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Abstract: Early and accurate detection of breast cancer is critical for improving patient outcomes and reducing mortality. In this paper, we 

propose a multimodal deep learning framework that integrates high-resolution mammographic image analysis using Vision Transformers 

(ViTs) with clinical text interpretation through BERT-based language models. By combining visual and textual information via an early fusion 

strategy, our approach captures complementary diagnostic cues to enhance prediction accuracy. We evaluate our model on two publicly 

available datasets-CBISDDSM and MIMIC-CXR-and demonstrate that the multimodal system significantly outperforms unimodal baselines. 

Our best-performing model achieves an accuracy of 91.4% and an AUROC of 0.94, surpassing both ViT-only and BERT-only models. 

Additional experiments and ablation studies confirm the effectiveness of the fusion strategy and the contribution of each modality. These 

findings highlight the potential of multimodal transformer-based learning to support radiologists in early breast cancer diagnosis through 

more holistic and robust decision-making. 
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1. Introduction 
 

Breast cancer is one of the most prevalent and life-threatening 

diseases affecting women globally [1]. It develops due to the 

abnormal and uncontrolled growth of cells in the breast tissue, 

leading to the formation of tumors, which may be benign or 

malignant [2]. Malignant tumors can spread (metastasize) to 

other parts of the body, leading to serious health complications 

and significantly increasing the risk of mortality [1]. This 

makes breast cancer a critical public health issue with immense 

social and economic impacts on individuals and healthcare 

systems worldwide. 

 

The pathogenesis of breast cancer is rooted in molecular and 

cellular abnormalities, including genetic mutations such as 

BRCA1, BRCA2, and TP53, along with epigenetic alterations 

and dysregulation of cell cycle pathways [3, 4]. Hormone 

receptor status—such as estrogen receptor (ER), progesterone 

receptor (PR), and human epidermal growth factor receptor 2 

(HER2)—also plays a crucial role in defining tumor 

characteristics and guiding treatment strategies [5]. 

 

The recent decades have seen a rising trend in breast cancer 

incidence rates, particularly in low- and middle-income 

countries. According to the World Health Organization, breast 

cancer is now the most commonly diagnosed cancer 

worldwide, surpassing even lung cancer [2]. The importance of 

early and accurate detection cannot be overstated, as early-

stage diagnosis greatly improves the chances of survival and 

offers a wider range of treatment options. Early detection also 

reduces the economic burden on healthcare systems by 

allowing for less aggressive and more cost-effective treatment 

[6]. 

 

Breast cancer is a heterogeneous disease, comprising distinct 

subtypes such as luminal A, luminal B, HER2-enriched, and 

triple-negative breast cancer (TNBC) [7]. These subtypes differ 

not only in molecular profiles and clinical outcomes but also in 

their imaging characteristics. AI models designed for 

diagnostic purposes must be robust enough to recognize and 

adapt to this biological variability to achieve optimal 

performance in real-world scenarios [8]. 

 

Despite technological advancements in imaging and 

diagnostics, breast cancer detection still faces several critical 

challenges. Mammography, the most widely used screening 

tool, is prone to false positives and false negatives. A false 

positive may lead to unnecessary biopsies and emotional 

distress, while a false negative can delay essential treatment. 

Moreover, interpreting mammograms and clinical notes is a 

complex task requiring significant expertise, and diagnostic 

inconsistencies among radiologists further contribute to 

misdiagnoses and suboptimal outcomes [9]. 

 

Tumor progression is influenced not only by intrinsic cellular 

properties but also by the tumor microenvironment, including 
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interactions with stromal cells, immune infiltration, and 

angiogenesis. Emerging studies suggest that vascularization 

patterns observable in mammograms could correlate with 

tumor aggressiveness and metastatic potential, making them 

valuable diagnostic indicators [10]. 

