
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

AI - Based Root Cause Analysis of Test Failures

Using Allure Reports

Alex Thomas Thomas

Saransh Inc

Email: alexthomaslive[at]gmail.com

Abstract: With increasingly complex and larger systems, automated testing is nowadays an embedded element of modern development

practices. However, root cause analysis (RCA) of test failures remains a time - consuming, knowledge - intensive, and error - prone

activity that typically requires considerable domain expertise. This paper explores the use of an AI - powered RCA on test failure data

extracted from Allure reports a standard test framework to generate rich, structured test outcomes. The approach utilizes machine learn-

ing methods, natural language understanding, and causality to enable automated diagnosis and classification of failures through the

analysis of logs, error messages, and execution traces. It not only accelerates fault localization but also improves the accuracy and uni-

formity of diagnosis. The review synthesizes current research trends and technology enabling intelligent RCA, reviews current frameworks

and tools, and documents the incorporation of AI models into CI/CD pipelines. The paper also addresses significant issues such as inter-

pretability of the model, data quality, and managing flaky tests. By bridging the gap between test result visualization and automated

diagnosis, AI - based RCA with Allure presents a smart and scalable solution for improving software reliability and development effi-

ciency.

Keywords: Artificial Intelligence (AI), Root Cause Analysis (RCA), Software Testing, Allure Test Reports, Test Automation, Failure Diag-

nosis

1. Introduction

The expanding complexity and size of modern software sys-

tems have made automated testing a necessity to quality and

dependability. DevOps pipelines and agile development in-

creasingly rely on Continuous Integration and Continuous

Delivery (CI/CD), where automated testing is a supporting

pillar. However, although test automation successfully deter-

mines failure, determining the root cause of these failures re-

mains a manual very much, time - consuming, and error -

probable effort. This manual Root Cause Analysis (RCA)

process slows down the delivery cycle, increases operational

cost, and slows down development efficiency. Conventional

RCA methods typically rely on human know - how and heu-

ristic debugging, which are difficult to scale and may yield

unreliable results. With the success of AI technology in in-

dustrial systems following Industry 4.0 [1], the latest research

has begun investigating AI approaches to automating RCA,

especially using ensemble learning and statistical models that

have proven effective in identifying fault patterns in large -

scale manufacturing contexts [2] [4]. These approaches are

increasingly applicable to software systems, especially for

minimal - intervention test failure diagnosis.

Allure is a widely used reporting tool that provides detailed

test run visualizations, including logs, screenshots, and error

traces. While powerful in terms of data presentation, it lacks

built - in intelligence to reason or diagnose test failure. This

provides a good opportunity to integrate Allure with AI -

driven RCA methods so that it can automatically deduce pat-

terns, group similar failures, and infer likely causes from test

artifacts. It is now simpler to incorporate AI in Allure reports

due to better explainable AI [3] [5], natural language pro-

cessing (NLP) [11], and causal inference models like

RADICE [7].

Software engineering research has also demonstrated the abil-

ity of causal graphs [6] [7], graph - based incident extraction

[8], and microservice - oriented RCA frameworks [9] [10] to

identify root causes for system failures. NLP - based log anal-

ysis and deep learning - based anomaly detection [12] [17]

also make it possible for systems to process the structured out-

put obtained by test reports such as Allure's. The significance

of this study is its capacity to transform test failure diagnosis

by integrating smart, AI - based RCA capability into existing

tools like Allure. This not only minimizes the need for human

intervention but also accelerates root cause discovery, im-

proves release speed, and assists in building more resilient

and autonomous testing environments. By comparing existing

literature, techniques, and software, this study aims at review-

ing the state - of - the - art of AI - facilitating RCA and deter-

mining the direction for its effective utilization in software

testing procedures.

