
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Infrastructure as Code (IaC) Evolution - A

Comparative Study of Terraform and AWS Cloud

Formation

Tapan Kumar Rath1, Sibaram Prasad Panda2

Email: tapankumarrath001[at]gmail.com

Email: spsiba07[at]gmail.com

Abstract: Infrastructure management is one of the most important tasks in a cloud computing environment. Cloud infrastructures

provide dynamic, distributed, and large-scale computing resources to help meet service scalability, availability, and performance

requirements. Cloud providers offer their customers infrastructure resources that are managed and made available to users privately or

publicly, charging based on consumption. The Infrastructure as a Service model provides virtualized computing resources stored in data

centers and delivered on-demand using self-service capabilities, with provisioning options based on pre-allocated virtual machine images

containing a guest operating system and any application software above that layer. Users who run their applications on the IaaS model

are responsible for managing their operating systems and runtime software environments.

Keywords: Hashicorp, Terraform, AWS CloudFormation, CI/CD. Infrastructure as Code

1. Introduction

Currently, many companies have adopted cloud computing,

but most of them treat it merely as an extension of their on-

premise infrastructures. In this approach, cloud computing

serves as an external data center for hosting data and

applications; organizations do not leverage the full potential

of this powerful technology. We discuss Infrastructure as

Code, a concept that enables cloud services to be a core part

of businesses’ everyday operations. IaC is based on the

concept of treating infrastructure in a similar way to how

software developers treat applications. In infrastructure

provisioning, infrastructure code declares the needs of a

specific application, enabling the automation of infrastructure

provisioning and management. This Infrastructure as a Code

declarative model enables management processes to adopt

best practice software development life cycle techniques.

2. Background of Infrastructure as Code

Infrastructure is one of the first domains that companies

migrated to the Cloud. Beginning with the creation of

networking equipment, private cloud users started to

virtualize their servers, later creating everything else required

to operate their business issues, such as storage, monitoring,

security devices, domains, test environments, and so on.

Those cloud resources were required to be created and

configured at the right time, with the required attributes and

linked to each other correctly. Several kinds of SDKs were

created to facilitate these tasks. However, it was not an easy

task. Apparently simple environments, with only a few dozen

resources, had to be customized using several SDK calls

combined in some programming language. It would be

around a decade later that a new efficient way of managing

cloud resources appeared. The term Infrastructure as Code

was coined, and Templates were proposed as a means to

define cloud resources in a single place, properly defined as

per specifications, and in a declarative manner.

3. Overview of Terraform

HashiCorp Terraform is an open-source IaC tool written in

Go, released in 2014 by HashiCorp. Unlike existing IaC tools,

Terraform is not tied to the attribute model of resources

available for the specific cloud provider, resource types, and

their property values. To enable extensibility and multi-cloud,

Terraform incorporates pluggable provider-based

architecture. This means that any cloud provider can build a

Terraform provider and publish it in an open-source fashion.

Terraform abstracts all servers, databases, networks, and

security-related resources offered by the cloud provider into

its resource-type and user-defined resource attribute

structure/model. Cloud providers can extend the capabilities

by their resource model without modifying the core

Terraform code, which influences the wide adoption of

Terraform by many enterprises.

3.1 History and Development

Terraform is a tool for managing infrastructure in a

declarative way, which popularizes the term "Infrastructure

as Code" (IaC). Terraform differs from most other

provisioning tools in that, rather than treating the resources

being provisioned as a series of mutable states, it is based on

the concept of a graph of resources and manages the life cycle

of that graph. This approach allows for more advanced

features such as data flow management, intelligent renaming

via "resource addressing", and parallel and dependency-

aware provisioning of resources. Terraform, although largely

oriented towards cloud resource provisioning, is very flexible

and can manage other types of infrastructure, such as on-

premises VMs and network devices.

