
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

MACH Architecture and Composable Systems:

Revolutionizing E-Commerce for the Digital Age

Elby Mooken

Senior Engineering Manager, Levi Strauss & Co., San Francisco CA, USA

Abstract: The e-commerce landscape is undergoing a profound transformation, driven by rapidly evolving customer expectations and

technological advancements. Traditional monolithic systems, once the backbone of digital commerce, are being replaced by more agile

and flexible architectures specifically, MACH (Microservices, API-First, Cloud-Native, Headless) architecture and composable

commerce. These innovative approaches offer unprecedented flexibility, scalability, and agility, making them indispensable for modern e-

commerce platforms. The need for MACH and composable systems arises from their ability to enhance customer experiences and improve

business competitiveness. MACH architecture allows marketers and developers to modify the presentation layer without involving backend

developers, enabling rapid changes and A/B testing to meet evolving customer needs. Similarly, composable commerce extends the MACH

principles by enabling businesses to build customized e-commerce architectures using best-of-breed solutions. This approach involves

assembling independent components or microservices to create unique customer experiences and adapt to emerging trends, such as AI.

Therefore, proposed review paper uniquely synthesizes the benefits of MACH and composable commerce, providing insights into how

these technologies can enhance customer experiences and future-proof e-commerce platforms. By exploring successful case studies and

discussing limitations and future recommendations, the paper offers a holistic view of the transformative potential of MACH and

composable systems in the digital age. Future recommendations include continuous monitoring and feedback to refine and improve the

e-commerce experience, ensuring businesses remain responsive to customer needs and technological advancements.

Keywords: MACH architecture, Composable Architecture, E-commerce

1. How MACH architecture is different from

Monolithic Architectures

The e-commerce landscape is constantly changing based on

consumer demands for seamless, personalized experiences

across multiple channels. Businesses, in return, are utilizing

innovative architectural methods to remain on top of their

game. A few methods are MACH architecture and

composable systems MACH architecture is designed to

improve agility, scalability, and resilience in digital

commerce platforms. MACH stands for Microservices, API-

First, Cloud-Native, and Headless [9] and it allows businesses

to create flexible, modular systems that quickly integrate new

technologies and adapt to changing market trends.

Microservices are at the core of MACH architecture, which

involves breaking monolithic systems down into smaller,

independent components. Each microservice can be designed,

deployed, and scaled independently, which eliminates some

of the complexity and risk associated with more traditional

monolithic architectures. By embracing an API-First

methodology, microservices can each communicate with each

other and be integrated easily with third-party services

(payment gateways, shipping, etc). Being Cloud-Native

allows MACH-based systems to leverage many benefits of

cloud computing (scalability, cost savings, etc). The headless

aspect of MACH decouples the front-end presentation layer

from back-end logic, allowing marketers and developers to

quickly create innovation and personalize customer

experiences across multiple channels without needing to call

backend developers on each change made.

Composable systems build on the MACH principles by

allowing companies to build their custom e-commerce by

using best-of-breed solutions. Composable systems are built

on independent parts or microservices, creating personalized

customer experiences, and being able to pivot with different

trends like Artificial Intelligence (AI). Composable

commerce is built on solutions that are business centric,

modular architecture, and an open ecosystem. This allows

retailers to select the best of breed solutions from third-party

vendors, and build a store-specific tech stack for their

business. The benefit of having modular design, and the low-

code API integration of composable architectures allows for

a simpler way of collecting, analysing, and utilizing data to

take action and drive business growth. AI and composable

commerce can have significant benefits to e-commerce

businesses. Better key performance indicators (KPIs) and

improved conversion rates, increased engagement, and deep

customer intelligence are some examples of this. AI can be

used for personalized product recommendations, dynamic

pricing, and custom portals for different clients. Making AI

driven personalized experiences for customers makes them

feel cared for and taken into consideration leading to a better

customer experience and strength maternal relationships.

Also, due to the flexibility and scalability of MACH and

composable systems, businesses can accelerate the use of new

tools and technologies to club their online stores with AI

engines, creating a competitive advantage in their market.

Therefore, owing to these impeccable characteristics of

MACH and composable systems, proposed survey focuses on

reviewing the different architectures in e-commerce setup as

most existing survey emphasizes on monolithic or only

microservices. The proposed survey distinguishes itself by

focusing on a comprehensive review of MACH and

composable architectures within the e-commerce sector, a

domain that has received limited attention in existing

literature. This distinct focus allows the paper to delve into

the uncharted territory of how MACH's microservices, API-

first, cloud-native, and headless commerce components can

enhance scalability, flexibility, and customer experience in e-

commerce platforms. By examining the modularity and

composability of these architectures, the survey aims to

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1761

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

highlight their potential to accelerate innovation, reduce time-

to-market, and facilitate seamless integrations with various

technologies. This, in turn, contributes to a more robust and

adaptable e-commerce ecosystem. Furthermore, the survey

will explore how MACH architectures enable businesses to

leverage best-of-breed tools, ensuring that each component of

the e-commerce system is optimized for performance and

customer satisfaction, thereby setting a new standard for

modern e-commerce solutions.