2. Problem Statement

Automated testing is central to software quality and reliability

assurance in modern software development pipelines. Auto-

mated testing frameworks like Allure Test Reports are main-

stream in their adoption because of their ability to aggregate

and present test results in a pictorially intuitive and structured

format. However, despite all their reporting capability, Allure

lacks intelligent intrinsic mechanisms for diagnosing the root

causes of test failure, which it offloads to manual effort. This

kind of manual analysis is time - consuming, error - prone,

and increasingly unscalable in complex, microservices -

based, and continuous integration (CI) - driven setups [5], [6],

[10]. As industries are heading towards Industry 4.0 and zero

- defect manufacturing principles [1], [4], there is a need for

intelligent, interpretable, and automated debugging ap-

proaches. Earlier work also demonstrated the potential of Ar-

tificial Intelligence (AI) and Machine Learning (ML) meth-

odologies to identify patterns and anomalies for root cause

analysis in manufacturing and software systems [2], [3], [13].

However, these methodologies are not generally integrated

with existing test reporting frameworks such as Allure.

Paper ID: SR25527092241 DOI: https://dx.doi.org/10.21275/SR25527092241 1697

http://www.ijsr.net/
mailto:alexthomaslive@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Moreover, causal reasoning research [7], graph - based inci-

dent extraction [8], and log and error message analysis using

NLP [11] have been promising but not yet successfully ap-

plied to Allure - generated test artifacts. The lack of integra-

tion of structured test result visualization and intelligent RCA

methods holds back proactive fault detection, incident resolu-

tion slowing, and system downtime increasing. Therefore,

there is an urgent need to develop an AI - powered framework

that can analyze Allure test failure reports to automatically

infer failure root causes, give explainable insights to develop-

ers, and enhance debugging procedures for large - scale and

dynamic software systems.

3. Overview of Test Failure Analysis

3.1 Causes and Types of Test Failures

Automated test environment failures are usually categorized

into three broad types: flaky tests, environment problems, and

code bugs. Flaky tests are deterministic in nature but display

non - deterministic results—they pass at one time and fail at

another without making any change to the code. Such behav-

ior is usually due to timing dependencies, asynchronous calls,

or resource sharing conflicts, and greatly hinders root cause

identification [6], [10]. Environment - related failures are due

to instability or misconfiguration in the test infrastructure, for

example, unstable network environments, incompatibility of

software dependencies, or improperly set up environments.

They occur particularly in distributed systems and CI/CD

pipelines, where the test environment is continuously provi-

sioned and destroyed [1], [2], [10]. Lastly, code defects rep-

resent genuine faults in the application under test, for exam-

ple, logical faults, buggy implementations, or integration

faults. These are genuine quality issues that require developer

intervention to resolve [3], [5].

3.2 Popular Methodologies for Diagnosing Test Failures

Traditional techniques of root cause analysis (RCA) rely on

manual inspection of test logs, stack traces, and error mes-

sages—laborious and error - prone approaches. More recent

methodologies, though, are beginning to automate and sim-

plify this process. Statistical and ensemble techniques corre-

late signals from groups of flunked tests to make educated

guesses about probable causes, a strategy commonly em-

ployed in manufacturing systems and software reliability en-

gineering [2], [4]. Machine learning models, especially those

developed based on explainable AI frameworks, can be

trained on historical patterns of failure and produce intelligent

predictions for future failures and offer developers interpret-

able explanations for their reasoning [3], [5], [13]. Graph -

based and causal inference models are tackling the problem

structure - wise by examining intercomponent dependencies

and tracing how failure spreads through systems [7], [8], [9].

NLP also makes logs and error messages easy to automati-

cally parse, extracting relevant failure markers from text di-

agnostics and reducing drudgery involved in manually inter-

preting text diagnostics [11]. Despite such progress, these fea-

tures have not yet been systematically integrated in most re-

porting tools such as Allure that focus on visualization and

less on automated RCA.

3.3 Impact of Unresolved Test Failures on CI/CD Pipe-

lines and Product Quality

Unclosed test failures will negatively impact continuous inte-

gration and deployment pipelines if they are not closed.

