝟑,𝟑∈𝐄(G)   + 

∑ x(𝑛−1−3)+(𝑛−1−6)
𝟑,𝟔∈𝐄(G)   + ∑ x(𝑛−1−6)+(𝑛−1−6)

6,6∈E(G)   

= 6nx(2n−8) + (18n2 + 6n)x(2n−11)

+ (18n2 − 12n)x(2n−14). 

 
Figure 1: Silicate network of dimension two. 

                                  

Table 1: (du, dv) partition of silicate network 

(du, dv) (3,3) (3,6) (6,6) 
  Number of edges 6n 6n(3n+1) 6n(3n-2) 

 

 

Table 2: (Su, Sv) partition of silicate network. 
(Su, Sv) (15,15) (15,24) (15,27) (18,27) (18,30) (24,27) (27,27) (27,30) (30,30) 

Number of edges 6n 24 24(n-1) 12(n-1) 18n2-30n+12 12 6(2n-3) 12(n-1) 18n2-36n+18 

 

Table 3: Edge partition of silicate network for K-Banhatti polynomial. 
(du,dv) (3,3) (3,6) (6,6) 

dG(e) 4 7 10 

Number of edges 6n 18n2+6n 18n2-12n 

 

Table 4: M3(G,x), M4(G,x), M5(G,x), M0(G,x), M2G5(G,x), HM2G5(G,x), M1
G5(G,x), M2

G5(G,x), M2(G̅,x) and M3(G̅,x) 
polynomials of silicate network 

 

4. Conclusion 
 

The degree-based Zagreb polynomials, fifth M-Zagreb 

polynomials, K-Banhatti polynomials, general Zagreb 

polynomials, Zagreb polynomials of complement graph (G̅) 

and additional two polynomials related to first Zagreb index 

are obtained for silicate network. Some topological 
polynomials: M3(G,x), M4(G,x), M5(G,x), M0(G,x), 
M2G5(G,x), HM2G5(G,x),M1

G5(G,x), M2
G5(G,x), M2(G̅,x) 

and M3(G̅,x) are computed. Third Zagreb polynomial of 

molecular graph (G) and complement graph (G̅) have the 

same value for silicate network. 
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