
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Managing Cloud Infrastructure the Kubernetes

Way: A Practical Take on Crossplane’s Declarative

Power

Sijo Joseph Nellissery

Principal Engineer, SAP US, Palo Alto, CA

Abstract: Crossplane is a powerful, open-source control plane for managing infrastructure using Kubernetes-native APIs. It enables

organizations to provision, manage, and compose cloud infrastructure directly from Kubernetes, making it easier for platform teams to

expose infrastructure abstractions to developers. Unlike Terraform or Pulumi, Crossplane operates declaratively within the Kubernetes

ecosystem, offering real-time reconciliation and continuous drift detection. This white paper outlines Crossplane's architecture, benefits,

and a practical example of provisioning Google Cloud Platform (GCP) resources such as CloudSQL and GKE using Crossplane.

Keywords: Crossplane, Kubernetes-native infrastructure, declarative provisioning, cloud resource management, GCP automation

1. Introduction to Crossplane

As cloud adoption accelerates, enterprises increasingly face

challenges in managing infrastructure across multiple cloud

providers in a secure, scalable, and consistent manner.

Crossplane is a powerful open-source control plane that

brings Kubernetes-style declarative infrastructure

management to cloud and on-prem environments. By

extending Kubernetes with custom resource definitions

(CRDs), Crossplane enables platform teams to define,

compose, and publish infrastructure abstractions that can be

consumed by application teams—without requiring them to

write Terraform, YAML, or scripts.

Crossplane decouples infrastructure provisioning from cloud-

specific APIs and embeds policy-driven controls, making it

ideal for platform engineering, GitOps workflows, and multi-

cloud governance. With support for major cloud providers

like AWS, GCP, Azure, and Alibaba Cloud, Crossplane

empowers teams to manage infrastructure as code, using

Kubernetes-native tools, while adhering to organizational

security and compliance standards.

Crossplane Architecture

Crossplane consists of the following key components:

CRDs: Crossplane CRDs (Custom Resource Definitions) are

Kubernetes extensions that define the APIs used by

Crossplane to provision and manage infrastructure resources

in a cloud-native, declarative way.

In Crossplane, CRDs represent:

1) Infrastructure Resources – These are cloud resources

like databases, buckets, virtual machines, and networks.

2) Composite Resources (XRs) – High-level abstractions

composed of multiple infrastructure resources (e.g., a

“KubernetesCluster” composed of a GKE cluster, VPC,

and service account).

3) Claims – Application-facing representations of

composite resources, often namespace-scoped and

simplified for developer use.

4) Configuration CRDs – Allow platform teams to define

reusable infrastructure blueprints, policies, and

constraints.

Controllers: In Crossplane, controllers are the core

components responsible for reconciling custom resources

(CRDs)—meaning they continuously ensure that the actual

state of infrastructure matches the desired state declared in

Kubernetes manifests.

A Crossplane controller is a Kubernetes controller that:

• Watches for changes to specific CRDs (e.g., Bucket,

CloudSQLInstance, CompositeResource).

• Reconciles by making API calls to cloud providers to

create, update, or delete real infrastructure to match the

CRD spec.

• Owns the control loop: The controller constantly checks

that the current state in the cloud matches the desired state

described in the custom resource.

Provider Configs: ProviderConfig tells Crossplane how to

authenticate with the external system and provides

configuration options for how that connection should behave.

Every time you create a managed resource (e.g., a Bucket,

CloudSQLInstance, or VPC), Crossplane refers to the

providerConfigRef field in that resource to determine which

credentials/config to use for provisioning.

General workflow can be visualized as below

Paper ID: SR25515112736 DOI: https://dx.doi.org/10.21275/SR25515112736 1035

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

2. Key Features and Benefits

Crossplane is a Kubernetes-native control plane that enables

platform teams to build and operate internal cloud platforms

declaratively. It brings infrastructure-as-code concepts

directly into Kubernetes using Custom Resource Definitions

(CRDs) and controllers, extending Kubernetes from

application deployment to full-stack cloud infrastructure

provisioning.

Kubernetes-Native Infrastructure Management

Crossplane allows you to define, provision, and manage

infrastructure resources—like databases, networks, and

compute instances—as Kubernetes-native custom resources.

This means your entire platform, from applications to

infrastructure, can be managed through a unified Kubernetes

API.

Separation of Concerns with Composition

Crossplane introduces a powerful abstraction called

Composition, which lets platform teams define reusable

templates for infrastructure (e.g., a “production database”),

while application teams consume these templates as simple

custom resources (e.g., CompositePostgreSQLInstance).