Objectives of the Paper

The objectives of the present review paper is listed as follows,

• To review works of MACH and composable architecture’s

for e-commerce environment.

• To explore different works on microservices, API First,

cloud native, headless architecture as well as composable

architecture.

• To explore case studies on different organizations for

using MACH and Composable architecture principles.

• To discuss challenges and provide future

recommendations with the aim of overcoming limitations

faced by the state-of-the-art approaches.

2. How MACH architecture is different from

Monolithic Architectures

When comparing monolithic architectures with MACH

architecture in the context of e-commerce, several key

differences emerge that significantly impact scalability,

innovation, and customer experience.

a) Monolithic Architecture: Monolithic architectures are

traditional, self-contained systems where all components

are interconnected and interdependent. This means that

any change or update requires a full redeployment of the

entire system, which can be time-consuming and risky.

Monolithic systems are often inflexible and difficult to

scale, as adding new features or handling increased traffic

can lead to bottlenecks and performance issues. While

they are simpler to develop initially, their rigidity makes

them less suitable for modern e-commerce environments

where adaptability and speed are crucial.

b) MACH Architecture: In contrast, MACH architecture

offers a modular and flexible approach. It breaks down the

system into independent microservices, each handling a

specific business function. This modularity allows for

scalability, as individual services can be scaled

independently without affecting the entire system. MACH

also supports an API-first approach, enabling seamless

integration with various services and technologies, such as

payment gateways and shipping providers, without

disrupting the core system. The cloud-native aspect

ensures that resources can be dynamically allocated,

reducing costs and enhancing performance during peak

periods. Additionally, the headless nature of MACH

allows for a decoupled frontend and backend, giving

marketers and developers the freedom to innovate and

customize the customer experience across multiple

channels without needing to involve backend developers.

Therefore, the upcoming section focuses on breaking down

MACH principles, thereby demonstrating the principles in

detail.

3. Microservices Architecture

Microservices architecture is a modern approach to software

development that divides applications into smaller,

autonomous components, each responsible for specific

functionality. These independent services can be developed,

deployed, and scaled separately, enabling greater reliability

and flexibility by eliminating single points of failure. By

exposing frequently used operations as services, this

architecture supports automatic scaling and enhances

extensibility. Microservices operate like callable functions

within an application and can be hosted remotely on virtual

machines or containers. This decoupling allows applications

to interact with microservices regardless of the underlying

technology or programming language used in their creation.

Furthermore, microservices enable applications to seamlessly

integrate with diverse backend databases, including cloud-

based, relational, and NoSQL systems. Popular tools like

Docker and Kubernetes are often employed for deploying

microservices. The architecture is characterized by its

decentralized nature, fault isolation, scalability, and

technology diversity. Each service operates independently,

ensuring that failures in one do not disrupt the entire

application. This design encourages faster development

cycles, easier maintenance, and improved agility by allowing

teams to focus on individual services without affecting others.

3.1 Advantages of Microservices Architecture

a) Flexibility in Technology Stack: Unlike traditional

monolithic architectures, microservices architecture

liberates e-commerce development from rigid

technology stacks. It allows businesses to leverage

modern technologies and frameworks, facilitating the

creation of beautifully designed and high-performing e-

commerce applications.

b) Resilience and Fault Isolation: E-commerce

applications built on a microservices architecture are

inherently more resilient. Failures or malfunctions in one

microservice do not cascade to other parts of the system,

ensuring that online sales and operations remain

unaffected. This fault isolation improves system

reliability and uptime, contributing to a seamless and

uninterrupted shopping experience for customers.

c) Scalability and Performance: Microservices

architecture offers inherent scalability and performance

benefits. Each microservice can be independently scaled

based on demand, allowing e-commerce platforms to

handle fluctuations in traffic and transaction volumes

more efficiently. Additionally, microservices enable the

use of containerization technologies like Docker, which

provide lightweight and isolated environments for testing

and deployment, further enhancing scalability and

performance.

d) Quicker deployment time: In monolithic architectures,

variations demands re-deploying the entire application.

