A Note on Measures of Directed Divergence

Dr. H. R. Trivedi

Principal, M B Patel College Sakoli (Dist Bhandara) MS Email: trivediharesh2[at]gmail.com

Abstract: The measures of directed divergence of parametric entropy have been obtained which are generalizations of Shannon's Kapur's, Bose Einstein, Fermi-Dirac, and Havrda-Charvat's measures of Entropy. We have also examined its concavity property and some special

Keywords: Measure of Entropy

1. Introduction

(I) Measures of Directed divergence corresponding to the measure of entropy

$$\begin{split} H_{\frac{b}{a}}(P) &= -\sum_{i=1}^n p_i ln p_i + \frac{a}{b} \sum_{i=1}^n \left(1 + \frac{b}{a} p_i\right) ln \left(1 + \frac{b}{a} p_i\right) - \\ &\qquad \qquad \frac{a}{b} \left(1 + \frac{b}{a}\right) ln \left(1 + \frac{b}{a}\right) \text{, b>-1 a>0} \end{split} \tag{1}$$
 The proposed measure of directed divergence

D (P: Q) =
$$\sum_{i=1}^{n} p_i ln \frac{p_i}{q_i} - \frac{a}{b} \sum_{i=1}^{n} (1 + \frac{b}{a} p_i) ln \frac{(1 + \frac{b}{a} p_i)}{(1 + \frac{b}{a} p_i)}$$
 b> -1,
a>0 (2)

This measure holds all the properties

This is permutationally symmetric, Continuous convex function of $p_1, p_2, p_3, \dots, p_n$ and vanishes iff $p_i = q_i$

However, it is not in general a convex function of $q_1, q_2 \dots q_n$

Now to generalized equation (2)

To consider the measure

D (P: Q) =
$$\sum_{i=1}^{n} p_i ln \frac{p_i}{q_i} + A \sum_{i=1}^{n} (i + \frac{b}{a} p_i) ln \frac{(1 + \frac{b}{a} p_i)}{1 + \frac{b}{a} q_i}$$
 (3)

This is convex function of p_1, p_2, \dots, p_n

If, D'(P: Q) =
$$ln \frac{P_i}{q_i} + 1 + A \cdot \frac{b}{a} ln \frac{1 + \frac{b}{a} P_i}{1 + \frac{b}{a} q_i} + A \cdot \frac{b}{a}$$

D"(P: Q) =
$$\frac{1}{P_i} + A \frac{(\frac{b}{a})^2}{1 + \frac{b}{a}P_i}$$

$$\frac{1}{p_i} + \frac{A(\frac{b}{a})^2}{1 + \frac{b}{a}p_i} > 0$$

This will be always satisfied if A> 0, if A is negative, it will still be satisfied

A
$$(b/a)^{2} > -\left(\frac{1}{P_{i}} + \frac{b}{a}\right)$$

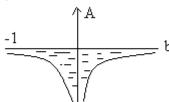
i.e. $-\frac{1}{P_{i}} < A\left(\frac{b}{a}\right)^{2} + \frac{b}{a}$ (4)

Now, $\frac{1}{n_i}$ varies from 1 to ∞ , so that (4) will satisfied if

$$A\left(\frac{b}{a}\right)^2 + \frac{b}{a} > -1 \text{ or } A > -\left(\frac{a}{b}\right) - \left(\frac{a}{b}\right)^2 \quad (5)$$

The graph of A = - $(\frac{a}{h}) - (\frac{a}{h})^2$

When b> -1 a>0, $a \neq b$



Where all points inside the shaded region give permissible values of A, b

Now,

$$\lim_{b \to 0} \sum_{i=1}^{n} (1 + \frac{b}{a} p_i) \ln \frac{(1 + \frac{b}{a} p_i)}{(1 + \frac{b}{a} q_i)} = 0$$
 (6)

$$\lim_{b \to 0} \frac{a}{b} \sum_{i=1}^{n} (1 + \frac{b}{a} p_i) \ln \frac{(1 + \frac{b}{a}) p_i}{1 + \frac{b}{a} i}$$
 (7)

$$\sum_{i=1}^{n} (P_i - q_i) = 0 (8)$$

So that for all finite values of A, positive or negative which are independent of b (3) approaches K.L. measures [7] as $b\rightarrow 0$

