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Abstract: In the face of increasing climate-related catastrophes and large-scale emergencies, the need for seamless coordination between 

military and civilian agencies has become more critical than ever. Effective disaster preparedness relies heavily on the ability to integrate, 

analyze, and act on diverse data sources. However, traditional systems often suffer from fragmented data silos, inconsistent formats, and 

slow decision-making processes, hindering timely and coordinated responses. This paper explores the application of Extract, Transform, 

Load (ETL) processes and Business Intelligence (BI) tools as a robust framework to bridge this operational gap. ETL pipelines are used 

to collect and standardize data from weather agencies, emergency services, defense systems, and non-governmental organizations (NGOs), 

transforming it into a structured format suitable for analysis. Once integrated, BI platforms generate real-time dashboards, predictive 

models, and visual reports that enhance situational awareness and facilitate proactive decision-making across agencies. The proposed 

method also includes the implementation of an MLP-LSTM architecture for forecasting critical disaster variables, such as casualty rates 

and resource needs, based on historical and real-time data. By combining temporal sequence learning with complex feature extraction, 

the model significantly improves the accuracy and speed of disaster impact predictions. Real-world scenarios, including responses to 

hurricanes and wildfires, are used to validate the effectiveness of this approach. Graphs illustrating improvements in data quality, loading 

time, response efficiency, and reduced casualties further reinforce the benefits of this system. Despite the advancements, limitations remain 

in terms of interoperability, data privacy, and the need for real-time automation in some legacy systems. Future work will focus on 

enhancing AI-driven ETL processes, incorporating IoT-based real-time feeds, and establishing standardized data-sharing protocols across 

jurisdictions. Overall, this study presents an integrated, data-driven model that strengthens disaster readiness and response through 

improved collaboration between military and civilian infrastructures. 
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1. Introduction  
 

Disaster preparedness and response would require military-

civilian cooperation to be stabilized more than ever. In disaster 

management, disaster response refers to the near real-time 

integration of a wide variety of mostly contradictorily sourced 

data, such as weather forecasting and geographical impact 

assessments of infrastructure, health metrics, public safety 

communications, and the logistical supply chain [1]. To be 

effective, decision-making, and coordinated action, even 

under severe time pressure, are expected to run on their highest 

levels across many sectors: prosecution of information and 

agility are often thwarted by sorely outdated operational silos 

of military and civilian operations that concede little space for 

existence outside their well-defined parameters. By their 

nature, disasters cut across jurisdictional, geographic, and 

organizational boundaries; therefore, the weaknesses of such 

fragmented systems cannot be far from sight. At the same 

time, emerging technologies centered on data management 

and real-time analytics are confronting this challenge with 

serious impact in shifting the very landscape of inter-agency 

collaboration. Whereas ETL processes along with BI tools are 

now thought to be the major driving factors behind these two 

technologies, ETL systems furnish the administrative 

backbone needed to combine highly diverse datasets into a 

common and accessible form, while BI platforms essentially 

provide meaningful insights from such consolidated 

information offering: predictive analytics, dynamic 

visualization, and reporting capabilities [2]. These 

technologies would allow military/civilian agencies to 

surmount the barriers that inhibited collaborative efforts, all 

together with a common data-focused situational awareness 

contributing to better operational readiness, resource 

allocation, and beneficiaries' situation during emergencies. 

 

They form the core of foundational architectures for effective 

military-civilian collaboration for disaster preparedness and 

response: Extract, Transform, Load, or ETL processes. ETL is 

essentially an exercise in data gathering, cleansing, and 

integration from a broad range of sources, both heterogeneous 

and dissimilar [3]. Military agencies may house high-value 

national treasures like satellite imagery, intelligence reports, 

advanced logistical tracking data, and secure communications 

networks, whereas civilian agencies often manage those data 

types that are vital in local emergency services, public health 

metrics, weather forecasts, critical infrastructures, and more. 