Terraforms first release, version 0.1.0, was released on July

28, 2014. Terraform 0.2.0 was released in September 2014,

when several AWS plugins were added, allowing Terraform

to create AWS resources. The 0.3.0 version was launched the

following month, and the 0.4.0 was released in November. In

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1476

http://www.ijsr.net/
mailto:tapankumarrath001@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

February 2015, terraform 0.5.0 was released with new plugin

documentation and several bug fixes. The latest version

released in the 0.x series, Terraform 0.11.14 deprecated the

use of legacy environment variable authentication, and

reached end-of-life status on August 4, 2020.

3.2 Core Features

Terraform applies the concept of Infrastructure as Code by

decoupling infrastructure specification from execution.

Importantly, the abstraction provided is technology agnostic.

Provisioners for practical cloud infrastructure platforms are

implemented as plugins that implement a generic interface.

Terraform uses an unmarshalled, domain-specific JSON,

marking up the resource and data types, and their attributes,

resource dependencies, and input arguments. The high-level

configuration is provided in a DSL.

3.3 Use Cases

Terraform is primarily targeted at service providers like

Google Cloud Platform and Azure. In addition, it is capable

of supporting several non-cloud service providers, including

Apcera, CloudStack, DigitalOcean, eBay, Fastly, GitHub,

Heroku, Kubernetes, Mailgun, Pagoda, Openstack, OVH, and

Qualys. The strength of Terraform resides in its ability to

leverage larger plugin ecosystems and to support multi-cloud

use cases. Tile38 and LINODE are currently two special

services powered by Hashicorp using Terraform for

enterprise cloud provider integration.

4. Overview of AWS CloudFormation

AWS CloudFormation offers a text-based interface that

allows users to design, provision, and manage cloud-based

infrastructures and higher-level services in the AWS cloud.

Using source code to define their infrastructure, users free

themselves from the inefficiency of manual GUI-based

procedures. Users write, modify, and execute automation

scripts to easily, reliably, and quickly create or configure

many resources at once. CloudFormation can also create or

modify resources following a defined process, such as

enforcing a naming convention or ensuring security groups

include specific ingress rules. Using CloudFormation code,

source control and CI/CD processes integrate and automate

security, compliance, and operational procedures for the

entire AWS environment, increasing operational efficiency

and reliability while reducing risks and costs.

4.1 History and Development

Infrastructure has grown increasingly important within

Information Technology. Infrastructure refers to networks,

servers, storage, and data centers that are responsible for

hosting the most varied system solutions. In the past,

companies built their infrastructure using physical

components that were necessary for the services to function

properly. However, these products came to possess certain

limitations. They were exposed to greater chances of

breakdown, in addition to requiring the craftsmanship of

skilled professionals who dedicated a lot of time to doing

maintenance and configuration tasks. With time passing,

companies started adopting a digital version of these services

hosted in Cloud Computing environments.

Cloud Computing provides an easy way to access, share, and

alter virtual resources through the internet in a more

optimized way. In a Cloud Computing environment,

resources are placed in a shared pool that can be accessed

when needed. Nevertheless, consumers started suffering from

certain limitations related to costs.

4.2 Core Features

AWS CloudFormation is an infrastructure as code solution

provided as part of the broader suite of services available with

Amazon Web Services. It provides a way to describe and

provision all of AWS's infrastructure resources in a cloud

environment using text files, referred to as templates. These

templates are text files, either in JSON or YAML format, that

describe the infrastructure resources, their parameters, and

their configuration that are needed to enable specific

workloads or application deployment in the AWS ecosystem.

With CloudFormation, users can use a single command line

to provide many of AWS's cloud services, including storage,

databases, networking, or compute resources on-demand.

CloudFormation also integrates with many services in the

AWS environment, including AWS IAM for access control

and AWS S3 for storage of large template files.

CloudFormation automates the setup of stacks, which are

groups of related infrastructure resources that are created,

updated, and deleted as a unit. CloudFormation will not only

create the specified stack but will also take care of the

possible dependency connection order between resources.