Among the most direct impacts is the slowing down of feed-

back loops, where developers take longer to find and fix er-

rors, thus slowing down releases and slowing overall devel-

opment pace [5], [6]. Flaky tests, on the other hand, produce

false positives, leading to spurious alerts that cause "test fa-

tigue" and lead to teams either ignoring important signals or

wasting time chasing non - issues [6]. An accumulation of re-

peated test failures also erodes confidence in the automated

test suite, sometimes even compelling teams to fall back again

to slower and more expensive manual testing approaches

[10]. Above all, a failure to correctly and in a timely manner

detect defects jeopardizes release of faulty software, which

then may result in system downtime, complaints by custom-

ers, and financial losses [1], [4]. In summary, the coupling of

AI - driven RCA techniques with tools like Allure would sig-

nificantly enhance the process of fixing test failures, allowing

for faster resolution, improved quality of software, and main-

taining the integrity of CI/CD pipelines.

4. Test Reporting Tools - Allure Reports

4.1 Allure Reports Features and Architecture

Allure Reports is a popular open - source tool designed to pro-

duce clear, comprehensive, and visually rich reports that sum-

marize test execution results. It is a modular - architecture tool

with three main components. Its data collection layer collects

XML or JSON - based result files from test frameworks at

runtime; these files contain detailed metadata, including test

steps, parameters, attachments such as logs and screenshots,

and test status. The processing engine then gathers and pro-

cesses these raw test results, forming a structured model con-

taining detailed test results, history, and trends. Finally, the

presentation layer offers an interactive and responsive web -

based UI that displays test suites, test cases, step - by - step

execution flows, and detailed failure information, making de-

bugging and navigation more straightforward [5], [6]. Addi-

tionally, the design of Allure supports extensibility and sim-

ple integration with other programming languages and testing

frameworks, which enables homogeneous reporting in heter-

ogeneous testing environments [3].

4.2 Mechanism of Test Result Collection and Presentation

in Allure

Allure has a close integration with popular test automation

frameworks such as JUnit, TestNG, PyTest, and Mocha

through the possibility to hook into their life cycle events dur-

ing test execution. While it runs the test, it collects fine -

grained information like each test's execution outcome (pass,

fail, skip, or broken), elaborate logs at the step and sub - step

level, in addition to attachments like screenshots and error

logs. It also records metadata like test parameters, execution

environment, and historic trend performance. All this infor-

mation is gathered and stored in a structured manner and pub-

lished in the form of an HTML report that can be browsed.

The report shows tests hierarchically by suites and classes,

indicates failed tests with their corresponding stack traces and

Paper ID: SR25527092241 DOI: https://dx.doi.org/10.21275/SR25527092241 1698

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

error messages, and allows trend analysis by comparing the

most recent results with the last [5], [6].

4.3 Advantages of Allure Reports for Test Failure Analy-

sis

Allure Reports provide a comprehensive overview of test runs

by offering step - by - step execution traces of tests along with

comprehensive attachments, which collectively aid testers

and developers in recognizing failure points immediately and

accelerating root cause analysis [5]. It provides a clean and

intuitive interface with minimal cognitive load, such that one

can recognize issues at first glance without manually digging

into raw logs or complex data [3], [6]. Moreover, Allure's

trending of test results over time offers valuable history, mak-

ing it less difficult to identify flaky tests and recurring envi-

ronment - related problems. This kind of longitudinal visibil-

ity is especially handy when taking advantage of more sophis-

ticated AI - based analysis methods [5]. Furthermore, the plug

- and - play extensible design of Allure accommodates custom

annotations and integrations, providing a flexible framework

for incorporating AI - based failure diagnosis tools into its re-

porting ecosystem [3], [5].

4.4 Native Integration with Test Automation Frameworks

of Allure Reports

Allure has native integration support with a variety of popular

automation frameworks from a variety of programming lan-

guages, e. g., Java frameworks JUnit, TestNG, and Cucum-

ber, as well as Python frameworks PyTest. Such broad com-

patibility allows Allure to generate consistent, platform - neu-

tral reports regardless of the underlying test technology. Al-

lure collects rich execution data by listening to test lifecycle

events at minimal configuration overhead, making integration

into heterogeneous test pipelines simple [5], [6]. More im-

portantly, Allure's JSON and XML result files, being formally

structured, can be consumed by AI - powered root cause anal-

ysis engines for extraction of significant failure patterns, and

therefore, Allure is a great pick in next - generation CI/CD

pipelines for explainable AI diagnostics [3], [5].