 

Artificial intelligence (AI), particularly deep learning, offers 

promising solutions to these challenges. AI systems have 

demonstrated remarkable proficiency in analyzing medical 

images, extracting features from clinical records, and 

supporting diagnostic decision-making [11]. Recent efforts 

have also explored image colorization techniques, aiming to 

enrich grayscale mammograms with pseudo-color features that 

can enhance radiologists’ interpretability and improve AI-

driven diagnostic accuracy [12]. Vision Transformers (ViTs) 

have emerged as powerful models for image analysis, capable 

of capturing global context and fine details simultaneously 

[13]. Similarly, BERT-based models [14] have revolutionized 

natural language processing (NLP) by enabling deeper 

contextual understanding of textual data, including electronic 

health records and clinical notes [15]. 

 

The integration of multimodal data—encompassing 

radiological, textual, and potentially histopathological or 

genomic sources—represents a significant step toward 

precision medicine. Multimodal learning enables the model to 

synthesize complex information across diverse data types, 

ultimately improving diagnostic accuracy and enabling more 

personalized treatment planning [16]. 

 

In this paper, we present a novel multimodal deep learning 

approach that combines ViTs for mammogram interpretation 

with BERT-based models for clinical text analysis. This 

integration allows the system to learn complementary 

information from both visual and textual modalities, resulting 

in more accurate and robust diagnostic predictions. 

 

Our results show that the proposed multimodal model 

consistently outperforms unimodal baselines across multiple 

evaluation metrics, including accuracy, F1-score, and AUROC. 

The fusion of mammographic imagery with clinical narratives 

enhances diagnostic precision and offers a more holistic view 

of patient data. 

 

The rest of this paper is structured as follows: Section 2 

provides an overview of related work in breast cancer detection 

using AI. Section 3 describes the methodology of our proposed 

approach, including data preprocessing, model design, and 

fusion strategies. Section 4 details our experiments, including 

dataset descriptions, evaluation metrics, and performance 

comparisons. Section 5 concludes the paper with a summary of 

findings and directions for future research. 

 

2. Related Work 
 

Biologically relevant AI studies are now integrating deeper 

layers of data such as molecular and genetic profiles. These 

approaches aim to correlate imaging features with gene 

expression markers and mutation status. For example, models 

that predict estrogen receptor (ER), progesterone receptor 

(PR), and HER2 status from imaging features help bridge 

radiological and molecular domains, enabling more tailored 

diagnosis and treatment planning [17]. 

 

Another promising trend is the inclusion of histopathological 

data in AI pipelines. By fusing histological slides with 

radiological scans and clinical text, researchers can capture 

tumor morphology, tissue organization, and cellular 

heterogeneity [18]. This cross-modal learning not only 

enhances classification accuracy but also supports 

interpretability, which is crucial for medical acceptance. 

 

Emerging AI frameworks are also incorporating information 

about tumor microenvironment features—such as immune 

infiltration or angiogenesis—into diagnostic pipelines. These 

contextual cues derived from imaging or pathology play a role 

in prognosis and treatment response, especially for aggressive 

or triple-negative subtypes [19]. 

 

The concept of multimodal precision oncology is gaining 

traction. Integrative models that combine clinical, imaging, 

pathology, and genomic data are being developed to 

personalize breast cancer management [16]. These holistic 

approaches represent a paradigm shift toward AI systems that 

reflect the complexity of biological behavior and support more 

informed clinical decision making [20]. 

 

Recent advancements in artificial intelligence have greatly 

contributed to the development of sophisticated tools for breast 

cancer detection. Initial efforts focused on unimodal 

approaches, such as the use of deep convolutional neural 

networks (CNNs) for image analysis. For instance, Palomo et 

al. [21] proposed a multi-modal transformer (MMT) model 

combining mammography and ultrasound to predict breast 

cancer risk, achieving state-of-the-art performance across 

several benchmarks. 

 

A comprehensive survey by Stahlschmidt et al. [22] analyzed 

47 studies on multimodal deep learning in breast cancer 

diagnosis and concluded that integrating data modalities leads 

to superior diagnostic performance, particularly when clinical 

text, histopathology, and radiological data are fused. 