Support for Multi-Cloud and Hybrid Environments

Crossplane supports major cloud providers including AWS,

GCP, Azure, and Alibaba Cloud via provider packages. You

can switch cloud providers or even deploy across multiple

clouds by just changing the ProviderConfig.

Dynamic, GitOps-Ready Infrastructure

Since everything in Crossplane is represented as declarative

YAML, it integrates seamlessly with GitOps workflows using

tools like ArgoCD and Flux. This allows teams to version-

control and audit infrastructure changes alongside application

deployments.

Secure, Scalable Credential Management

With ProviderConfigs, Crossplane securely manages cloud

credentials. It supports multiple identity sources, including

Kubernetes secrets, workload identity (GCP), IRSA (AWS),

and more.

Composable Control Planes for Platform Engineering

Crossplane empowers platform engineers to build custom

control planes tailored to their organization. These control

planes abstract complexity, enforce compliance, and

streamline provisioning via APIs customized to your team’s

needs.

Extensible and Open Ecosystem

Crossplane is extensible through providers and compositions

and integrates with the CNCF ecosystem. It allows easy

integration with secret managers, policy engines (like

OPA/Gatekeeper), service meshes, and CI/CD systems.

Crossplane Installation Guide with GCP Provider

Step 1: Add the Crossplane Helm Repository
helm repo add crossplane-stable

https://charts.crossplane.io/stable

helm repo update

Step 2: Install Crossplane into the crossplane-system

Namespace
kubectl create namespace crossplane-system

helm install crossplane \

 --namespace crossplane-system \

 crossplane-stable/crossplane

Step 3: Verify Crossplane Installation
kubectl get pods -n crossplane-system

Expected output includes:

• crossplane

• crossplane-rbac-manager

Step 4: Install a Provider (e.g., GCP)
kubectl crossplane install provider

crossplane/provider-gcp

kubectl get providers

Step 5: Create a ProviderConfig

You’ll need to create a Kubernetes Secret with your cloud

provider credentials (example for GCP):
kubectl create secret generic gcp-creds \

 --from-file=creds=./gcp-creds.json \

 -n crossplane-system

Then apply a ProviderConfig:
apiVersion: gcp.crossplane.io/v1beta1

kind: ProviderConfig

metadata:

 name: default

spec:

 credentials:

 source: Secret

 secretRef:

 namespace: crossplane-system

 name: gcp-creds

 key: creds

GCP Resource Provisioning Example

CloudSQL Instance
apiVersion:

database.gcp.crossplane.io/v1beta1

kind: CloudSQLInstance

metadata:

 name: sample-db

spec:

 forProvider:

Paper ID: SR25515112736 DOI: https://dx.doi.org/10.21275/SR25515112736 1036

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 region: us-central1

 databaseVersion: POSTGRES_13

 settings:

 tier: db-f1-micro

 writeConnectionSecretToRef:

 name: db-conn

 namespace: default

 providerConfigRef:

 name: default

GKE Cluster
apiVersion:

container.gcp.crossplane.io/v1beta1

kind: GKECluster

metadata:

 name: demo-cluster

spec:

 forProvider:

 location: us-central1

 initialClusterVersion: "1.29"

 nodePools:

 - name: default-pool

 initialNodeCount: 2

 config:

 machineType: e2-medium

 writeConnectionSecretToRef:

 name: cluster-creds

 namespace: default

 providerConfigRef:

 name: default

Compositions and Claims

Platform teams can define a Composition to abstract

complex infrastructure:
apiVersion:

apiextensions.crossplane.io/v1

kind: Composition

metadata:

 name: composite-postgres

spec:

 compositeTypeRef:

 apiVersion:

database.example.org/v1alpha1

 kind: XPostgresInstance

 resources:

 - name: cloudsql

 base:

 apiVersion:

database.gcp.crossplane.io/v1beta1

 kind: CloudSQLInstance

 spec:

 forProvider:

 databaseVersion: POSTGRES_13

 settings:

 tier: db-f1-micro

 providerConfigRef:

 name: default

Developers then create simple CompositeResourceClaims:
apiVersion:

database.example.org/v1alpha1

kind: PostgresInstanceClaim

metadata:

 name: dev-db

spec:

 compositionSelector:

 matchLabels:

 environment: dev

Security and Access Control

Crossplane’s architecture is built with enterprise-grade

security principles that ensure safe, compliant, and role-

scoped infrastructure management directly from Kubernetes.