Microservices architecture permits quicker releases as

each service progresses and set out independently,

reducing the risk and time related with coordinating

variations across complete application. Decoupling

services in this manner improves agility. By doing so,

updates or fixes with minimal disruption can be carried

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1762

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

out to the overall system. Thus, additional benefits are

demonstrated in figure 1.

Figure 1: Benefits of Microservice Architecture

4. Architecture of API-First

API- first development prioritizes designing and building

application programming interfaces (APIs) before any other

components of the application. This technique ensures that

APIs, which allow different software systems to

communicate, are central to the development process. The

API-first approach prioritizes API planning as the initial step

in the programming process. Subsequent development stages

aim to uphold the original API design while ensuring

consistency and reusability. This methodology promotes

consistency and reusability through the use of easily

understandable and navigable API specification languages.

4.1 How API-First Development works

API-first development represents a strategic methodology

that emphasizes the initial creation of APIs as the cornerstone

of a project. This approach is not merely about the order to

development activities, but rather about adopting a mind-set

where APIs are regarded as the fundamental building blocks

of the entire development process. By prioritizing APIs from

the outset, this methodology sets a robust foundation for all

subsequent development efforts ensuring a cohesive and well-

integrated system.

a) Defining the API Contract: The initial stage of API-

first development focuses on defining the API contract,

which serves as a blueprint for the entire development

process. This step involves detailing the endpoints,

request-response structures and data models that the API

will utilize. Standardized tools such as Swagger

(OpenAI) are commonly employed to draft these

specifications in a language agnostic format. Acting as a

binding agreement between backend services and their

customers, this contract ensures uniformity and clarity

across all teams engaged in the development lifecycle.

b) Mocking and Prototyping: Once the API contract is

established, the next phase involves mocking or

prototyping the API to simulate its behaviour. This

process entails creating a basic implementation that

generates predefined responses to incoming requests,

enabling early testing and integration. Tools like swagger

and postman are specialized mocking platforms are

utilized to replicate API functionality in a controlled

environment. By allowing front-end developers,

accelerates workflow efficiency and significantly

reduces time-to-market for the final product.

c) Implementation of Business Logic: Following the API

mock-up, the implementation of the underlying business

logic commences. This phase involves configuring the

server, database and other backend components,

followed by coding the functionality that aligns with the

commitments outlined in the API contract. The primary

focus during this stage is on maintaining strict adherence

to the predefined API specification. This ensures that any

modifications do not compromise the established

agreement with consumers, thereby preserving the

integrity of the API and maintaining seamless

interactions across all integrated systems.

d) Continuous Testing and iteration: API-first

development accentuates continuous testing for ensuring

the API meets its contract throughout the development

process. This process incorporates unit tests, integration

tests and contract tests. Contract testing, in specific

verifies that the API responses match the expectations set

out in the API specification, ensuring computability

between the server and client sides. Tools like Dredd and

Pact can be used for automating the contract testing,

enabling a CI/CD pipeline that maintains API quality and

reliability.

Therefore, the steps provided in the section showcases the

process involved in developing the API-first architecture.

4.2 Benefits of API-First Development

Present section highlights the benefits of API-first approach,

by helping the benefits of microservices-based applications,

aids developers ensure that the service are consumed by the

broadest range of client/systems in the API economy.

a) More scalable System: API-first design supports

modular and scalable architecture, making it easier to

add, remove, or upgrade features without affecting the

rest of the system. APIs designed upfront ensure

compatibility across diverse client applications and

future integrations, providing adaptability to changing

requirements.

b) Parallel Development: Teams can work simultaneously

on different aspects of the application by using API

contracts as a blueprint. Frontend and Backend

developers can collaborate early without waiting for

another, accelerating the development process. APIs can

be mocked for testing dependencies, enabling faster

feedback cycles and smoother integrations.

c) Language and Platform flexibility: APIs deliver a

language and platform agnostic interface that different

microservices can interact with. Because API-first

development prompts the creation of consistent and

reusable APIs, the API-first approach helps the system

integrate with a wide range of services-regardless of the

language and platforms.

d) High Availability, fault tolerant systems: By

integrating APIs within a microservices-based system,

the architecture facilitates the creation of a highly

available and fault-tolerant environment. This resilience

stems from the ease with which incoming requests can be

load-balanced across service instances, the automation of

microservice deployments, the inherent redundancy of

critical components, and the implementation of various

sophisticated orchestration techniques.

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1763

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5. Cloud Native Architecture

Cloud native architecture is an innovative software

development approach that harness the cloud computing

model by merging methodologies from cloud services,

DevOps practices and software development principles.