5. AI and Machine Learning Techniques in

Root Cause Analysis (RCA)

5.1 Summary of AI/ML Methods Useful for RCA

Machine learning and artificial intelligence are now a neces-

sity in automating Root Cause Analysis (RCA) of test fail-

ures, especially in big and complex systems [1] [2] [4] [5].

The primary AI/ML methods employed are classification

methods such as decision trees, support vector machines, and

neural networks, comparing failure types based on features

extracted from test results or logs [4] [13]. K - means and

DBSCAN cluster algorithms are used when label data is not

present, clustering associated failures to detect new or infre-

quent root causes [4] [5]. Anomaly detection techniques, like

Isolation Forest and autoencoders, identify unusual patterns

in test behavior or performance metrics for issues that indicate

underlying issues [4] [12]. Causal inference models based on

Bayesian networks and models like RADICE help to deter-

mine cause - and - effect relationships between code changes,

testing environments, and failure occurrences [7].

Additionally, graph - based learning employs dependency

graphs to monitor cascading faults in distributed systems and

microservices architecture, hence delivering a better fault

propagation understanding [7] [8] [9].

5.2 Data Preprocessing and Feature Extraction from Test

Reports

Before presenting the test data to machine learning algorithms

for feeding, test data from Allure Reports and similar ones

need to undergo proper preprocessing. Structured parsing of

primary information such as test status, test case hierarchical

structure, long execution steps, error messages, and support-

ing logs from Allure's XML or JSON reports is called initial

parsing. Feature engineering then creates insightful inputs for

ML models from such aspects as time to fail, frequency of

failure, failed components or modules, stack trace tokens, and

previous sequences of pass/fail outputs [5] [6]. Data normali-

zation and cleaning are also required to avoid duplicate rec-

ords, deduplicate redundant log lines, and efficiently encode

categorical metadata [2] [4]. The structured nature of Allure's

output greatly simplifies these preprocessing tasks, and hence

it is an excellent source to provide input to ML models [5].

5.3 Natural Language Processing (NLP) Application in

Log and Error Message Analysis

Logs and exception messages typically arrive as long and un-

structured data streams and therefore are problematic to ana-

lyze. NLP techniques offer intelligent means of processing

the data. Tokenization and embedding methods transform text

messages into vector representations such as TF - IDF or

BERT embeddings that enable similarity analysis or classifi-

cation [11, 12]. Error template mining captures repeated pat-

terns in error messages collected from multiple runs of the

same test and facilitates constant failure characterization [6,

10]. Named Entity Recognition (NER) is employed to iden-

tify crucial error - specific words, like error codes, file names,

and stack trace functions, which enable the identification of

failure sources [11]. Topic modeling and clustering algo-

rithms, for instance, Latent Dirichlet Allocation (LDA), clus-

ter logs with similar topics to assist in root cause analysis [5]

[11]. These NLP - based approaches are especially important

in microservice and CI/CD setups in which logs could be the

sole indicator of failure [8] [10].

5.4 Pattern Detection and Past Failure Analysis

Levying the Allure's ease to track past trends, AI systems can

identify recurring patterns of failures and evolving signatures

of faults. Time - series pattern mining examines a series of

test results to find regressions or occasional (flaky) test be-

haviors that would otherwise be difficult to detect [6] [10].

Signature learning enables machine learning models to dis-

cern the "fingerprints" of known failure modes and to predict

potential new or incipient problems accurately [5] [9].

Through root cause analysis tag learning, AI can develop root

cause templates to indicate likely root causes for current fail-

ures [4] [5] [6]. These pattern recognition skills not only assist

in the diagnosis of existing problems but also facilitate fore-

casting potential test failure and assist in the automation of

preventative measures.

Paper ID: SR25527092241 DOI: https://dx.doi.org/10.21275/SR25527092241 1699

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

6. Applying AI to Test Failure Data from Allure

Reports

Figure 1: RCA Process flowchart

6.1 Structure of Allure Report Data

Allure Reports are largely employed in testing software for

their ability to provide a visual representation and organiza-

tion of test run data in an easy - to - view and complete format.

