
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Implementing Data Versioning and Lineage

Tracking in ETL Workflows

Mounica Achanta1, Dharanidhar Vuppu2

1Independent Research at IEE, Texas, United States of America

2Sr Data Engineer, SurveyMonkey, Texas, United States of America

Abstract: In modern data ecosystems, ensuring integrity, traceability, and auditability of data is critical to building trust and enabling

compliance. This article explores practical strategies for implementing data versioning and lineage tracking within ETL (Extract,

Transform, Load) workflows. It outlines versioning techniques such as snapshotting and Change Data Capture (CDC), as well as lineage

tracking methods including direct capture and log - based inference. The paper also discusses how to leverage tools like Delta Lake,

Apache Atlas, Open Lineage, and Neo4j to manage metadata and visualize data flow. Through real - world examples and implementation

guidance, readers will learn how to design resilient, transparent ETL pipelines that support robust data governance and operational

efficiency.

Keywords: Change Data Capture, Data Observability, Data Versioning, Metadata Management, and Open Lineage.

1. Introduction

ETL which stands for Extract, Transform, Load, and is a

fundamental process in data integration and data

warehousing. Here’s how it works in real time -

• Extract: We pull the raw data from various sources like

databases, APIs, SFTP serves and flat files on storage

locations.

• Transform: We then clean, filter, aggregate and enrich

this data to make it usable for analysis.

• Load: Finally, we load the transformed data into the

storage systems like data warehouse or data lakes.

1.1 Importance of Data Versioning and Lineage Tracking

Both data versioning and lineage tracking are essential in

modern ETL workflows, and here's why:

1.2 Objectives of Implementing These Features in ETL

Workflows

For better data quality tracking changes, it is very critical to

ensure data accuracy, consistency and completeness. Having

better control and oversight helps with compliance. To detect

and resolve the errors by improving efficiency which would

result in cutting down the downtime and costs. With access to

clean historical data, you will make more informed decisions.

Also keeping multiple versions of data and tracking its lineage

helps to prevent corruption and loss of information.

Hence, Improved data quality, enhanced data governance,

operational efficiency, better decision making and risk

mitigation are the key reasons to integrate data versioning and

lineage tracking into the ETL workflows.

Using data versioning and lineage tracking in your ETL

workflows helps improve data integrity, streamline

operations, and ensure compliance. These benefits ultimately

lead to better business results.

2. Conceptual Framework

2.1 Data Versioning:

Data versioning is the practice of keeping multiple versions

of data to maintain a history of changes over time. Each

Paper ID: SR25520072821 DOI: https://dx.doi.org/10.21275/SR25520072821 1312

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

version represents a snapshot of the data at a specific point,

allowing organizations to track modifications, revert to

previous states, and analyze data evolution.

Practical Examples:

• Financial institutions maintain transaction version

histories for compliance with financial regulations such as

SOX.

• E - commerce companies revert to previous product

catalog versions in case of erroneous bulk updates.

• Retail businesses analyze historical sales data for

understanding customer behavior and trends.

Implementation Strategies:

• Full Versioning: Suitable for smaller datasets with

infrequent updates, storing complete dataset copies each

time.

• Incremental Versioning: Captures and stores only changes

or "deltas"; highly efficient for large, frequently updated

datasets.

Tools for Versioning:

• Delta Lake offers scalable and robust storage with built -

in data versioning.

• Apache Hudi supports efficient management and retrieval

of data versions.

2.2 Data Lineage Tracking:

Data lineage tracking documents data's journey from origin

through transformations to final usage, providing

transparency, error detection, and regulatory compliance.

Practical Examples:

• Healthcare providers use lineage tracking to validate

patient data accuracy, crucial for clinical decisions.

• Financial firms trace data sources and transformations to

ensure accurate and compliant risk reporting.

Implementation Strategies:

• Direct Lineage: Metadata is explicitly captured during

ETL execution.

• Indirect Lineage: Metadata is derived from logs, job

execution history, or SQL query analyses.