By adopting Kubernetes-native mechanisms and extending

them with provider-specific controls, Crossplane provides

robust security and access control across environments.

Separation of Duties via Kubernetes RBAC:

Crossplane leverages Kubernetes Role-Based Access Control

(RBAC) to enforce least-privilege access. Platform Engineers

define and publish CompositeResourceDefinitions (XRDs)

and Compositions. Application Developers consume

Composite Resources (XRs) without access to cloud

credentials or low-level provider configuration. This allows

organizations to isolate who can define infrastructure versus

who can consume it—mitigating the risk of misconfiguration

or unauthorized access.

Scoped ProviderConfigs for Credential Isolation

Crossplane uses ProviderConfig objects to connect to external

cloud providers. Each ProviderConfig references a

Kubernetes Secret, typically storing cloud credentials.

Security features include:

• Namespace Isolation: Credentials are stored in a dedicated

namespace (crossplane-system), inaccessible to users

without explicit permission.

• Multiple ProviderConfigs: Enables safe multi-tenancy

each team or environment can use separate credentials or

IAM scopes.

• Read-only Permissions: You can scope permissions (e.g.,

read-only vs. full access) per ProviderConfig using cloud

IAM roles.

Write-Only Access to Secrets

Crossplane creates cloud resource connection secrets (e.g.,

database credentials, kubeconfigs) in target namespaces. You

can restrict: Who can read these secrets (typically app teams),

Who can write them (Crossplane controllers only), TTL or

rotation policies (managed via external vault systems)

Secure Communication and Controller Behavior

Crossplane controllers operate inside the cluster, avoiding

external calls unless provisioning is required. Communication

with cloud providers happens through the provider’s API

using the credentials stored in ProviderConfig. You can

enforce audit logging, rate limits, and network policies around

controller pods.

GitOps and Secret Management Compatibility

Crossplane integrates seamlessly with GitOps tools like

ArgoCD or Flux, and secrets can be managed via external

tools (e.g., Vault, Sealed Secrets, External Secrets Operator)

for additional compliance and automation.

3. Conclusion

Crossplane enables cloud infrastructure management using

native Kubernetes tools and workflows. With its powerful

composition and reconciliation capabilities, organizations can

Paper ID: SR25515112736 DOI: https://dx.doi.org/10.21275/SR25515112736 1037

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

build secure, scalable, and developer-friendly platforms while

minimizing operational overhead.

By using Crossplane to manage GCP (or any major cloud)

resources, enterprises can modernize their infrastructure

practices and accelerate delivery without compromising on

control or compliance.

References

[1] Crossplane Official Documentation:

https://docs.crossplane.io/ (Primary source for

installation, CRDs, compositions, providers, and

architecture)

[2] Crossplane GitHub Repository:

https://github.com/crossplane/crossplane (Open-source

codebase, controller definitions, releases, and

community resources)

[3] Crossplane Blog & CNCF Case Studies:

https://blog.crossplane.io/

https://www.cncf.io/blog/2022/02/09/crossplane-

production-stories-from-the-community/ (Use cases,

production success stories, ecosystem updates)

[4] Upbound Crossplane Marketplace & Providers:

https://marketplace.upbound.io/providers (Cloud

provider integrations and available managed resources)

[5] CNCF Landscape & Crossplane Profile:

https://landscape.cncf.io/card-

mode?project=crossplane (CNCF ecosystem overview

and governance)

[6] Security Best Practices in Kubernetes:

https://kubernetes.io/docs/concepts/security/

(Important context for secure Crossplane deployments)

[7] Crossplane Provider GCP Documentation:

https://marketplace.upbound.io/providers/upbound/pro

vider-gcp (Resource schema and example

configurations for Google Cloud resources)

Paper ID: SR25515112736 DOI: https://dx.doi.org/10.21275/SR25515112736 1038

http://www.ijsr.net/
https://docs.crossplane.io/
https://github.com/crossplane/crossplane
https://blog.crossplane.io/
https://www.cncf.io/blog/2022/02/09/crossplane-production-stories-from-the-community/
https://www.cncf.io/blog/2022/02/09/crossplane-production-stories-from-the-community/
https://marketplace.upbound.io/providers
https://landscape.cncf.io/card-mode?project=crossplane
https://landscape.cncf.io/card-mode?project=crossplane
https://kubernetes.io/docs/concepts/security/
https://marketplace.upbound.io/providers/upbound/provider-gcp
https://marketplace.upbound.io/providers/upbound/provider-gcp