D (P: Q) =
$$\sum_{i=1}^{n} P_i ln \frac{P_i}{q_i} - \left(\frac{ac}{b} + \frac{a^2d}{b^2}\right) \sum_{i=1}^{n} \left(1 + \frac{b}{a} P_i\right) ln \frac{\left(1 + \frac{b}{a} P_i\right)}{\left(1 + \frac{b}{a} q_i\right)}$$
(9)

Where c and d are any positive number less than unity.

We consider some cases

When c=1 d=0

c=1 d=1 Or

The measure (9) is again in general not a convex function of $q_1, q_2, \dots q_n$

Volume 14 Issue 5, May 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR25515095120

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 **Impact Factor 2024: 7.101**

(II) A measure which is a convex function of both P and Q is obtained from Csiszer's [1] measure.

$$\sum_{i=1}^{n} q_i \phi(\frac{P_i}{q_i}) \tag{10}$$

Where ϕ (.) is a twice differentiable convex function with ϕ (1) =0 by taking

$$\phi(x) = x \ln x - \frac{a}{b} \left(1 + \frac{b}{a} x \right) \ln \frac{\left(1 + \frac{b}{a} x \right)}{\left(1 + \frac{b}{a} \right)} \qquad b > 0, a > 1 \quad (11)$$

This gives

D (P: Q) =
$$\sum_{i=1}^{n} P_i ln \frac{P_i}{q_i} - \frac{a}{b} \sum_{i=1}^{n} (q_i + \frac{b}{a} P_i) ln \frac{q_i + \frac{b}{a} p_i}{q_i (1 + \frac{b}{a})}$$
 (12)

It can be generalized as

$$\phi(x) = x \ln x + A \left(1 + \frac{b}{a}x\right) \ln \frac{(1 + \frac{b}{a}x)}{1 + \frac{b}{a}}$$
 (13)

$$\phi'(\mathbf{x}) = \ln x + A\left(1 + \frac{b}{a}x\right) \ln \frac{(1 + \frac{b}{a}x)}{1 + \frac{b}{a}} + A\left(\frac{b}{a}\right) + 1$$

$$\phi$$
''(x) = $\frac{1}{x} + \frac{A(\frac{b}{a})^2}{(1 + \frac{b}{a}x)}$

It will be convex if

$$\frac{1}{x} + \frac{A\left(\frac{b}{a}\right)^{2}}{\left(1 + \frac{b}{a}x\right)} > 0$$

$$or A\left(\frac{b}{a}\right)^{2} + \left(\frac{b}{a}\right) > -1/x$$
(14)

Now x can vary from 0 to ∞ so that $-\frac{1}{x}$ can vary from $-\infty$ to 0 so that the condition becomes

$$A(\frac{b}{a})^2 + (\frac{b}{a}) > 0$$
 or A> - a/b (15)

Thus, the generalized measure of directed divergence which is a convex function of both P and Q is,

D (P: Q) =
$$\sum_{i=1}^{n} P_i \ln \frac{P_i}{q_i} - A \sum_{i=1}^{n} \left(q_i + \frac{b}{a} p_i \right) \ln \frac{q_i + \frac{b}{a} p_i}{q_i (1 + \frac{b}{a})}$$
 (16)