Tools for Lineage Tracking:

• Apache Atlas offers extensive data governance and

lineage tracking within Hadoop ecosystems.

• Open Lineage provides an open standard for capturing

lineage metadata across diverse data environments.

3. Designing Data Versioning & Data Lineage

Tracking in ETL Workflows

3.1 Designing Data Versioning in ETL:

3.1.1 Versioning Strategies:

• Full Versioning: Regular complete data snapshots, ideal

for audits and compliance.

• Incremental Versioning: Uses CDC techniques (e. g.,

Debezium) to efficiently capture data changes.

3.1.2 Key Components:

• Metadata Management: Employing Apache Atlas or AWS

Glue Data Catalog for comprehensive metadata

management.

• Delta Lake for efficient, scalable data storage supporting

version queries.

3.1.3 Implementation Approaches:

• Snapshotting: Extract and store complete data snapshots

regularly.

• CDC: Configure CDC tools to capture incremental

changes, transforming and storing them appropriately.

3.1.4 Best Practices:

• Consistent and descriptive version naming conventions (e.

g., timestamps, semantic versioning).

• Clearly defined retention policies with automated archival

and deletion processes.

3.2 Designing Data Lineage Tracking:

3.2.1 Types of Lineage:

• Direct Lineage: Automated metadata capture during ETL

using tools like dbt or Apache Spark.

• Indirect Lineage: Inferred lineage from SQL logs or

system metadata, typically used with Snowflake or

BigQuery.

3.2.2 Lineage Capture Design:

Collect metadata on data sources, transformations, and final

outputs, storing centrally in graph databases such as Neo4j for

effective visualization and analysis.

3.2.3 Tools and Integration:

• Apache Atlas for governance and automated lineage.

• OpenLineage for standardized lineage metadata across

different tools.

• Neo4j for graph - based visual representation of data

dependencies.

4. Integrating Versioning and Lineage

Tracking

Design workflows where both versioning (e. g., Delta Lake)

and lineage tracking (e. g., Atlas) are integrated. Use Airflow

or Prefect to orchestrate.

Paper ID: SR25520072821 DOI: https://dx.doi.org/10.21275/SR25520072821 1313

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Example Workflows:

4.1.1 Step - by - Step Integration Guide:

1) Data Extraction: Extract data from source systems and

capture initial metadata (source details, extraction time).

2) Data Versioning: Apply versioning to the extracted data

using Delta Lake. Store each version with unique

identifiers and timestamps.

3) Data Transformation: Transform the data as required,

ensuring each transformation step is logged with detailed

metadata for lineage tracking.

4) Lineage Tracking: Capture lineage information during

transformation, detailing each step’s input and output.

Use Apache Atlas to store and manage lineage metadata.

5) Data Loading: Load the transformed data into the target

data storage solution (e. g., Databricks), maintaining

versioning and lineage information.

6) Central Metadata Repository: Store all metadata,

including versioning and lineage details, in a centralized

repository. Ensure metadata is accessible for auditing and

analysis.

7) Orchestrating Workflows: Use a workflow orchestration

tool like Apache Airflow to automate and manage the

entire ETL process, ensuring versioning and lineage

tracking are integrated seamlessly.

4.1.2 Practical Implementation with Databricks:

1) Setup Databricks: Configure Databricks environment,

ensuring it supports Delta Lake for data versioning and

integrates with Apache Atlas for lineage tracking.

2) Data Ingestion: Ingest data into Databricks using Delta

Lake. Implement versioning by storing each dataset

version with unique identifiers.

3) ETL Processing: Perform ETL processes within

Databricks, capturing transformation steps and

associated lineage information.

4) Version Management: Use Delta Lake features within

Databricks to manage data versions, allowing for easy

querying of historical data versions.

5) Lineage Tracking Integration: Integrate Databricks with

Apache Atlas to capture and store lineage metadata.

Ensure each transformation step’s input and output are

logged and traceable.