CloudFormation is a declarative IAC solution, which means

that the user must declare what the end result should be.

CloudFormation then uses its own engine to create the

infrastructure resources to meet the specifications.

CloudFormation provisions resources directly via API calls to

AWS services using a mounting channel manager, which

creates the request and returns the response from the API calls

asynchronously. CloudFormation's template file can be

mapped with any resource type supported by AWS

CloudFormation. The mappings of resource properties and

types do not have to be defined in CloudFormation. The API

requests to provision the resource, however, have a defined

schema.

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1477

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4.3 Use Cases

AWS CloudFormation is a key component of the AWS

ecosystem. You might imagine it doing everything from

deploying a sandbox environment for testing and

development to managing a multi-account, multi-region,

cross-account configuration for a global web application. We

explore a range of use cases for AWS CloudFormation below.

One of the most common use cases for AWS CloudFormation

is redeploying or updating a stack. Consider a case where a

stack has already been created

5. Comparative Analysis

In this section, we present a comparative analysis of

Terraform and CloudFormation, with a focus on a number of

aspects where we believe careful readers may be interested.

Our comparative study is based on our knowledge of the

systems.

We compare both IaC tools around these five themes:

architecture and design, language and syntax, state

management, ecosystem and community, and cost

implications. First, let's address architecture and design.

5.1 Architecture and Design

Cloud infrastructure is composed of unmanaged or partially

managed resources that are provisioned and configured

without any form of automation. As cloud infrastructure

scales up in size and increases in complexity, operating

resources becomes an increasingly difficult task. Managing

cloud infrastructure without automation becomes error-prone,

resource-intensive, and difficult due to delayed response

times. Infrastructure as Code is the approach of treating the

entire cloud infrastructure as software code and YAML is the

popular choice of developers to define this infrastructure.

Infrastructure as Code uses code to define and maintain the

lifecycle of cloud infrastructure using declarative or

imperative statements. Declarative statements describe a

desired state of the cloud infrastructure and imperative

statements include provisions for how to reach that desired

state. The advantage of the declarative format is that the

existing resources do not need to be changed when the same

code is executed after a period of time. IAC tools consume

scripts in YAML format and are responsible for creating,

managing, and updating resources. IAC tools come in two

formats – those provided by the respective cloud providers

and open-source ones that support multiple cloud platforms.

Examples of first-party, proprietary, vendor-driven

Infrastructure as Code tools are the various command line

tools and SDKs provided by each public cloud. An open-

source Infrastructure as Code tool called Terraform was

created.

CloudFormation and Terraform are the most popular and

widely used Infrastructure as Code tools. CloudFormation

supports only AWS cloud services and abstracts and hides the

complexity of managing security and account settings.

Terraform is multi-platform, runs locally, is flexible, and

contains many assets created by the community to support

other cloud providers. Both tools use YAML files to define

the cloud resources but have different languages, engines, and

workflows for provisioning resources.

5.2 Language and Syntax

Both Terraform and AWS CloudFormation provide Domain-

Specific Language (DSL) for defining workflows and can,

therefore, provide from a syntactical point of view not only

better readability but also could enable deployment without

in-depth coding knowledge. However, they differ on how to

approach the syntax design and capabilities. AWS announced

the CloudFormation CLI which provides support for YAML

and JSON DSLs, higher detection of dependencies, and the

ability to add account-specific logic in workflows run by the

companies. Terraform uses its own templating called

HashiCorp Configuration Language (HCL) which is a

declarative DSL that can be translated to JSON. While HCL

has, as mentioned, similar capabilities as YAML, it has a

simpler syntax targeting infrastructure workflows.

5.3 State Management

State is a central concept in the implementation of an IaC tool.