Where A is any positive number or a negative number \geq -b/a

(III) Now consider

$$\boldsymbol{\phi}(\mathbf{x}) = \frac{x^{\alpha} - x}{1 - \alpha} + A \frac{(1 + \frac{b}{a}x)^{\alpha} - (1 + \frac{b}{a}x)}{\alpha - 1} - A \frac{(1 + \frac{b}{a})^{\alpha} - (1 + \frac{b}{a})}{\alpha - 1}$$

$$\boldsymbol{\phi}''(\mathbf{x}) = \alpha x^{\alpha - 2} + A \alpha \left(1 - \frac{b}{a}x\right)^{\alpha - 2} \left(\frac{b}{a}\right)^{2}$$

$$(17)$$

This will be convex if
$$\propto x^{\alpha-2} + A \propto (1 + \frac{b}{a}x)^{\alpha-2} \ge 1$$
 (18)
If Δ is positive, this is always satisfied

If A is positive, this is always satisfied $\left[\frac{x}{1+\frac{b}{a}x}\right]^{\alpha-2} \ge -A$

If A = -B this gives,

$$\left[\frac{x}{1+\frac{b}{a}x}\right]^{\alpha-2} \ge B$$

$$or \left[\frac{1+\frac{b}{a}x}{x}\right]^{2-\alpha} \ge B$$
(19)

As x goes from $0 \text{ to} \infty$, $\frac{x}{1+\frac{b}{x}}$ Goes from 0 to b/a If $\propto > 2$, thus requires $B \le 0$ or B=0

If
$$\alpha = 2$$
, $B \le 1$ (20)

If $\alpha < 2$ $\left(\frac{1+\frac{b}{a}x}{x}\right)$ can vary from b to ∞ a $\rightarrow 1$

Expression (19) gives

$$B \le (b)^{2-\alpha} \tag{21}$$

D (P: Q) =
$$\frac{1}{\alpha - 1} \left[\left(\sum_{i=1}^{n} p^{\alpha} q^{1-\alpha} - 1 + A \left[\left(q_i + \frac{b}{a} P_i \right)^{\alpha} q_i^{1-\alpha} - (q_i + a p_i) \right] - A (1+a)^{\alpha} + A (1+a) \right]$$
 (22)

Gives a valid measure of directed divergence for all nonnegative values of A.

Also,

D (P: Q) =
$$\frac{1}{\alpha - 1} \left[\sum_{i=1}^{n} p^{\alpha} q^{1-\alpha} - 1 - B [(q_i + ap_i)^{\alpha} (q_i)^{1-\alpha} - (q_i + ap_i)] + B(1 + a)^{\alpha} - B(1 + a) \right]$$
(23)

Gives a valid measure of directed divergence if $B \le b^{2-\alpha}$ when $0 \le b \le 2$ and $a \rightarrow 1$ B=0 when $\propto > 2$.

Conclusion

Directed Divergence opens a gate way to machine learning which is the future study of Information Theory.

References

- [1] Csiszer I. (1972) "A class measures of informativity of observation channels", Periodica Math.hangrica.Vol.2. pp. 47-66.
- [2] Havrda, J.H. and Charvat. F (1967), "Quantification method of classification processes: concept of structural α Entropy", Kybernatica, Vol.3, 30-35
- [3] Kapur, J.N. (1972), "Measures of uncertainty, mathematical and hysiscs", Journ.Ind.Soc.Agri.Stat. programming Vol.24,.47-66
- [4] Kapur, J.N. (1986). "Four families of measure of entropy" Ind. Jour-pure and A. Math's; vol. 17, No. 4, pp. 429-449.
- [5] Kapur. J.N.(1987), "Monotonocity and concavity of some parametric measures of entropy.tamkang,journal of mathematics 18(3), 25-40.
- [6] Kapur, J. N. (1994), "Measure of Information and their Application" Wiley Eastern limited.
- [7] Kulback S. and Leibler R. A. (1951), "On information and sufficiency", Ann.math. stat;vol.22, pp.79-86.
- Shannon C.E. (1948): "Mathematical theory of communication". Bell system tech. Jour Vol. 27, 379-423, 628-69.

Volume 14 Issue 5, May 2025 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net