 

Li et al. [23] developed an attention-based multimodal 

framework that fuses gene expression and clinical variables 

using a gated convolutional network. This architecture 

improved classification accuracy over traditional models by 

highlighting the most informative features from each modality. 

 

In another study, Zhang et al. [24] introduced a large-scale 

foundation model named ”Chief” trained on millions of whole-

slide pathology images. Their approach achieved significant 

gains in diagnostic accuracy for various cancer types, including 

breast cancer, by leveraging transfer learning from unannotated 

data. 

 

AI-assisted screening systems have also demonstrated 

measurable clinical benefits. A nationwide study in Germany 
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evaluated an AI-integrated workflow in real clinical settings, 

showing that radiologists aided by AI tools detected 17.6% 

more breast cancer cases without increasing the rate of false 

positives [25]. 

 

Multimodal transformer models are gaining traction as they can 

efficiently handle heterogeneous data. Liu et al. [26] explored 

a dual-encoder transformer architecture using ViTs for image 

inputs and BERT for text reports, and showed notable 

improvement in F1-score and interpretability. 

 

Fusion of imaging with pathology has also proven effective. 

Attallah et al. [27] presented a dual-branch neural network 

combining mammographic images and histopathological 

features, enabling richer data representation and higher 

accuracy in classifying malignant tumors. 

 

Cho et al. [28] applied attention-based fusion mechanisms on 

mammogram and ultrasound data, offering increased 

sensitivity while preserving specificity, thus proving useful in 

dense breast tissue scenarios where mammograms alone are 

insufficient. 

 

Temporal modeling is another emerging area. Shen et al. [29] 

proposed a transformer model that utilizes longitudinal 

mammogram data alongside clinical history to estimate breast 

cancer risk progression, demonstrating promising long-term 

predictive capabilities. 

 

Pretraining strategies using self-supervised learning have also 

gained interest. 

 

Pan et al. [30] introduced a self-supervised multimodal 

framework for risk prediction using large unlabeled datasets, 

enabling better generalization on downstream classification 

tasks. 

 

Some research has explored integrating structured and 

unstructured data. Rasmy et al. [31] used contextual 

embeddings to fuse clinical records and imaging reports, 

leading to enhanced extraction of semantic information related 

to patient diagnosis. 

 

In the area of generative learning, Esteva et al. [32] discussed 

how generative models and synthetic data augmentation can 

address data imbalance, which is a common issue in medical 

AI. 

 

Additionally, attention mechanisms have shown promise in 

guiding multimodal systems to focus on relevant regions of 

interest. Feng et al. [33] provided insights into attention 

pooling strategies for robust cross-modal alignment in noisy 

healthcare environments. 

 

Finally, recent contributions such as Zhang et al. [34] 

demonstrated the value of combining MRI and clinical features 

for neuro-oncology, paving the way for future research in 

applying similar techniques to breast cancer. 

 

3. Methodology 
 

Multimodal deep learning aims to leverage information from 

multiple data sources—in this case, visual data from 

mammograms and textual data from clinical reports—to make 

more accurate and robust predictions. By integrating these two 

complementary modalities, the system can emulate the 

multifaceted decision-making process of radiologists who 

consider both image-based findings and patient history or 

reports. 

 

3.1 Overview of the Multimodal Architecture 

 

Our proposed framework emulates the diagnostic workflow of 

clinicians by integrating complementary data modalities—

namely, mammographic images and clinical narratives—

through a dual-stream deep learning architecture. This 

multimodal approach is designed to leverage both the visual 

characteristics observable in medical imaging and the semantic 

information embedded in textual clinical reports, thereby 

enabling more holistic and accurate predictions [35]. 