Cloud native approach enables organizations to build

applications as loosely coupled services using microservices

architecture and run them on dynamically orchestrated

platforms. Thus, application built on the cloud-native

architecture are known to deliver scale, performance and it is

known to be reliable. Additionally, it also offer faster time to

market. In 2025, cloud-native extends beyond traditional

cloud environments for embracing edge computing, server

less architectures and AI driven operations (AIOps), enabling

business to deliver customer-centric solutions faster than

ever. Moreover, it is noted that, cloud-native apps augmented

by microservice architecture leverage the highly scalable,

flexible and distributed cloud nature for producing customer-

centric software products in a continuous delivery

environment. The striking feature of the cloud native

architecture is that it permits the user to abstract all the

infrastructure layers like servers, OS, databases, security and

many more.

Traditionally, enterprise applications have been designed as

monolithic structures, wherein all functionalities are

integrated within a singular codebase. This approach presents

several structural challenges. Firstly, development teams are

required to build and test the entire application as a cohesive

unit, which significantly impedes developer efficiency. Any

modifications necessitate a compute recompilation and

retesting of the entire application to ensure that no new issues

have emerged. The process of producing documentation is

often cumbersome and time-consuming. Large-scale

applications can experience prolonged start-up times and

potentially sluggish performance. Minor bugs can also lead to

unforeseen complications due to the high degree of

interdependence among application components.

In contrast, cloud-native architecture is fundamentally

modular and distributed. Furthermore, teams can integrate

pre-built components without enduring lengthy testing

phases. Furthermore, applications can be modularized,

allowing developers to collaborate on different components

concurrently. This approach results in a substantial increase

in developer productivity. Thus, cloud native architecture use

internet services, thereby protecting the data against external

attacks. Additionally, it is noted that, resilience is important

for cloud security native architecture, especially when

microservices are used, with applications deployed across

distributed nodes, the system must be resilient to a failure

affecting one node. Likewise, a well-designed cloud native

application should have the capability to keep running or

recover quickly in the event of node failures.

Figure 2: Merits of Cloud Native

Figure 2 highlights the various benefits of cloud native

architecture, where the benefits demonstrated are auto

provisioning, faster release, optimized costs, high scalability,

superior customer experience, vendor agnostic, simplified IT

management, DevOps culture and Fault tolerant/self-healing.

Along with it some of the advantages of cloud native

architecture is listed as follows,

• Customizability: Exploiting loosely coupled services

rather than technology stacks enables DevOps teams to

choose ideal framework, system and language for the

projects.

• Portability: Containerised microservices are portable,

enabling organizations to move between cloud

environments. It can avoid vendor-lock as it does not

exclusively rely on single vendor.

• Flexibility: Cloud native architecture supports a wide

range of tools and framework, allowing organizations to

adopt new technologies without being tied to specific

vendors.

• Disaster Recovery: Cloud native systems can quickly

restore operations after catastrophic events, minimizing

business disruptions.

• Business efficiency: Cloud native approaches combine

organizational and technical changes to deliver value

faster while improving overall efficiency through

automation and streamlined processes.

6. Headless Architecture

Headless architecture, a contemporary software design

philosophy, establishes a clear division between the front-end

presentation layer and the back-end functionality. This

decoupling empowers developers to construct adaptable,

scalable, and consistent digital experiences across all

touchpoints. Consequently, the term "headless" describes a

system or software operating without a graphical user

interface, enabling remote interaction and management

without visual rendering. Characteristically, a headless

architecture integrates diverse, specialized back-end services

through API connections, often referred to as a "best-of-

breed" approach. The central objective is complete

modularity, ensuring that all components function

autonomously with minimal or no interdependencies. This

independence leads to enhanced flexibility, improved

scalability, and simplified maintenance, as modifications to

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1764

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

one component have a reduced impact on the others. The

fundamental elements that constitute a Headless architecture

include:

a) Back-end (headless CMS): This is where the content and

data reside. It focuses on storing, managing and delivering

content through APIs. A headless system does not have a

built-in-front-end. It concentrates on offering the raw data.

Thus, backend provides a content management interface

that allows creators to define content models, input data

and manage assets. Furthermore, for e-commerce

applications such as product management, inventory

tracking and order processing and customer data

management. This separation allows the back-end to

concentrate on its core function, providing a reliable and

scalable data source.

b) APIs: API act as the communication bridge between the

back-end and the front-end. It allows the front-end to

request and receive content from the back-end in a

structured format, typically JSON or XML. RESTful APIs

and GraphQL are commonly used. Thus, API delivery

forms a crucial communication bridge between the back-

end and several front-end applications. When a front-end

application needs content, it sends a request to the back-

end via the API. The API then retrieves the requested data

from the back-end's database and transforms it into a

format suitable for the requesting application. This

transformation capability ensures that each device,

whether it's a mobile phone, a smart display, or a website,

receives data in a format it can efficiently process.

