
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

A Study on Utilizing Delta Lake for Efficiently

using LakeHouse

Ravi Rane1, Pooja Mulik2

1Tech Enthusiast

2Tech Enthusiast

Abstract: Delta Lake is an open - source storage layer that enhances data lakes with ACID transactional guarantees, scalable metadata

handling, and unified batch/stream processing on Apache Spark. It has become integral to modern data architectures by providing

reliability, schema enforcement, and support for time travel. However, achieving low - latency, high - throughput query execution over

large - scale Delta tables require deliberate optimization across multiple system layers. This paper examines Delta Lake's underlying

architecture including its transaction log, snapshot isolation model, and Parquet - based file layout and presents advanced performance

tuning techniques. These include optimizing partitioning schemes for effective pruning, leveraging data skipping via file - level statistics,

reducing file fragmentation through compaction, utilizing Spark caching for reuse, applying Z - order clustering for multi - column

filtering efficiency, and maintaining compact, query - friendly metadata.

Keywords: Delta Lake optimization, transactional data lakes, big data architecture, Apache Spark performance, Z - order clustering

1. Introduction

Delta Lake is a storage abstraction that augments data lakes

with transactional integrity, schema management, and high -

performance capabilities. Built on Apache Spark, it enables

fault - tolerant, scalable processing for both batch and

streaming workloads. Despite its robust architecture, query

performance is highly sensitive to data layout, ingestion

patterns, and access strategies. This paper provides an in -

depth exploration of advanced techniques and architectural

best practices for optimizing query execution in Delta Lake,

with an emphasis on performance - critical and latency -

sensitive applications.

Delta Lake helps improve the performance, reliability and

scalability of Data Lake.

2. Background and Architecture

Origination of Parquet Files

A Parquet file is a columnar storage file format. It allows

efficient storage and retrieval of data. Compared to a CSV, a

parquet file stores data in column format. So, when you have

a file with customer data, to fetch a customer based on

‘customer_name’, only that column is queries unlike CSV

where the entire file needs to be read.

History of Delta Lake

Data Lake was created to store data in this parquet file format.

But fetching the data, identifying change logs and updating

the data was a hassle. Delta Lake stores data as Parquet files

and maintains a transaction log that tracks all the changes

occurring in these files. This log ensures ACID compliance

and supports time travel and schema enforcement/evolution.

Key architectural components:

• Transaction log: JSON - based logs recording changes

• Snapshot isolation: Each query operates on a consistent

snapshot

• Schema management: Supports evolution and

enforcement

• Data skipping: Metadata allows skipping irrelevant files

• Partition pruning: Filters eliminate partitions at query

time

3. Data Lake vs Delta Lake

A Data Lake is a flexible but raw storage repository. Delta

Lake builds on top of it, adding reliability, transactional

Paper ID: SR25525181650 DOI: https://dx.doi.org/10.21275/SR25525181650 1608

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

support, and query performance—ideal for production -

grade analytics and machine learning pipelines.

4. Performance Bottlenecks in Delta Lake

Queries

Several factors can degrade Delta Lake query performance:

• Small file proliferation

• Inefficient partitioning

• Lack of data skipping or Z - ordering

• Poor caching strategy

• Frequent full scans

These challenges necessitate architectural and operational

optimizations.

5. Improving Delta Lake Query Efficiency

5.1 Partitioning Strategy

Partitioning splits the data into directories based on column

values, allowing for faster queries through partition

pruning.

Best Practices:

• Choose high - cardinality, commonly filtered columns

• Avoid over - partitioning (e. g., date is better than

timestamp)

• Avoid partitioning on columns with unique values

5.2 Data Skipping

Delta Lake stores min/max statistics for each file, enabling

Spark to skip files that do not match filter conditions.

To leverage data skipping:

• Ensure statistics are collected (OPTIMIZE commands

help)

• Filter on columns used during write (to populate statistics)

5.3 File Compaction and Optimization

Frequent streaming or micro - batch writes lead to small files,

which increase overhead during query execution.

Techniques:

• Use OPTIMIZE to compact small files

• Compact by partition for large datasets

• Schedule compaction jobs during off - peak hours

OPTIMIZE delta. `/path/to/table` WHERE date = '2024 -

01 - 01';

Paper ID: SR25525181650 DOI: https://dx.doi.org/10.21275/SR25525181650 1609

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5.4 Z - Ordering (Multidimensional Clustering)

Z - Ordering reorders data to colocate related information,

improving data skipping in multi - column filters.

OPTIMIZE delta. ̀ /path/to/table` ZORDER BY (country,

customer_id);

When to use:

• Multi - column filters are common

• Column correlation can be exploited

5.5 Caching and Data Reuse

For iterative algorithms or repeated access patterns:

Use CACHE TABLE or persist (StorageLevel.

MEMORY_AND_DISK)

Pre - warm frequently accessed data

CACHE TABLE my_delta_table;

5.6 Predicate Pushdown

Ensure that filters are pushed down to the Parquet level and

applied before data is read.

Example:

df = spark. read. format ("delta"). load ("/delta/events").

filter ("event_type = 'click'")

Avoid complex user - defined functions (UDFs) in filters as

they prevent predicate pushdown.

5.7 Delta Table Versioning and Time Travel

While time travel is powerful, querying historical versions is

more resource - intensive.

SELECT * FROM delta. `/path/to/table` VERSION AS OF 25;

Recommendation:

• Use time travel judiciously

• Avoid it in frequently executed production queries

6. Practical Implementation and

Benchmarking

A benchmark was conducted using a synthetic dataset (~1TB)

of e - commerce transactions under different optimization

scenarios:

Technique
Query Time

(sec)

Improvement

(%)

Baseline (no tuning) 112 -

Partitioning 74 34%

Partitioning + Z - order 58 48%

OPTIMIZE + Z - order 43 62%

+ Caching (frequent run) 9 92%

The results show compounding benefits when optimizations

are layered.

Common Pitfalls

• Over - partitioning leading to too many directories

• Neglecting OPTIMIZE after heavy write operations

• Overusing time travel in production pipelines

• Using non - pushdownable filters (UDFs) in queries

7. Conclusion

Henceforth, to achieve high - performance query execution in

Delta Lake, it is essential to implement a combination of

strategic data partitioning, metadata - aware pruning, and

physical data layout optimizations, including file compaction

and Z - order clustering. These techniques collectively reduce

I/O overhead, minimize shuffle operations, and enhance

query latency and resource efficiency across distributed

computing environments.

References

[1] Delta Lake Documentation – https: //docs. delta. io

[2] Apache Spark Optimization – https: //spark. apache.

org/docs/latest/sql - performance - tuning. html

[3] Databricks Best Practices – https: //www.databricks.

com/resources/whitepapers

Paper ID: SR25525181650 DOI: https://dx.doi.org/10.21275/SR25525181650 1610

http://www.ijsr.net/
https://docs.delta.io/
https://docs.delta.io/
https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://spark.apache.org/docs/latest/sql-performance-tuning.html
https://spark.apache.org/docs/latest/sql-performance-tuning.html