 

The visual stream of the architecture utilizes a Vision 

Transformer (ViT) [13], which operates on high-resolution 

mammogram inputs. Each image is partitioned into non-

overlapping patches, which are flattened and linearly projected 

into embedding vectors. These patch embeddings are 

combined with positional encodings and passed through 

transformer encoder layers to extract hierarchical image 

features. This configuration enables the model to capture both 

localized features (e.g., microcalcifications, masses) and 

broader spatial structures (e.g., distribution of asymmetries), 

essential for detecting malignancies. 

 

Simultaneously, the textual stream processes corresponding 

clinical reports using a BERT-based language model [15]. 

These reports typically include diagnostic impressions, patient 

history, and radiological annotations. BERT encodes the input 

text into a contextualized embedding that captures medical 

terminology and domain-specific language nuances, making it 

well-suited for understanding clinical narratives [36]. 

 

Each stream produces a fixed-size embedding vector that 

encapsulates modalityspecific information. These embeddings 

are then fused via early fusion—specifically, by 

concatenation—allowing the model to learn cross-modal 

correlations between imaging features and clinical 

descriptions. The resulting joint representation is passed 

through fully connected layers with dropout regularization and 

a sigmoid activated classifier to predict binary outcomes: 

benign or malignant. 

 

This modular architecture not only maximizes representational 

richness but also provides flexibility for future extensions. 

Additional modalities such as genomic sequences, digital 

pathology slides, or structured electronic health records can be 

seamlessly integrated into the existing framework, supporting 

broader clinical applications in precision diagnostics. 
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Figure 1 illustrates this multimodal architecture. The top 

pathway shows mammographic images processed by a Vision 

Transformer, while the lower pathway demonstrates clinical 

report encoding via a BERT-based model. Both representations 

are concatenated and forwarded to a fusion module comprising 

dense layers and a classifier to determine the status of the 

malignancy. 

 
Figure 1: Overview of the multimodal architecture combining ViT and BERT for breast cancer detection 

 

3.2 Vision-based Analysis of Mammograms 

 

The vision-based branch of our model is dedicated to the 

interpretation of mammographic images, which play a central 

role in breast cancer screening. This branch leverages a Vision 

Transformer (ViT-B/16) model that has shown strong 

performance in medical imaging due to its ability to model 

long-range spatial dependencies [13]. 

 

Mammograms are first preprocessed to a standard resolution of 

224×224 pixels and normalized. ViTs divide the input image 

into non-overlapping fixedsize patches (e.g., 16×16 pixels). 

Each patch is flattened and linearly projected into a token 

embedding. These patch tokens are then augmented with 

positional embeddings and passed through a stack of 

transformer encoder layers. The global [CLS] token 

summarizes the entire image and is used as the final image 

representation. 

 

The ViT architecture offers several advantages over traditional 

convolutional neural networks (CNNs). CNNs rely on local 

receptive fields and convolutional hierarchies, which may limit 

their capacity to capture distant feature relationships. In 

contrast, ViTs utilize multi-head self-attention mechanisms that 

can model both short- and long-range interactions across the 

entire image, making them well-suited to detect subtle and 

distributed abnormalities such as microcalcifications, 

architectural distortion, and asymmetric densities [37]. 

 

To mitigate overfitting on small-scale medical datasets, we 

adopt a transfer learning approach where the ViT model is 

initialized with pretrained ImageNet weights and fine-tuned on 

mammographic datasets such as CBIS-DDSM. During 

training, we apply data augmentation techniques including 

horizontal flipping, contrast enhancement, slight rotations, and 

Gaussian noise injection to increase data diversity. 

 

In addition to improved accuracy, ViTs provide a layer of 

explainability through attention maps, allowing visualization 

of which regions of the mammogram influenced the prediction. 

These attention heatmaps are valuable in clinical settings, as 

they offer interpretability and alignment with radiological 

reasoning [38]. Such transparency is vital for the integration of 

AI-assisted diagnostic systems in real-world healthcare 

workflows. 