Security is also paramount in API delivery. Authentication

and authorization protocols are implemented to protect

sensitive data and prevent unauthorized access, ensuring

that only trusted applications and users can retrieve

content.

c) Front-end (head): Finally, the front-end rendering layer

is where the user experience is crafted. This "head" of the

headless architecture is entirely decoupled from the back-

end, giving developers the freedom to use any front-end

technology they prefer, such as React, Vue.js, or Angular.

When a front-end application receives data from the API,

it dynamically renders the content for the user. This

dynamic rendering allows for highly customized and

interactive user experiences tailored to specific devices

and platforms. Front-end developers also have the

flexibility to optimize the presentation for different screen

sizes and device capabilities, ensuring a consistent and

seamless user experience across all touchpoints. This

flexibility, combined with the power of the headless back-

end, empowers businesses to create innovative and

engaging digital experiences that can adapt to the ever-

evolving digital landscape.

Figure 3: Headless Architecture

In figure 3, the individual engaged with website or other

mobile apps. Then, front-end application transmitted the API

request to the API gateway. Later, the API Gateway directed

the request to the pertinent back-end service and the backend

service processed the request and retrieved data from its DB.

Further, the back-end service requested content from the

headless CMS via its API if necessary and the back-end

service provided data to the API gateway in a structured

format like JSON. In the next step, the API gateway

transmitted data to the front-end application and eventually,

the front-end application processed data and modified the user

interface as required.

6.1 Benefits of headless architecture

a) Streamlined content management: Headless CMS

system allow marketers and editors to manage content

centrally and distribute it across different platforms.

b) Scalability: Backend resources can be scaled

independently of the frontend allowing systems to handle

high traffic loads efficiently without overhauling the

entire architecture. Additionally, it deliver optimized

resource allocation where each component can be

optimized separately for better performance and

scalability.

c) Flexibility and Future Proofing: The decoupled

mechanism of frontend and backend allows developers to

update or replace either the frontend or backend

independently, enabling adaptability to new technologies

and requirements. Likewise, the developers can pick the

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1765

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

best tools and frameworks for each layer, ensuring the

system remains relevant as technologies evolve.

d) Enhanced Performance: Faster load times is considered

as one of the advantages of headless architecture, as it

deliver only necessary data via APIs, due to which

headless architecture ensures faster pages loads and

smoother user experience. Decoupling reduces the bloat

associated with monolithic systems, improving overall

system efficiency.

e) Faster Innovation and Experimentation: teams can

test new features or designs independently without

disrupting the core system, fostering continuous

innovation and also businesses can quickly respond to

changing customer demands by iterating on specific

layers of the architecture.

Hence, due to the various advantages of headless architecture,

it is known as an ideal choice for businesses aiming for

agility, scalability and omni-channel capabilities while

maintaining robust security and high performance. It

empowers developers with unparalleled flexibility in building

innovative digital experience at scale.

7. Composable Architecture

Composable architecture is a software design that accentuates

building systems with modular, self-contained components

with clear functionalities and well-defined interfaces. This

modularity allows developers to easily assemble and combine

these components for creating intricate applications. Present

mechanism contrasts with traditional monolithic architectures

by breaking systems into smaller, independent modules.

Components are loosely coupled, allowing for easier updates

and replacements, and depend profoundly on APIs for

communication. Thus, this paradigm focuses on the idea of

breaking down complex applications into smaller, self-

contained units, often referred to as microservices or

packaged business capabilities (PBCs). Each component

encapsulates a specific business function, allowing for

targeted development and deployment. The core of this

approach lies in the principle of modularity, where these

components are designed to be reusable and replaceable.

Instead of building a single, monolithic application,

developers construct applications by assembling these pre-

built, specialized components.

A critical aspect of composable architecture is the emphasis

on loose coupling and API-driven communication. These

components are designed to operate independently,

interacting with each other through well-defined APIs. This

API-first approach ensures that components can

communicate seamlessly, regardless of the underlying

technology or programming language. By prioritizing API

design, organizations create a robust integration layer that

facilitates the smooth exchange of data and functionality

between different components. This interoperability is crucial

for enabling the integration of best-of-breed software from

various vendors, allowing organizations to select the most

suitable tools for each specific business function.

Furthermore, the headless nature of many composable

systems, powered by APIs, enables content and functionality

to be delivered across various channels and devices, ensuring

a consistent user experience regardless of the platform.