In traditional computing and programming, state refers to

values stored in memory and computing in-progress. In the

case of IaC, state is about configuration of production

infrastructure which is retrieved from the cloud provider

interface. In an IaC operation, the system compares the actual

and the desired states and identifies the components that need

to be modified, such as added, deleted, or updated. The

detection of differences occurs for every execution of the

command.

5.4 Ecosystem and Community

Ecosystem and community are fundamental aspects of tooling

functionality, with a particular emphasis on User-Defined

Functions (UDFs) or modules in the design of tools such as

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1478

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

the two discussed in this paper. We are talking about a lot of

extra functionality that is implemented, as open-source

packages and libraries, given or shared free of charge, to

increase the overall functionality available while reducing the

overhead on the main developers. Furthermore, maintaining

and improving this network of packages and solutions to edge

cases becomes the responsibility of a large community rather

than a small core of developers.

CloudFormation was launched with many templates defined

to serve as example or guide for user-built functions. With

templates being declared and not executable code, the options

for parameterization are minimal, and extending the base

modules is a cumbersome task at best. Terraform, on the other

hand, was designed from the ground up with UDFs in mind.

UDF support was made possible by combining a domain-

specific language with a compiler capable of serialization for

imports. It is a readable and mutable DSL with support for

variables and primitive data types, which facilitates package

creation.

5.5 Cost Implications

The question of costs cannot be trivialized when advocating

for an approach to work in the cloud. Initial efforts may not

require significant funding.

6. Performance Evaluation

Cloud computing's emergence as a disruptive technology in

IT has led organizations to adopt cloud infrastructures, which

can be realized through Infrastructure as a Service (IaaS)

strategy. Cloud providers offer a variety of services covering

multiple domains, such as computing power, storage, and

application deployment. These heterogeneous services

constitute the service model of the IaaS strategy. When

implementing the IaaS strategy, organizations need to

develop and deploy an IT infrastructure that offers a service

model with numerous instances. Cloud providers recommend

that organizations invest in the deployment process of the

IaaS strategy because it is usually time-consuming. When

organizations effectively address the deployment phase of the

IaaS strategy, they can take advantage of the scalability

capabilities of cloud providers.

6.1 Deployment Speed

Infrastructure as Code (IaC) tools are used for automating IT

infrastructure deployment, provisioning, and management.

However, the speed of deployment is likely to be a major

issue when using them too. Consequently, this section

experimentally examines the two selected IaC tools,

Terraform and AWS CloudFormation, to determine which

one is faster for deploying IT infrastructure in a single and

multi-cloud environment. Unlike the tools’ authors, who

chiefly suggest that their tools work well to speed up the

deployment, we go a step further by providing indepth data-

driven discussion of our results not only to quantify the total

deployment speed of each tool in different environments but

also to estimate systematically the contribution of each

needed step to the overall deployment speed. Our study

purposely covers two different environments to emulate real-

world application requirements. Our experimental results

show that while Terraform is consistently an order of

magnitude faster than CloudFormation for deploying IT

infrastructure in a single-cloud environment, such a speed

advantage is more subdued and can be particularly reversible

in a multi-cloud environment.

6.2 Scalability

In this section, we discuss our findings on the scalability of

Terraform and CloudFormation. Scalability is a crucial aspect

when it comes to deploying large infrastructures.

Organizations that are heavily dependent on cloud services

often manage the entire lifecycle of hundreds or thousands of

resources. Consequently, tooling becomes a bottleneck. Most

entities would select the tool which could help execute

operations faster. Scalability determines how well a system

can enlarge to cater for more use, the expansion of a system's

capacity accompanied with its decrease in performance and

the speed ratios of larger systems. This paradigm operates by

observing that the performance of a system changes as the

workload changes in a specific manner based upon the

specific underlying characteristics of the workload.