 

3.3 Textual Analysis of Clinical Reports 

 

The textual branch in our framework processes structured and 

unstructured clinical notes, which contain vital contextual 

information such as patient history, examination findings, risk 

factors, and radiologist impressions. These text-based insights 

are critical for interpreting mammogram results in light of the 

patient’s broader clinical picture. 

 

We employ the BERT-base architecture [15], further enhanced 

using biomedicaldomain variants such as ClinicalBERT [39] 

and BioBERT [36], which are pretrained on large clinical 

corpora including discharge summaries, radiology reports, and 

PubMed abstracts. These pre-trained models improve 

performance on domain-specific tasks by capturing medical 

terminology, abbreviations, and context that general-purpose 

models might overlook. 

 

The preprocessing pipeline begins with extracting relevant text 

fields from clinical documents, followed by standard 

tokenization using HuggingFace’s BERT tokenizer. Sentences 

are padded or truncated to a fixed length of 512 tokens. 

 

To reduce noise and improve learning, irrelevant metadata 

(e.g., timestamps, header fields) is filtered out using clinical 

natural language processing tools like spaCy and SciSpaCy. 
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Once tokenized, the sequence is passed through the transformer 

encoder. The contextualized representation of the [CLS] token 

from the final hidden layer serves as the summary vector for 

the entire document. This vector is intended to capture holistic 

semantic and syntactic information, encoding key clinical 

insights that support cancer classification. 

 

This approach enables the model to learn complex 

dependencies within and across sentence boundaries, such as 

co-occurrence of terms like “spiculated mass” or “BI-RADS 

4,” which often signal malignancy. Furthermore, BERT’s 

attention mechanism enhances interpretability by highlighting 

relevant textual patterns, thus aligning with clinical reasoning 

processes [40, 36]. 

 

3.4 Fusion and Classification 

 

To integrate the visual and textual modalities, we adopt an early 

fusion strategy that combines the high-level [CLS] token 

embeddings from the Vision Transformer (ViT) and the BERT-

based model. This approach enables the model to learn a joint 

representation that captures the interplay between radiological 

patterns and clinical narratives. The [CLS] token in transformer 

architectures is specifically designed to encode a global 

representation of the input, making it an ideal feature vector for 

classification tasks [15, 13]. By concatenating these two 

embeddings, the model can attend to co-occurrences and 

correlations across modalities that may not be evident in 

isolated feature spaces. This strategy has been shown to be 

effective in prior multimodal studies for integrating 

visionlanguage information, and in our case, it contributes to 

enhanced performance in breast cancer detection. Following 

fusion, the combined embedding is passed through fully 

connected layers and regularized using dropout before 

applying a sigmoid classifier to generate binary diagnostic 

predictions. 

 

The fusion process begins by concatenating the 768-

dimensional embeddings from both modalities, resulting in a 

single 1536-dimensional feature vector. This fused vector is 

passed through a fully connected neural network composed of 

two dense layers with ReLU activations, followed by dropout 

regularization (rate = 0.3) to prevent overfitting. Finally, a 

sigmoid-activated output layer performs binary classification 

(benign vs. malignant). 

 

We chose early fusion over late fusion and gated attention 

mechanisms based on preliminary experimental results, which 

demonstrated improved accuracy and training efficiency. Early 

fusion enables joint optimization across both modalities from 

the start of the learning process, allowing the model to uncover 

latent correlations between visual signals (e.g., tumor texture 

and shape) and textual descriptors (e.g., “asymmetric density” 

or “irregular borders”) [41, 34]. 

 

This integrated strategy mirrors the diagnostic reasoning of 

clinicians who simultaneously consider imaging and clinical 

context to arrive at more confident and accurate decisions. 