Composable architecture also aligns with MACH, ensuring

modern, flexible, and scalable software solutions. Here, the

three key principles of composable architecture is

demonstrated as follows,

a) Modularity: A core tenet of composable architecture is

the strategic decomposition of complex systems into

discrete, independent modules. Each module encapsulates

specific functionalities, enabling autonomous

development, testing, and maintenance. This modular

approach, akin to the building block paradigm exemplified

by Jamstack and micro frontend architectures, facilitates

streamlined system management and enhances codebase

clarity, thereby promoting long-term maintainability.

b) Reusability and Flexibility: Reusability in composable

system is a significant advantage, as it refers to design,

develop and deploy of the individual component in such a

way that, it can readily utilized across different

applications. Besides, a primary advantage of composable

architecture lies in its inherent adaptability. By decoupling

system components, organizations gain the capacity to

rapidly modify and evolve their digital infrastructure

without necessitating comprehensive system redesigns.

This modularity facilitates the seamless replacement or

augmentation of individual components, enabling

applications to demonstrate agility in response to evolving

market dynamics and technological innovations.

c) Scalability: Composable architecture delivers significant

scalability advantages. Independent component operation

permits scaling based on specific requirements, without

impacting the overall system. This optimizes resource

utilization and facilitates integration of new technologies

as business expands. Individual component scalability

enables efficient load management and cost-effective

operations.

Owing to these factors, composable architectures are used in

the study for overcoming the drawbacks of server-based

architecture. Hence, Q-learning based composable

architecture has incorporated in the study for consolidating

the workloads that spread over many underutilized nodes onto

fewer nodes. Incorporation of Q learning based reinforcement

learning approach has yielded an approximate pareto font,

providing a set of ideal solutions catering to various

preferences for the two objectives. Usage of Q learning

integrated composable architecture resulted in minimizing the

nodes and the no. of migrated workload elements. Despite its

advantage, there exist few drawbacks such as high complexity

and lack of high inaccurate predictions to mitigate negative

effects. Likewise, a DL characterization on a composable

infrastructure has used in the study for providing flexibility

for serving a variety of workloads and offers a dynamic co-

design platform that allows experiments and measurements in

a controlled manner.

7.1 Relationship with MACH Architecture

Typically, MACH and composable architecture are closely

interlinked in the modern software design, particularly within

the realm of building digital experiences and e-commerce

platforms. Thus, table-1 shows the relationship between

MACH and Composable Architecture.

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1766

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Table 1: Difference between MACH and Composable Architecture
Aspect MACH Architecture Composable Architecture

Definition
It is a subset of composable architecture, which

is defined by 4 principles.

It is a modular approach to system design where components

can be easily combined, replaced or scaled independently.

Components
Microservices, API, cloud-native application

and headless architecture.

Packaged business capabilities, microservices and modular

components.

Scope

It is identified as narrow framework which

emphasizes specific technical principles for

modern software development.

It is a broad philosophy, which is applicable across industries

and use cases, focusing on modularity and adaptability.

Relationship
MACH acts as an enabler for composable

architecture in contexts like digital commerce.

MACH is inherently composable but represents a specific

implementation of composable architecture principles.

Key principles
Microservices, API first design, cloud native

deployment and headless architecture.
Modularity, flexibility, reusability and scalability.

Technical

Backbone

MACH principles provide the backbone for

composable enterprises with SaaS models.

This rely on modularity and integration frameworks such as

APIs or packaged business components.

Flexibility
Allows for rapid innovation and deployment of

new services.
Enables businesses to swap out components as needs evolve.

Industrial

Application

MACH is primarily used in digital commerce

and related applications
Applicable across various industries and organizational scales.

Thus, from table-1 it can be identified that, composable

Architecture serves as a broad, modular design philosophy

emphasizing the independent combination, replacement, and

scaling of components for adaptable systems across diverse

industries, while MACH Architecture represents a specific

technical instantiation of this philosophy, particularly within

digital commerce, defined by its four key principles of

Microservices, API-first, Cloud-native, and Headless, which

act as an enabler for building composable solutions by

providing a concrete framework for achieving modularity,

flexibility, and rapid innovation through its distinct technical

backbone and focus.

8. Challenges and Future Directions

8.1 Challenges

Challenges encountered by the existing MACH and

composable architecture is listed as follows,

a) Increased Complexity

• Distributed Systems: Moving from a monolithic

architecture to a collection of independent microservices

inherently introduces complexity. Managing numerous

services, the interdependencies and communication

pathways becomes a significant undertaking.

• Operational Overhead: Monitoring, deploying and

maintaining a distributed system with many moving parts

requires sophisticated tooling, processes and expertise.

This can lead to increased operational overhead compared

to managing a single application.