An Allure report is composed of several structural compo-

nents. Test steps are described in hierarchical form, keeping

tabs on each action in a test case such as navigation com-

mands or assertions. The report also includes status metadata,

which captures the outcome of every test (passed, failed, bro-

ken, or skipped) along with accompanying timestamps. Logs

and error messages are useful runtime information that cap-

ture standard output, stack traces, and exception messages. In

UI automation, screenshots are commonly attached to failed

test steps to capture the visual state of the interface at the mo-

ment the error occurred. Besides, attachments like HTTP re-

sponses, configuration files, or other artifacts may be included

to add richness to the context. Historical data is also option-

ally displayed by Allure through plugins so that the testers can

see trends over builds. The integration of structured data (such

as XML/JSON) and semi - structured data (like logs and mes-

sages) makes Allure a prime choice for training AI models.

6.2 Methods to Extract and Prepare Data from Allure for

AI Models

In order to utilize AI and machine learning algorithms on Al-

lure data properly, raw test report information must be parsed

and transformed into a consumable model format. This begins

by parsing XML or JSON files found in the allure - results

directory. These reports contain formatted test result data and

can be extracted using command - line tools like allure - py-

thon - commons or by creating custom parsers with libraries

like Pandas and Python's json module to display the data in

tabular form. Feature engineering is then required after ex-

traction to represent meaningful metadata like test suite

names, environments, number of retries, and test durations.

Logs can be processed using natural language processing

(NLP) techniques like tokenization and vector embeddings

like TF - IDF, Word2Vec, or BERT. Screenshots can be pro-

cessed to extract image features using convolutional neural

networks (CNNs) for UI testing. Labeling is then performed

based on the learning paradigm: supervised learning can em-

ploy known failure types like timeouts, assertion failures, or

UI element not found, whereas unsupervised learning can

employ clustering of logs or test metadata. Data normaliza-

tion and balancing are also necessary steps—numeric features

such as duration or failure number are normalized, and tech-

niques such as SMOTE or under - sampling may be employed

to address class imbalance because test failures would be

more typically less than passes. As noted in references [4],

[5], and [6], input data preparation would typically be the

most time - consuming but necessary phase of AI - root cause

analysis.

6.3 Few Examples of AI Algorithms Used

Depending on the desired goal—classification, clustering, or

anomaly detection different AI algorithms are utilized during

root cause analysis of test failures. Decision trees and random

forests are used when explainability is essential since they al-

low developers to trace down rational paths that result in test

failures, and this aligns with explainable AI principles [13]

[3]. Support Vector Machines (SVMs) are most effective in

dealing with binary classification issues, such as determining

whether a test is passing or failing based on structured

metadata. Neural networks are applied to solve more complex

patterns, especially sequential data or imagery data. Convolu-

tional neural networks (CNNs) are most effectively applied in

screenshot analysis, whereas Long Short - Term Memory

(LSTM) networks are suited for pattern learning on sequential

logs [14] [17]. Clustering methods such as K - means or

DBSCAN help to partition similar types of failures together,

normally uncovering underlying causes by analyzing logs and

metadata [4] [5]. Finally, anomaly detection algorithms such

as autoencoders and Isolation Forests detect abnormal test be-

haviors not conforming to expected patterns and mark them

as possible issues even in the absence of labeled data [12].

Such AI models, being trained with well - structured and pre-

processed data from Allure reports, offer rich capabilities for

automated, scalable, and insightful root cause analysis.

7. Evaluation Metrics for AI - Based Root Cause

Analysis (RCA)

Evaluation metrics for AI - based Root Cause Analysis (RCA)

of test failures by Allure Reports are decisive factors for es-

tablishing the predictive power and actual - world usability of

the system. Main performance measures such as accuracy,

precision, recall, and F1 - score measure how accurately the

Paper ID: SR25527092241 DOI: https://dx.doi.org/10.21275/SR25527092241 1700

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

AI discriminates true root causes from formatted and unfor-

matted test data, according to paradigms in [2], [4], and [5].