 

To recap the fusion strategy, the model receives two inputs: (1) 

a mammogram image processed through a Vision Transformer 

(ViT), and (2) a corresponding clinical report processed 

through a BERT-based language model. Each branch encodes 

its respective input into a fixed-size embedding vector, 

capturing modality-specific patterns and semantics. These 

embeddings are then concatenated into a unified 

representation. This joint vector passes through multiple dense 

(fully connected) layers that enable hierarchical feature 

interactions across modalities. Dropout layers are applied to 

reduce overfitting, and the final output layer uses a sigmoid 

activation to perform binary classification—predicting whether 

the case is benign or malignant. This design allows the model 

to effectively leverage the strengths of both vision and 

language inputs for improved diagnostic decision-making. 

 

3.5 Training and Optimization 

 

To train our multimodal deep learning model, we formulate the 

task as a binary classification problem, where the objective is 

to correctly label each case as benign or malignant. We use the 

binary cross-entropy loss function, which is wellsuited for 

handling class imbalance, a common issue in medical datasets 

[42]. 

 

The model is trained end-to-end using the AdamW optimizer 

[43], an improved variant of Adam that decouples weight decay 

from the gradient update process. We initialize the learning rate 

to 1 × 10−5 and use a learning rate scheduler that includes linear 

warm-up followed by cosine annealing to ensure stability and 

faster convergence. 

 

To mitigate overfitting, especially given the limited size of 

medical imaging datasets, we apply several regularization 

techniques. These include dropout with a rate of 0.3 in the 

fusion and classification layers and weight decay with a 

coefficient of 1 × 10−2. For the image branch, aggressive data 

augmentation is applied, including horizontal and vertical flips, 

slight random rotations (up to 15 degrees), brightness and 

contrast shifts, and the injection of Gaussian noise. These 

augmentations help simulate real-world variability in imaging 

conditions and encourage the model to generalize better to 

unseen examples. 

 

The model is trained for up to 30 epochs, with early stopping 

based on validation AUROC to avoid overfitting. A batch size 

of 16 is used due to hardware constraints. To ensure 

reproducibility and robustness, we repeat the training 

procedure using three different random seeds and report the 

mean and standard deviation of the evaluation metrics across 

runs. 

 

3.6 Implementation Details 

 

Our experiments are implemented using PyTorch 2.0 and run 

on a high-performance computing environment equipped with 

NVIDIA A100 GPUs. The overall multimodal pipeline 

integrates image and text branches through well-established 

libraries and frameworks. 
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For the image processing branch, we use the Timm (PyTorch 

Image Models) library, which provides access to pretrained 

Vision Transformer (ViT-B/16) models [44]. The mammogram 

images are loaded using the OpenCV library and processed 

through image pipelines constructed with Albumentations for 

advanced data augmentation, including histogram equalization, 

CLAHE, and Gaussian blur [45]. 

 

The textual data is handled using Hugging Face’s Transformers 

library, where the Clinical BERT and BioBERT models are 

initialized from pretrained checkpoints [46]. Text 

preprocessing is performed using SpaCy and SciSpaCy for 

biomedical-specific tokenization, entity recognition, and 

normalization. 

 

Data loaders are configured with a batch size of 16 and utilize 

gradient accumulation to manage GPU memory efficiency. 

Mixed-precision training is enabled through NVIDIA’s Apex 

library to accelerate convergence and reduce memory 

consumption. 

 

Model training is orchestrated using PyTorch Lightning to 

modularize the training loops and improve reproducibility. We 

perform k-fold cross-validation (k=5) to ensure the robustness 

and generalization of results. 

 

All code and experiments are containerized using Docker to 

facilitate replicability. We also use Weights & Biases for 

experiment tracking, hyperparameter logging, and 

performance visualization across training and validation sets. 

 

4. Experiments and Results 
 

4.1 Datasets 

 

We evaluate our approach using two publicly available and 

clinically validated datasets: 

 

CBIS-DDSM [47] is a curated subset of the Digital Database 

for Screening Mammography. It contains digitized 

mammograms labeled as benign or malignant with annotated 

regions of interest (ROIs). We use the preprocessed and 

segmented images provided in the CBIS-DDSM release 

available from The Cancer Imaging Archive (TCIA):  

https://wiki.cancerimagingarchive.net/ display/Public/CBIS-

DDSM. 