• Data consistency: Ensuring data consistency across

various independent databases used by different

microservices can be complex. Thus, better strategies can

be used for careful implementation and comprehending

the implications.

b) Security Considerations

• Increased Attack Surface: A distributed system with

numerous APIs presents a larger attack surface compared

to a monolithic application. Each service and its API

endpoint needs to be secured independently.

• Complexity of Security Management: Managing

security policies and configurations across a multitude of

services can be more complex than in a monolithic

environment.

• Governance and Security: MACH architecture

decentralizes services and APIs increasing potential

vulnerabilities and governance challenges. Besides, the

decentralized nature of MACH can make it harder to

enforce standards and maintain overall architectural

coherence without strong governance processes.

c) Reliability and performance of the System

• Network Latency: Communication between distributed

services introduces network latency, which can impact

overall application performance. Careful consideration of

service location and communication patterns is necessary.

• Inconsistencies across microservices: Each

microservice may have its own codebase and development

team, leading to potential inconsistencies in design and

functionality.

• Monitoring and Observability: Comprehensive

monitoring and observability are essential to track the

health, performance, and behavior of individual services

and the overall system. This requires robust logging,

tracing, and metrics collection.

Thus, in order to overcome these drawbacks, future

advancements must be made to uplift the performance of

MACH and composable architecture.

8.2 Future Recommendations

a) Enhanced integration with Emerging Technologies: As

technology continues to evolve at an unprecedented pace,

the integration of emerging technologies such as

Artificial Intelligence, Machine Learning, Deep

Learning, Internet of Things, and Blockchain with

composable architecture is becoming increasingly

crucial. This integration is essential for creating a flexible

foundation that supports innovative solutions across

various industries. Composable architecture, by its

nature, allows for the modular design of software

systems, making it easier to incorporate these emerging

technologies.

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1767

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

b) Low-Code/No-Code Integration: Composable

architectures are poised to increasingly incorporate low-

code and no-code platforms, empowering business users

to assemble and manage certain components and

experiences with less reliance on developers. This shift

democratizes application development, allowing non-

technical stakeholders to contribute to the creation and

customization of digital experiences. Low-code

platforms, with their intuitive drag-and-drop interfaces,

simplify the development process, making it accessible

to a broader range of professionals. The integration of

low-code and no-code tools with composable

architecture enables businesses to accelerate their digital

transformation by streamlining application development

and reducing the time-to-market for new features. It also

allows for more agile responses to changing market

conditions and customer needs. However, challenges

such as complexity limits and integration with legacy

systems must be addressed to fully leverage these

platforms.

c) Edge Computing Integration: For applications requiring

low latency and local data processing, composable

components will be deployed and orchestrated at the

edge. Edge computing involves processing data closer to

its source, reducing latency and improving real-time

responsiveness. This is particularly important for

applications in industries such as manufacturing,

transportation, and healthcare, where timely data

processing can be critical. Composable architecture is

well-suited for edge computing because it allows for the

modular deployment of components in distributed

environments. This means that businesses can ensure

seamless user experiences even in scenarios where data

needs to be processed locally and quickly. For instance,

in a smart city scenario, composable components can be

used to manage traffic flow by processing real-time

sensor data at the edge, reducing congestion and

improving safety. The integration of composable

architecture with edge computing also enables more

efficient management of IoT devices. By processing data

locally, organizations can reduce the amount of data that

needs to be transmitted to central servers, improving

network efficiency and reducing costs.

d) Focus on Developer Experience (DX): As the number

of components in composable systems increases, there is

a growing need for tools and platforms that simplify the

development, deployment, and management of these

solutions. Improving developer experience (DX) is

crucial for ensuring that developers can efficiently work

with composable architectures, thereby enhancing

productivity and reducing complexity. Emerging tools

and platforms are designed to streamline the lifecycle of

composable components, from creation to deployment.

These tools often include features such as automated

testing, continuous integration/continuous deployment

(CI/CD) pipelines, and observability tools to monitor

performance metrics. By focusing on DX, organizations

can ensure that their developers are empowered to build

and maintain complex systems efficiently, which is

essential for driving innovation and competitiveness in

the digital landscape. Moreover, as composable

architecture becomes more prevalent, the demand for

skilled developers who can manage and integrate these

modular systems will increase. Therefore, investing in

developer experience not only improves productivity but

also helps attract and retain top talent in the industry. This

focus on DX will be a key factor in the successful

adoption and implementation of composable

Therefore, these are some of the key future recommendations

that need to be considered for better performance of MACH

and composable architecture.

