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Abstract: The measures of directed divergence of parametric entropy have been obtained which are generalizations of Shannon’s Kapur’s, 

Bose Einstein, Fermi-Dirac, and Havrda-Charvat’s measures of Entropy. We have also examined its concavity property and some special 

cases. 
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1. Introduction 
 

(I) Measures of Directed divergence corresponding to the 

measure of entropy 

 

𝐻𝑏

𝑎

(𝑃) = −∑ 𝑝𝑖𝑙𝑛𝑝𝑖 +
𝑎

𝑏
∑ (1 +

𝑏

𝑎
𝑝𝑖) 𝑙𝑛 (1 +

𝑏

𝑎
𝑝𝑖) −

𝑛
𝑖=1

𝑛
𝑖=1

𝑎

𝑏
(1 +

𝑏

𝑎
) 𝑙𝑛(1 +

𝑏

𝑎
) , b> -1 a>0    (1) 

The proposed measure of directed divergence 

D (P: Q) = ∑ 𝑝𝑖𝑙𝑛
𝑝𝑖

𝑞𝑖
−

𝑎

𝑏
∑ (1 +

𝑏

𝑎
𝑝𝑖)𝑙𝑛

(1+
𝑏

𝑎
𝑝𝑖)

(1+
𝑏

𝑎
𝑝𝑖)

𝑛
𝑖=1

𝑛
𝑖=1      b> -1, 

a>0   (2) 

 

This measure holds all the properties 

 

This is permutationally symmetric, Continuous convex 

function of 𝑝1, 𝑝2, 𝑝3, … . , 𝑝𝑛 and vanishes iff 𝑝𝑖 = 𝑞𝑖          ∀ 𝑖 
 

However, it is not in general a convex function of 𝑞1, 𝑞2… . 𝑞𝑛 

 

Now to generalized equation (2) 

 

To consider the measure 
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This is convex function of 𝑝1, 𝑝2, … . 𝑝𝑛 

If,  D'(P: Q) = 𝑙𝑛
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This will be always satisfied if A> 0, if A is negative, it will 

still be satisfied 
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Now, 
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When b> -1 a>0, a≠ 𝑏 

 
Where all points inside the shaded region give permissible 

values of A, b  

Now,   
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So that for all finite values of A, positive or negative which 

are independent of b (3) approaches K.L. measures [7] as b→0 

 

Also we can use, 
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Where c and d are any positive number less than unity.  

 

We consider some cases 

When c=1 d=0 

Or      c=1 d=1  

Or      c=0 d=1 

 

The measure (9) is again in general not a convex function of 

𝑞1, 𝑞2, ……𝑞𝑛  
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(II) A measure which is a convex function of both P and Q is 

obtained from Csiszer’s [1] measure.  
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Where ϕ (.) is a twice differentiable convex function with ϕ (1) 
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Now x can vary from 0 to ∞ so that −
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𝑥
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so that the condition becomes 
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Thus, the generalized measure of directed divergence which is 
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Where A is any positive number or a negative number  ≥
−𝑏/𝑎 
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As x goes from 0 to∞, 
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If ∝> 2, thus requires B ≤ 0  or B=0 

 

If  ∝= 2 , 𝐵 ≤ 1                               (20) 

If ∝< 2    (
1+

𝑏

𝑎
𝑥

𝑥
) can vary from b to ∞  a→1 

 

Expression (19) gives 

B ≤ (𝑏)2−∝                                       (21) 

 

Also 

D (P: Q) = 
1

∝−1
[(∑ 𝑝∝𝑞1−∝ − 1 + 𝐴[(𝑞𝑖 +

𝑏

𝑎
𝑃𝑖)

∝𝑞𝑖
1−∝ −𝑛

𝑖=1

(𝑞𝑖 + 𝑎𝑝𝑖)] − 𝐴(1 + 𝑎)
∝ + 𝐴(1 + 𝑎)]       (22) 
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2. Conclusion 
 

Directed Divergence opens a gate way to machine learning 

which is the future study of Information Theory . 
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