To conduct these experiments, deployment is made on a

machine with Intel Core i7-4790 CPU @ 3.60GHz and 64GB

RAM. For the testing phases, we created samples of different

sizes by duplicating the necessary resources to be deployed

from the YML manifests specified before. We then imported

the respective modules to CloudFormation and Terraform and

launched the stack and plan apply. To calculate the resources

used, we averaged the execution times of five consecutive

runs of each of Terraform and CloudFormation stack

launches. For our load testing, we executed the tests on stacks

with sizes ranging from 1,700 to 60,000 resources. As it

would not be possible to run these tests for more than 50,000

resources using CloudFormation due to AWS quotas, we

made use of approximately 600 modules to deploy a test with

100,000 CloudFormation resources.

6.3 Reliability

Deploying cloud infrastructures in a reproducible manner by

using IaC is a serious effort. But what happens if the IaC tool

itself is not reliable? Underlying failures and bugs in the IaC

may greatly disrupt the deployment and management of

underlying cloud infrastructures. We report some relevant

facts that show that one tool is much more prone to errors and

bugs than another.

7. Security Considerations

As with any interface to technology, security must be a

paramount concern. IaC has the potential to combine the

convenience of a tooling interface, with the power over

significant automation and capabilities to allow extensive

manipulation of cloud resources. Consequently, IaC could

allow for the exposure of sensitive capabilities if not secured

properly, potentially damaging any privacy and compliance

guarantees important to organizations using IaC.

Since IaC is a technology for managing deployment

templates, the data processed includes the conditions of the

environment and how resources will be configured and

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1479

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

associated together. Managing this data represents a

significant hurdle to IaC, requiring special consideration into

pipelines and role designs, policies, and encryption/

decryption capabilities.

7.1 Access Control

Security is a point of concern for users, as infrastructure

defines the ecosystem in which services that users consume

usually run. Any unwanted modification can compromise the

integrity of the hosted services. Furthermore, IaC gives the

possibility of creating a large set of resources within a single

command. A problematic script, either intentional or by

mistake, can lead to the creation of many resources,

consuming quota limits and, even worse, generating loads of

expenses for the user. Therefore, restricting access to IaC

files, using granular permissions based on the

user/application profile, and restricting the environment

where scripts can be run are key aspects of security.

Restricting bulk operations for certain users with a single

policy is a way to reduce damage. For instance, a role that

enables the creation of instances, of type t2. micro, in only

one or some developed environments, could be created and

granted just to developers that need it. All other resources

needed could be created in the allowed environment without

any policy that limits their usage.

7.2 Data Protection

Although the importance of data protection is widely known

and should be one of the primary bases for system and

infrastructure design, solutions focusing on data protection

are only being developed slowly. In either tool, a stack can be

applied to encrypt any secrets used, but hard work must be

invested in protecting other resources. Therefore, the

resources representing the data encryption itself are expected

to be manually created with the highest possible attention to

detail, and only procedural-related resources and data flows

should be controlled with tools. Both tools have some

primitive capabilities for infrastructure protection against

unintended access but only for certain keys.

8. Integration with CI/CD Pipelines

The need for agile development has led to rapid change in best

practice provisioning, configuration management, continuous

integration, and continuous deployment. Infrastructure is a

key enabling factor in DevOps since the goal is to increase

the frequency of change and minimize the risk involved.

Applications derive risk from two sources: flaws in the

application and flaws in the infrastructure that the application

depends upon. Code analysis, testing frameworks, staging

deployment environments, shadow traffic, and automatic

rollbacks are all measures that can be taken to increase the

safety of deployments. The other aspect is cost. For a cloud-

hosted service, Infrastructure as a Service provisioning

converts the capital cost of increasing infrastructure capacity

into real-time variable expenditure. But actual demand for

services is sporadic, so using tools for automatic scaling is

critical, and driving this use through automated provisioning

templates is key to enabling speed and safety while

minimizing spam on cloud providers. It is essential to ensure

that a failure in the infrastructure will trigger an alert early

enough to take action that mitigates damage. Terraform is

designed to manage infrastructure as a part of a larger

software project, so it naturally fits into CI/CD processes.