Examples include those dealing not only with operations but 

also with policy assessments and plans for managing local to 

those at the global level. But ETL pipelines are required to get 

those disparate datasets and their original dispersal sources 

quickly, applying transformation techniques on the data using 

a more advanced approach for standardizing the formats 

through data cleaning from inconsistency, removing 

redundancy, and enriching the dataset in more environments 

with context metadata [4]. The interoperable data are ready for 

this process and hence create an all-inclusive and accurate 

assessment of the situation in transformation. Consequently, 

the newly transformed data is loaded into centralized 

databases, into data lakes, or onto cloud platforms secured 

against any unauthorized entry and using which real-time 

access is provided to the military and civilian agencies. A 

common operational picture for all decision-making levels is 

created from this pool of data because it shares synchronized, 

trustworthy and well-updated information, which is 

indispensable when making scenarios for coordinating 
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response efforts, deploying resources efficiently, and 

mitigating the impacts of disasters on affected populations. 

 

Business Intelligence (BI) tools build on the unified cleansed 

datasets generated by ETL processes and are used to obtain 

actionable insights through rigorous analysis, modeling, and 

visualization. Modern BI platforms like Tableau, Power BI, 

and Qlik understand vast, complex, and dynamic disaster-

related data [5]. They convert raw data into intuitive 

dashboards, interactive geospatial maps, predictive analytics, 

and customized reports that give decision-makers situational 

awareness in real-time to quickly understand the scope and 

effects of a disaster, detect new threats, and evaluate 

vulnerabilities. BI tools facilitate the risk modeling and impact 

assessment necessary to inform decisions on the strategic 

allocation of resources, optimize deployment of emergency 

response teams, and improve coordination of humanitarian 

aid. With its predictive capacity, BI therefore adds to an 

organization's ability to be proactive [6]. Agencies can now 

anticipate issues, pre-position important supplies, shore up 

weakened infrastructure, and provide timely warnings to at-

risk populations. The ability to move quickly from collecting 

data to taking informed action will be critical for the 

minimization of disaster effects and the enhancement of 

community resilience. 

 

A special case is the U.S. government's response to Hurricane 

Katrina in 2005, which underlined the immediate necessity for 

effective integration of ETL and BI. The event showed the 

catastrophic failure of data management and inter-agency 

communication where mismatched and incompatible 

information systems delayed situational awareness, diverted 

crucial resources, and prompted organizational confusion 

between military and civilian responders. The unavailability 

of timely and accurate data sharing came in thousands of 

unnecessary hardships against the larger backdrop of 

ineffective rescue and recovery operations. This historical 

fiasco primed an interrogation into disaster management at the 

national level and reflected on the changing fortunes that 

integrated technological solutions would soon offer [7]. With 

the constitution of modern ETL pipelines and state-of-the-art 

BI platforms, an interagency centralized and interoperable 

information environment is now being fashioned. Such 

structures indicate a natural fosterer of real-time coalition 

work, upon which comprehensive threat analysis can be based, 

allowing decision-makers in both military and civilian sectors 

to operate on a common and trusted data bed, allowing an 

effortless transition from a dispersed and disparate database to 

clear-cut disaster response operations marked by speed, 

coordination, and effective realization. 

 

In the long run, the coupling of BI tools driven by AI and 

almost entirely automated ETL pipelines promises to change 

the whole face of civilian-military cooperation for disaster 

preparedness and response. Predictive analytics enhanced 

through artificial intelligence and machine learning models 

would allow early recognition of even those patterns that 

signal events as terrible as floods, wildfires, earthquakes, or 

hurricanes [8]. Therefore, it may predict the very possibility of 

a disaster and its likely effects on desks and vulnerable 

populations so that it can better prepare action, pre-emptive 

action based on assessment or forecasting. The activities of 

automatic ETL, however, make data production and 

processing as easy as possible by minimizing human 

attachments [9]. In this way, it reduces errors and fastens the 

time taken to transform to clean, reliable datasets, ready for 

analysis. The proliferation of data warehousing solutions 

based in the cloud has made it possible for continuous, real-

time access to shared datasets between military and civilian 

agencies, independent of any geographical location, thus 

ensuring a constantly updated operational picture, a must-have 

for adaptation to fast-changing disaster scenarios. Each of the 

above technological advancements lowers or perhaps vastly 

transforms traditional forms of preparedness into speedier, 

more intelligent, and adaptable preparatory efforts within the 

larger scheme of things in the future. 