9. Conclusion

The present paper focused on reviewing the principles of

MACH and composable architecture. The paper has projected

that, MACH architecture offered several key benefits that

make it an attractive choice for businesses seeking to

modernize their digital solutions. Microservices enabled the

development of applications as suites of small, independent

services, each handling a specific task. This modular structure

simplified development and maintenance, allowing for

continuous deployment and delivery practices. API-first

ensured seamless integration and interoperability by exposing

all functions through standardized APIs, facilitating

communication between different areas of the technology

stack. Cloud-native applications leveraged cloud

infrastructure for scalability, high availability, and automatic

updates, optimizing costs and performance. Finally, Headless

architecture decoupled the user interface from the backend,

allowing different frontends to access the same backend

services, thereby enhancing flexibility and reducing vendor

lock-in.

Likewise, composable architecture represented a broader

paradigm in web development, where applications are

constructed from modular, interchangeable components. This

approach is characterized by modularity, interoperability,

scalability, flexibility, and decentralization. Composable

architecture allowed businesses to build systems that are

agile, resilient, and adaptable to future technological

advancements. While MACH is inherently composable, it

focused on specific technical approaches, making it a

narrower framework within the broader context of

composable architecture. The benefits of adopting a

composable approach include enhanced agility, improved

scalability, reduced risk, cost efficiency, and future-proofing,

as individual components can be updated or replaced without

disrupting the entire system. Therefore, these architectures

were explored in the present study in e-commerce setup.

Additionally, the present work will aid business professionals

in the e-commerce sector who are seeking to modernize the

digital solutions by providing insights into the principles and

benefits of MACH and composable architecture.

References

[1] G.-D. Schwarz, A. Bauer, D. Riehle, N. J. I.

Harutyunyan, and S. Technology, "A taxonomy of

microservice integration techniques," Information

Software Technology, p. 107723, 2025.

[2] T. Adewale, "Implementing API-First Data Processing

Pipelines in Cloud Environments," 2025.

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1768

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[3] A. Owen, "Microservices Architecture and API

Management: A Comprehensive Study of Integration,

Scalability, and Best Practices," 2025.

[4] R. Strauss, "On the Way to Composability: The

Changing Role of IT," in Data-Driven Customer

Engagement: Mastering MarTech Strategies for

Success: Springer, 2024, pp. 213-229.

[5] A. Korotenko, "Microservices Architecture: practical

implementations, benefits, and nuances," 2024.

[6] G. Blinowski, A. Ojdowska, and A. J. I. a. Przybyłek,

"Monolithic vs. microservice architecture: A

performance and scalability evaluation," vol. 10, pp.

20357-20374, 2022.

[7] Atlassian, "Advantages of microservices and

disadvantages to know."

[8] G. Granchelli, M. Cardarelli, P. Di Francesco, I.

Malavolta, L. Iovino, and A. Di Salle, "Microart: A

software architecture recovery tool for maintaining

microservice-based systems," 2017, pp. 298-302: IEEE.

[9] M. Raatikainen, E. Kettunen, A. Salonen, M. Komssi,

T. Mikkonen, and T. Lehtonen, "State of the practice in

application programming interfaces (APIs): A case

study," 2021, pp. 191-206: Springer.

[10] E. Koivula, "Building Competitive Advantage with API

Strategy–Case Study of Established Enterprises," 2023.

[11] T. Adewale, "Designing Lightweight API-First Data

Processing Services for Cloud Computing," 2025.

[12] M. Medjaoui, E. Wilde, R. Mitra, and M. Amundsen,

Continuous API management. " O'Reilly Media, Inc.",

2021.

[13] K. Lane and A. Asthana, The API-First Transformation.

Postman, Incorporated, 2022.

[14] V. Baladari, "Cloud Resiliency Engineering: Best

Practices for Ensuring High Availability in Multi-Cloud

Architectures."

[15] J. Paulsson, "Code Generation for Efficient Web

Development in Headless Architecture," ed, 2024.

[16] M. Dudjak, G. J. I. T. Martinović, and Control, "An

API-first methodology for designing a microservice-

based Backend as a Service platform," vol. 49, no. 2, pp.

206-223, 2020.

[17] Hapio. What is Headless and Composable

Architecture? Available: https://hapio.io/headless-

composable-architecture/

[18] C. Guo, L. Li, and M. J. I. T. o. I. I. Zukerman, "Q-

Learning-Based Workload Consolidation for Data

Centers With Composable Architecture," IEEE

Transactions on Industrial Informatics, 2024.

Paper ID: SR25529071708 DOI: https://dx.doi.org/10.21275/SR25529071708 1769

http://www.ijsr.net/
https://hapio.io/headless-composable-architecture/
https://hapio.io/headless-composable-architecture/