Creating a cloud-hosting service typically involves

components that are developed separately but need to be

merged

8.1 Terraform in CI/CD

The idea of Infrastructure as Code (IaC) has solved so many

problems faced in using any cloud infrastructure that people

began delegating more and more within their pipelines

usually provided by Continuous Integration and Continuous

Deployment (CI/CD) tools. Terraform is a candidate for

providing these delegations with its available libraries and

decent template support.

Plan States Out of Reach: It is best to avoid keeping. tfstate

files in the same repository as the code that is responsible for

its updates. Developers with write access to the repository

may be able to change its contents and record invalid data or

even delete it altogether without running a plan step.

‘Prevent*’ locks after several seconds: Running long

plan/destroy tasks may lead to concurrency problems, but this

may be tolerated on smaller projects due to Terraform’s

inherent lack of support for multi-user usage and operations.

This can either be avoided by using only one CI/CD agent at

once or by using Terraform Cloud.

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1480

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The right permissions for CI/CD: A common practice is to

make the CI/CD server run in its own service account with

only enough permissions to run the planned commands and

not everything with elevated privileges. Combining this with

access tokens associated to the CI/CD account with the same

methods used for any other credentials would solve this.

8.2 AWS CloudFormation in CI/CD

With advantage of being the native solution of AWS, AWS

CloudFormation benefits from good integration with other

AWS services. AWS CloudFormation interacts with several

services to implement cloud resources, a review of AWS

CloudFormation raises several aspects to be analyzed. For

example, Billing and Cost Management service is used to

track estimated cost of CloudFormation stacks and their

related resources, CloudWatch service for service metrics and

related alerts, CloudWatch Events service to identify stack

related events, CloudTrail for event logging, Organization for

service control policies, and CloudFormation Drift Detection

for validating stacks and preventing drifts caused by direct

modifications in stack related resources.

9. Best Practices

All software development carries some form of risk. The

practice of IaC facilitates manageable systems as a form of

documentation. Since IaC consists of code files, these files

can be stored in a version control system. Furthermore,

version control also allows multiple individuals to write IaC

at the same time and merge their work into a single codebase

when done. This process of merging should be strongly

outlined in the procedures regarding inputting IaC onto the

version control system. These decisions include what

approach to use for reconciliation, who has general backing

permissions, and how widely these permissions are assigned.

The same IaC guidance for regular software development can

apply here. Use comments in the code describing why it is

done in a specific manner instead of merely what it is doing.

9.1 Version Control

Version control is a cornerstone of delegate programming and

best practices ensure that services can be viewed and updated

in a safe way. As we expect teams to split responsibilities and

share core components, team trust is enforced by controlling

code changes. Code sharing platforms are ubiquitous, and

most organizations encourage code sharing for reusable

services even when management overhead may be high. The

collaboration model tries to address these concerns by laying

down conventions for branching and issuing pull requests,

whilst enables code management for more complex use cases

through its Individual Workspaces feature.

9.2 Modular Design

Beginning with simple applications, the user of the IaC tool

usually creates and maintains monolithic templates, which

after years have hundreds of thousands of lines of code.

Problems with the creation and maintenance of those types of

files have led to the emergence of the partial provisioning

concept. Although that concept is somehow implicit in the

documentation of both tools, none of them suggested an

architecture decomposed into multiple services, each of them

described by its own configuration or template file. Analyzing

the guidelines, we can compare partial provisioning features

made available by both tools: service support modules, partial

provisioning abstraction, and state separation are features

supported by both tools. However, only one tool provides

deployment and plan separation, and service dependencies

separation.

10. Future Trends in IaC

10.1 Emerging Tools and Technologies

The advent of Infrastructure as Code (IaC) has revolutionized

the way organizations manage infrastructure; nevertheless,

IaC is still a comparatively new concept, which is manifested

in that beyond Terraform, a limited number of tools provide

support for key capabilities, such as multi-cloud application

management and collaborative capabilities. In the near future,

we expect to see further development of the ecosystem

surrounding Terraform, as well as development of new IaC

conceptualizations that offer alternative solutions to common

challenges facing organizations that have adopted IaC.