6) Unified Metadata Management: Maintain a unified

metadata repository within Databricks, combining

versioning and lineage information for comprehensive

data governance.

7) Monitoring and Auditing: Utilize Databricks’ monitoring

and auditing tools to ensure data processes are running

smoothly, with complete visibility into data versions and

lineage.

By following these practical steps and leveraging integrated

tools and platforms, organizations can effectively design and

manage combined data versioning and lineage tracking within

their ETL workflows, ensuring robust data governance and

integrity.

5. Challenges and Considerations

5.1 Technical Challenges:

• Performance overhead mitigated by parallel processing,

optimized storage, and incremental processing.

• Complexity managed through automation, reusable

templates, and detailed documentation.

5.2 Organizational Challenges:

• Gaining buy - in through demonstrable ROI via pilot

projects.

• Comprehensive training provided through practical

workshops and certification courses.

5.3 Regulatory Compliance:

• Ensuring compliance through rigorous encryption,

detailed audit logging, access control measures, and

regular compliance audits.

6. Future Trends and Developments

Emerging ETL technologies:

• Graph databases enhancing lineage visualization.

• Blockchain providing immutable data records.

• Integration of DataOps and MLOps for streamlined

operations.

• AI tools automating data quality monitoring and anomaly

detection.

Preparation strategies:

• Adopting flexible, scalable data governance solutions.

• Prioritizing data privacy and security.

• Staying adaptable to technological advancements.

7. Conclusion

Implementing data versioning and lineage tracking

significantly improves data governance, integrity, and

compliance. Organizations are encouraged to start small,

leverage appropriate technologies, invest in targeted training,

and proactively embrace emerging trends for sustained long -

term success in data governance and engineering.

Paper ID: SR25520072821 DOI: https://dx.doi.org/10.21275/SR25520072821 1314

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

References

[1] Ikeda, R., & Widom, J. (2009). Data lineage: A survey.

Stanford InfoLab.

[2] Li, Z., Chen, Q. A., Yang, R., Chen, Y., & Ruan, W.

(2021). Threat detection and investigation with system

- level provenance graphs: A survey. Computers &

Security, 106, 102282.

[3] Woodruff, A., & Stonebraker, M. (1997, April).

Supporting fine - grained data lineage in a database

visualization environment. In Proceedings 13th

International Conference on Data Engineering (pp.91 -

102). IEEE.

[4] Bose, R., & Frew, J. (2005). Lineage retrieval for

scientific data processing: a survey. ACM Computing

Surveys (CSUR), 37 (1), 1 - 28.

[5] Gade, K. R. (2023). Data Lineage: Tracing Data's

Journey from Source to Insight.

[6] Sugureddy, A. R. ADVANCING DATA LINEAGE

ACCURACY WITH GENERATIVE AI: NEW

TECHNIQUES AND TOOLS. Journal ID, 6202, 8020.

[7] Missier, P., Belhajjame, K., Zhao, J., Roos, M., &

Goble, C. (2008). Data lineage model for Taverna

workflows with lightweight annotation requirements. In

Provenance and Annotation of Data and Processes:

Second International Provenance and Annotation

Workshop, IPAW 2008, Salt Lake City, UT, USA, June

17 - 18, 2008. Revised Selected Papers 2 (pp.17 - 30).

Springer Berlin Heidelberg.

[8] Waghmare, C. (2025). Data Lineage and Mapping. In

Introducing Microsoft Purview: Unlocking the Power of

Governance, Compliance, and Security in the Modern

Cloud Enterprise (pp.105 - 132). Berkeley, CA: Apress.

[9] Choudhury, H. (2024). Visualizing Data Lineage &

Automating Documentation for Data Products.

[10] Heinis, T., & Alonso, G. (2008, June). Efficient lineage

tracking for scientific workflows. In Proceedings of the

2008 ACM SIGMOD international conference on

Management of data (pp.1007 - 1018).

Paper ID: SR25520072821 DOI: https://dx.doi.org/10.21275/SR25520072821 1315

http://www.ijsr.net/