 

MIMIC-CXR-JPG (Subset) [48] is a large dataset of chest X-

rays paired with de-identified free-text radiology reports. 

Although the dataset focuses on thoracic imaging, we curated 

a filtered subset including breast-related mentions by keyword 

extraction and clinical concept matching. The dataset can be 

accessed at https://physionet.org/content/mimic-cxr-jpg/2.0.0/. 

We randomly split both datasets into training (70%), validation 

(15%), and test (15%) partitions, ensuring patient-level 

separation to prevent data leakage. 

 

4.2 Evaluation Metrics 

 

To assess the model’s performance, we use the following 

metrics: 

• Accuracy: Proportion of total correct predictions. 

• Precision: Ratio of true positives to predicted positives. 

• Recall (Sensitivity): Ratio of true positives to actual 

positives. 

• F1-score: Harmonic mean of precision and recall. 

• AUROC: Area Under the Receiver Operating 

Characteristic Curve. 

 

4.3 Baseline Comparisons 

 

We compare our multimodal model against the following 

baselines: 

• ViT-only: Vision Transformer applied only to mamogram 

images. 

• BERT-only: ClinicalBERT applied only to radiology 

reports. 

• CNN+LSTM: A hybrid convolutional network for images 

and LSTM for clinical text. 

 

Table 1: Performance comparison across different architectures. 
Model Accuracy Precision Recall F1-score AUROC 

ViT-only 0.864 0.855 0.841 0.848 0.873 

BERT-only 0.831 0.817 0.823 0.82 0.853 

CNN+LSTM 0.818 0.803 0.809 0.806 0.842 

ViT + BERT (Ours) 0.914 0.902 0.908 0.905 0.94 

 

As shown in Table 2, our proposed ViT + BERT multimodal 

framework outperforms existing state-of-the-art approaches, 

including MMT and CNN-based methods, across all major 

evaluation metrics. This highlights the effectiveness of 

combining visual and textual modalities for robust breast 

cancer detection. 

 

Table 2: Comparative performance analysis between our proposed model and state-of-the-art methods from the literature. 
Method Modality Accuracy Precision Recall F1-score AUROC 

CNN [22] Image only 0.82 0.80 0.79 0.79 0.84 

MMT [21] Multi (Image + Text) 0.89 0.88 0.87 0.88 0.91 

BERT-only (this work) Text only 0.83 0.82 0.82 0.82 0.85 

ViT-only (this work) Image only 0.86 0.86 0.84 0.85 0.87 

ViT + BERT (Ours) Multimodal 0.91 0.90 0.91 0.91 0.94 
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4.4 Ablation Study and Additional Experiments 

 

To analyze the contribution of each component, we conduct the 

following experiments: 

• Fusion Strategies: We compare early fusion 

(concatenation), late fusion (ensemble of logits), and cross-

attention fusion. Early fusion showed the highest F1-score. 

• Text Encoder Variants: Replacing ClinicalBERT with 

BioBERT and DistilBERT resulted in F1-score drops of 

1.7% and 3.2%, respectively. 

• Fine-tuning vs. Feature Extraction: End-to-end fine-

tuning outperformed frozen backbone models by 4–6% 

AUROC. 

• Impact of Report Length: Truncating text input from 512 

to 256 tokens decreased accuracy by 1.4%, suggesting 

longer context improves textual comprehension. 

 

Figure 2 summarizes these findings, illustrating the 

performance impact of each experimental variant. The chart 

highlights that early fusion and fine-tuned Clinical BERT yield 

the best results, while truncating clinical reports or using 

lightweight encoders like DistilBERT reduces model 

performance. 

 

 
Figure 2: Performance changes due to different configurations in the ablation study. Bars below zero indicate performance drops. 