Moreover, we anticipate that there will be increased demand

for capabilities such as organizational policy as code tooling

and workflow and productivity tooling around policy as code

initiatives. These capabilities have so far served only niche

audiences, which has resulted in a limited number of solution

vendors in the market today. We also expect to see an

increasing number of tools that leverage smart algorithms to

increase automation of IaC process lifecycles.

10.2. Industry Adoption

10.2 Emerging Tools and Technologies

Even though the tools and technologies that lay the

groundwork for IAC have existed for a while, the focus on

IAC tools and technologies has grown during the past five

years. The relationship among software engineering,

development, and operation teams known as DevOps has

created increased interest in managing infrastructure through

code. As a result of the predictable and repeatable methods

IAC enables, tech giants have created large language models

for IAC management. A company is using open source code

to augment its IAC efforts with LLMs. A startup is

developing tools for what it calls taxonomic infrastructure,

which automatically writes IAC code for infrastructure

taxpayers can understand. Other startups are also writing IAC

code to help businesses reuse code.

10.3 Industry Adoption

Despite CloudFormation being a truly mature tool, developed

and enhanced exclusively for AWS, Terraform is highly

popular in the automation space, being used and adopted by

many enterprises. Apart from providing automation support

for multiple clouds and other tools, Terraform also provides

better usability, flexibility, and simplicity via modules and its

state management capabilities, especially in multimodal and

multivendor implementations. Over 1000 Terraform modules

have been created by various contributors in the Terraform

Registry. The most popular modules contain several AWS

services like VPCs, EC2, RDS, IAM, and EKS. Industry

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1481

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

reports show that the demand for Terraform skills in the job

market is huge, and the trend is increasing. In 2020, over

10,000 job postings were published with "Terraform" listed

among the skills, and this number increases yearly. In another

survey, 65% of the participants stated that their companies are

using Terraform or plan to use it in the coming year or two.

This inclination has a clear basis regarding the scope,

advantages, and flexibility Terraform provides. These

attributes align with the modern state of IT infrastructure

management, which requires both agility and stability. In the

last few years, Terraform became popular and the go-to

Infrastructure as Code tool for many enterprises and agencies

around the world from different industries. Companies use

Infrastructure as Code Terraform to manage their cloud

infrastructures on various platforms.

11. Case Studies

Infrastructure as Code (IaC) is revolutionizing the ways in

which Cloud Computing resources are provisioned and

managed. Terraform and AWS CloudFormation are two of

the most popular Infrastructure as Code (IaC) tools. In the

previous sections, we compared Terraform and AWS

CloudFormation in terms of various aspects, such as

Architecture, Language, Configuration, Design, Benefits,

Drawbacks, Use Cases, and Security. Based on this analysis,

we validated our claims through two case studies: a Terraform

and AWS CloudFormation implementation of a Web

Application in different IaaS environments.

11.1 Case Study 1: Terraform Implementation

To illustrate the differences between the two tools in

comparison, we have selected a simple network architecture

deployed on service providers using both tools. The objective

of this study is to point out the differentiating points in their

architecture and none of them is better than the other. We

simply show the advantages and drawbacks of each tool.

While all Content Delivery Network (CDN) providers offer

standard features to deploy services (some of which are

already being default), it is the direction towards which they

have chosen to pursue their development that make their

solutions distinct. Thus, this study was carried out to observe

and analyze the similarities and the differences in both tools

mentioned above. We compared and reviewed the

configurations, the approaches used to build the available

server and configuration types and which tools allow easier

configuration management.

.