In addition, Mean Time to Resolution (MTTR) is a significant

operational measure that reflects the speed with which fail-

ures are diagnosed and resolved, thereby improving CI/CD

efficiency as described in [1] and [6]. Integrated human - in -

the - loop feedback mechanisms and explainable AI (XAI) —

as contended in [3] and [5]—enhance model transparency and

responsiveness to allow engineers to authenticate, customize,

and iteratively train models from real - world wisdom. These

steps collectively ensure that AI - driven RCA not only oper-

ates precisely as intended in theory but also accelerates reso-

lution and enables continuous quality improvement in com-

plex test environments.

8. Challenges and Limitations

Artificial intelligence - based Root Cause Analysis (RCA) by

means of Allure Reports is also faced with limitations and is-

sues, which can affect its performance in real software testing

contexts. One such limitation is the quality and completeness

of information in Allure reports, which may rely on the way

tests have been written and integrated with logging or moni-

toring systems, affecting the richness of input features for AI

models as mentioned in [4] and [6]. In addition, noisy, redun-

dant, or missing data especially in logs or step definitions can

degrade accurate root cause prediction and necessitate robust

preprocessing and anomaly handling techniques ([2], [5],

[11]). Interpretability of the model is also a significant limita-

tion because developers typically must understand AI deci-

sions in order to trust and act upon them, and thus explainable

AI (XAI) frameworks are essential ([3], [5]). Finally, scala-

bility is a concern when applying these AI techniques to big

test suites or distributed test environments, where efficiency

in performance, memory management, and inference time

should be optimized in a way that maintains responsiveness

and relevance in CI/CD pipelines ([1], [7], [10]).

9. Conclusion

Application of Artificial Intelligence - based Root Cause

Analysis (RCA) in test failures using Allure reports is one of

the prime innovations in intelligent software quality assur-

ance, aligning with the broader trend towards Industry 4.0 and

intelligent automation advocated by Lee et al. [1]. Through

the use of structured and semi - structured data such as test

steps, logs, attachments, and screenshots from Allure, AI

models can examine failure patterns suitably, detect defect or-

igins, and assist in remediation early. Ensemble learning

methods [2] through to causal discovery methods [7, 9] and

natural language processing methods [11] have been promis-

ing in the diagnosis of system failure, especially when applied

to the finesse needs of software testing. These models do not

just enhance accuracy and reduce mean time to resolution

(MTTR), as noted by Kathiresan [5], but also enhance ex-

plainability of fault diagnosis utilizing methods proposed in

explainable AI frameworks [3]. Data interpretability and

quality determine the efficiency of these systems. Challenges

such as noisy or absent Allure information, difficulty scaling

to large, distributed CI/CD pipelines, and the "black - box"

nature of deep learning models are tangible limitations [4, 6,

10]. Despite these challenges, current research on causal in-

ference, graph - based diagnostics [8], and human - in - the -

loop approaches can provide solutions to intrinsic gaps. To-

gether, AI and Allure - based RCA provide an active, data -

driven testing regime, eliminating debugging activities and

opening the door to more autonomous, fault - resilient, and

scalable quality engineering systems in line with future trends

in software and manufacturing applications [13, 15].

References

[1] J. Lee, H. Davari, J. Singh, and V. Pandhare, "Industrial

Artificial Intelligence for Industry 4.0 - based manufac-

turing systems, " Manufacturing Letters, vol.18, pp.20–

23, 2018.

[2] Z. Yang, J. Wang, and T. Chen, "An ensemble approach

to root cause analysis in complex manufacturing sys-

tems, " IEEE Trans. Reliab., vol.68, no.4, pp.1263–

1279, 2019.

[3] C. Tantithamthavorn, J. Jiarpakdee, and J. Grundy, "Ex-

plainable AI for software engineering, " arXiv preprint

arXiv: 2012.01614, 2020.

[4] J. Chen, C. Zhao, and Y. Sun, "A systematic review on

machine learning methods for root cause analysis to-

wards zero - defect manufacturing, " Front. Manuf.

Technol., vol.8, 2022.

[5] G. Kathiresan, "AI - Augmented Root Cause Analysis:

Enhancing Debugging Efficiency in Large - Scale Soft-

ware Systems, " Well Testing J., vol.32, no.2, pp.130–

145, 2023.