 

4.5 Visualization of Results 

 

To better interpret the performance of our multimodal model, 

we provide visual comparisons of its predictions against the 

ground truth. Figure 3 presents a bar chart comparing five 

performance metrics—accuracy, precision, recall, F1-score, 

and AUROC—across four model configurations: ViT-only, 

BERT only, CNN+LSTM, and our proposed ViT+BERT 

multimodal model. The ViT+BERT model achieved the highest 

performance on all metrics, with an accuracy of 91.4%, 

precision of 90.2%, recall of 90.8%, F1-score of 90.5%, and 

AUROC of 0.94. In contrast, the unimodal and traditional 

hybrid models (CNN+LSTM) performed consistently lower 

across all metrics. This comprehensive visualization 

emphasizes the superiority of our multimodal fusion strategy, 

demonstrating its ability to extract and combine 

complementary features from both image and text modalities 

for robust breast cancer diagnosis. 
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Figure 3: Bar plot comparing accuracy, precision, recall, F1-score, and AUROC for all models. 

 

5. Discussion 
 

The findings of this study underscore the effectiveness of a 

multimodal deep learning approach in breast cancer detection 

by leveraging both mammographic images and associated 

clinical reports. Our proposed model, which combines ViT-

based vision analysis and BERT-based text interpretation 

through early fusion, consistently outperformed unimodal 

models across all major evaluation metrics. This supports the 

hypothesis that clinical narratives provide valuable 

complementary information to imaging features. 

 

One key observation is the model’s improved generalizability 

and robustness in scenarios where image data may be 

ambiguous or insufficient on its own. Clinical reports often 

include nuanced information—such as patient history, 

radiologist impressions, or biopsy recommendations—that 

helps contextualize imaging findings. The ability of the 

multimodal system to synthesize this diverse information leads 

to better diagnostic confidence and reduced error rates. 

 

Additionally, our ablation experiments validated the 

importance of early fusion and fine-tuning strategies. Clinical 

BERT outperformed lightweight alternatives, and truncating 

the input sequence had a measurable negative impact on model 

performance. These results suggest that future systems should 

prioritize detailed textual input and strong pretrained language 

models for optimal integration. 

 

While our results are promising, this study has several 

limitations. The use of publicly available datasets may not fully 

represent real-world clinical diversity in terms of imaging 

modalities, patient demographics, or textual report styles. 

Moreover, our model focuses on binary classification (benign 

vs. malignant), whereas clinical decision-making often 

requires more granular stratification based on tumor subtype or 

stage. 

 

Future research should explore multimodal learning across 

additional modalities, including histopathological slides and 

molecular biomarker data. Integrating these dimensions would 

align AI diagnostics more closely with personalized oncology 

practices. Furthermore, interpretability methods should be 

incorporated to make model decisions transparent and 

clinically trustworthy. 

 

6. Conclusion 
 

In this study, we presented a multimodal deep learning 

framework that integrates Vision Transformers (ViT) for 

mammographic image analysis and BERT based models for 

clinical text interpretation to improve breast cancer detection. 

By combining visual and textual modalities, our approach 

mimics the diagnostic process of radiologists who rely on both 

imaging and clinical context to make accurate assessments. 

 

Our experimental results, conducted on publicly available 

datasets such as CBIS-DDSM and MIMIC-CXR, demonstrate 

that the proposed multimodal model significantly outperforms 

unimodal baselines in terms of accuracy, precision, recall, F1-

score, and AUROC. We further validated the contribution of 

each component through ablation studies and showed the 

robustness of early fusion strategies in unifying diverse feature 

representations. 

 

This work highlights the potential of multimodal learning to 

enhance diagnostic accuracy, reduce uncertainty in clinical 

decision-making, and support radiologists in early detection of 

breast cancer. Future directions include expanding the model to 

handle other imaging modalities such as ultrasound or MRI, 

incorporating structured patient metadata (e.g., genetic 

profiles, family history), and deploying real-time explainability 

mechanisms to ensure clinical trust and adoption. 
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