11.2 Case Study 2: AWS CloudFormation

Implementation

We chose to implement the same IaC solution for our second

case study using a built-in IaC tool and service. This tool

allows users to declare and provision infrastructure, described

in a template file, through a push mechanism. The daemon

powerfully orchestrates the dynamic provisioning of data,

relies on several APIs, and ensures that the current

infrastructure state always matches the declared configuration

template.

The key features of this tool are as follows: It supports all

services offered by the platform, the largest cloud

infrastructure platform. The syntax chosen implicitly adopts

the data model and sets of API calls and parameters used by

each service. Data can be expressed in any programming

language that can issue API calls; these are usually helper

wrapper libraries. The source of the template can be any

source. The tool implements a push-model mechanism

through which customers declare and push templates for

processing.

12. User Experiences and Feedback

The evolution of the cloud ecosystem, empowering users to

easily manage Infrastructure as Code (IaC), such as

Infrastructure provisioning and orchestration, is the

cornerstone of diverse collaborative development models,

along with the advent of the share economy. In tracing the

evolvement of tools and surveying the industry for feedback

and recommendations, we discovered that several well-

recognized companies utilized both Terraform and

CloudFormation for the core strength of each. User feedback

resonates with our observations. Many users note having

more favorable experiences with Terraform. In particular, for

managing multi-cloud or hybrid cloud architecture,

Terraform is the better choice. Terraform started as a primary

multi-cloud solution and has matured in that space since.

Users like how

13. Conclusion

In this work, we presented an in-depth discussion about

Infrastructure as Code (IaC), an emerging practice that allows

for the automation of creation and management of the

infrastructure of a software solution. We presented a

background on the subject detailing its goals, and why it has

gained traction in the past years, besides discussing other

important subjects, such as tools, languages, providers and

anti-patterns. To help carry the burden of our many

discussions, we drew the concepts presented in the form of a

comprehensive ontology. With this background, we then

presented our primary focus, the comparative study of the two

most widely used IaC tools: Terraform and AWS

CloudFormation. Our comparison focuses on three aspects:

the expressed intent behind their design choices, their

strategic decisions as far as limitations and extension

mechanisms and their language structural features. Based on

our comparison, we then provided an informed discussion on

which tool would be the most suitable for 17 different

scenarios, scenarios that we carefully crafted based on the

conceptual implications raised in our comparison.

References

[1] Saavedra, N., Gonçalves, J., Henriques, M., F. Ferreira,

J., & Mendes, A. (2023). Polyglot Code Smell Detection

for Infrastructure as Code with GLITCH.

[2] Verdet, A., Hamdaqa, M., Da Silva, L., & Khomh, F.

(2023). Exploring Security Practices in Infrastructure as

Code: An Empirical Study.

[3] Howard, M. (2022). Terraform - Automating

Infrastructure as a Service.

[4] Borovits, N., Kumara, I., Di Nucci, D., Krishnan, P.,

Dalla Palma, S., Palomba, F., A. Tamburri, D., & van

den Heuvel, W. J. (2022).

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1482

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[5] Rahman, A., Mahdavi-Hezaveh, R., & Williams, L.

(2018). Where Are The Gaps? A Systematic Mapping

Study of Infrastructure as Code Research.

[6] Dorodko, S. & Spillner, J. (2019). Selective Java code

transformation into AWS Lambda functions.

[7] Bhattacharjee, A., Barve, Y., Gokhale, A., & Kuroda, T.

(2019). CloudCAMP: Automating Cloud Services

Deployment and Management.

[8] Mikkelsen, A., Grønli, T. M., & Kazman, R. (2019).

Immutable Infrastructure Calls for Immutable

Architecture.

[9] Lourenço, P., Pedro Dias, J., Aguiar, A., & Sereno

Ferreira, H. (2019). CloudCity: A Live Environment for

the Management of Cloud Infrastructures.

Paper ID: SR25523162246 DOI: https://dx.doi.org/10.21275/SR25523162246 1483

http://www.ijsr.net/