[6] H. Jiang, X. Li, Z. Yang, and J. Xuan, "What causes my

test alarm? Automatic cause analysis for test alarms in

system and integration testing, " arXiv preprint arXiv:

1703.00768, 2017.

[7] A. Tonon et al., "RADICE: Causal graph - based root

cause analysis for system performance diagnostics, "

arXiv preprint arXiv: 2501.11545, 2025.

[8] Z. He et al., "Graph - based incident extraction and di-

agnosis in large - scale online systems, " in Proc.37th

IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), 2022,

pp.1–13.

[9] A. Ikram et al., "Root cause analysis of failures in mi-

croservices through causal discovery, " in Adv. Neural

Inf. Process. Syst. (NeurIPS), vol.35, pp.31158–31170,

2022.

[10] J. Shi, S. Jiang, B. Xu, and Y. Xiao, "Failure diagnosis

in microservice systems: A comprehensive survey and

analysis, " ACM Trans. Softw. Eng. Methodol., vol.32,

no.4, pp.1–35, 2023.

[11] M. Nakata, Y. Watanabe, K. Fujiwara, and Y. Suwa,

"Improving incident management process by natural

language processing techniques, " IEEE Access, vol.8,

pp.163984–163999, 2020.

[12] M. Vinayakumar et al., "Deep learning approach for in-

telligent intrusion detection system, " IEEE Access,

vol.7, pp.41525–41550, 2019.

[13] A. Chigurupati and N. Lassar, "Root cause analysis us-

ing artificial intelligence, " in Proc. Annu. Rel. Main-

tainability Symp. (RAMS), 2017, pp.1–6.

[14] J. D. Crocco and J. R. P. R. O’Hern, "Manufacturing

quality improvement through statistical root cause anal-

ysis using convolution neural networks, " U. S. Patent

US20180293722A1, Oct.11, 2018.

Paper ID: SR25527092241 DOI: https://dx.doi.org/10.21275/SR25527092241 1701

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[15] J. Penrose, "ARC Advisory Group: Proactive asset man-

agement with IIoT and analytics, " ARC Advisory

Group, 2017.

[16] J. D. Crocco and J. R. P. R. O’Hern, "Manufacturing

quality improvement through statistical root cause anal-

ysis using convolution neural networks, " U. S. Patent

US20180293722A1, 2018.

[17] R. Vinayakumar et al., "Deep learning approach for in-

telligent intrusion detection system, " IEEE Access,

vol.7, pp.41525–41550, 2019.

[18] A. Chigurupati and N. Lassar, "Root cause analysis us-

ing artificial intelligence, " in Proc.2017 Annu. Rel.

Maintainability Symp. (RAMS), pp.1–6.

[19] J. D. Crocco and J. R. P. R. O’Hern, "Manufacturing

quality improvement through statistical root cause anal-

ysis using convolution neural networks, " U. S. Patent

US20180293722A1, 2018.

[20] J. Penrose, "ARC Advisory Group: Proactive asset man-

agement with IIoT and analytics, " ARC Advisory

Group, 2017.

Author Profile

With 15+ years in software development, quality engineering, and

agile leadership, I specialize in driving quality and efficiency across

enterprise systems. As QE Lead, I lead cross - functional teams de-

livering robust solutions across AppleCare for Enterprise, Secure

Messaging, and Digital Legacy. My expertise spans cards & pay-

ments, capital markets, and customer service platforms. I bring

strong skills in SDLC/STLC, test automation, agile project manage-

ment, and process optimization. I’ve led QA transformations at State

Street and American Express, improving test efficiency by up to 70%

and deploying automation frameworks that significantly reduce

manual effort. Certified PMP and Scrum Master, I’m passionate

about bridging business and tech, mentoring teams, and leveraging

emerging tech like Generative AI to enhance innovation and deliv-

ery. Core Skills: Quality Engineering | Test Automation | Agile

Leadership | Project Management | Financial Systems | Mainframe

Testing | Generative AI in QA

Paper ID: SR25527092241 DOI: https://dx.doi.org/10.21275/SR25527092241 1702

http://www.ijsr.net/