 

ETL and BI technologies are the most significant key elements 

for making the transition from a preponderantly reactive 

approach to disaster management to a more proactive, 

intelligence-driven approach. By bridging these long-existing 

data and communication divides between military and civilian 

groups, these systems create a unified, agile framework that 

supports improved situational awareness, accelerates 

coordinated responses, and enhances the effectiveness of 

rescue, relief, and recovery efforts. Investing in the continual 

upgrading of ETL and BI capabilities is the luxury of the past; 

today, it is imperative for national security and community 

resilience. Future disaster management strategies must be 

replete with technological integration to ensure that all 

stakeholders, ranging from federal agencies to local 

responders, operate within a shared real-time understanding of 

dynamic situations [10]. An especially robust, seamlessly 

integrated ETL and BI infrastructure will help military and 

civilian teams act in concert and cohesion to lessen the 

damages to lives, infrastructure, and economies caused by the 

relatively unpredictable incidence of natural disasters. 

 

The Key contributions of the article are given below, 

• Developed an integrated ETL framework to collect, 

standardize, and transform data from diverse sources, 

including weather agencies, emergency services, defense 

systems, and NGOs, enhancing disaster preparedness and 

response coordination. 

• Implemented BI tools to generate real-time dashboards, 

predictive models, and visual reports, enabling improved 

situational awareness and proactive decision-making 

across military and civilian agencies. 

• Designed and applied an MLP-LSTM architecture for 

forecasting critical disaster variables, such as casualty 

rates and resource needs, significantly improving 

prediction accuracy and decision-making speed during 

emergencies. 

• Validated the system through real-world disaster 

scenarios, including hurricanes and wildfires, 

demonstrating improvements in data quality, response 

efficiency, and casualty reduction. 

• Identified and addressed challenges related to 

interoperability, data privacy, and the automation of 

legacy systems, laying the foundation for future 

improvements in AI-driven ETL processes and real-time 

data integration across jurisdictions. 

 

This document is organized as follows for the remaining 

portion: Section II discusses the related work. The 

recommended method is described in Part III. In Section IV, 
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the experiment's results are presented and contrasted. Section 

V discusses the paper's conclusion and suggestions for more 

study. 

 

2. Related Works  
 

A. Role of ETL  

Li et al. [11] primarily deals with the integration of military 

and civilian resources within Chinese civil-military systems 

and addresses optimization for emergency supply allocation 

and storage. The two-stage stochastic programming technique 

that develops this is designed to achieve strategic military-

civil storage, meaning less reserve costs. An improved 

version of IWOA is suggested for the resolution of this model 

with various other techniques. A real case from Tangshan, 

China, will demonstrate that significant cost savings are made 

by the joint military-civil strategic reserves if military storage 

costs are less than 1.5 times those of civilian facilities. The 

work also emphasizes how decision-makers would need to 

vary maximum rescue durations according to emergency-

specific requirements. 

 

Ronik Ketankumar, Sharareh, and Mostafa 2020) [12] 

generalize the readiness and exposure of university students 

to disasters, given that there are almost no disaster risk 

reduction measures on many campuses despite increasing 

awareness. Then, a literature review and an online survey, 

which had 111 subjects, formed a basis for constructing a 

framework measuring how well students would prepare for 

disasters by linking their perceptions of obligations regarding 

safety during a disaster with personal attributes (gender, 

qualification level, and disaster preparedness knowledge). 

Among key results from the study are a past education of 

students in preparation for disasters influences the perception 

of the need for a compulsory DRR course, and the difference 

between the two graduate and undergraduate groups was 

whether the provision of first aid equipment was sufficient. 

By these outcomes, the study stands to moderate 

policymakers on how to improve emergency preparedness in 

campus facilities as well as develop DRR programs in higher 

learning institutions. 

 

B. ETL in Disaster Management 

Patel et al. [13] studied the impact of sociodemographics on 

students at universities as well as disaster DPI on students' 

knowledge of disaster risks and ability to cope with 

emergencies. To understand the influence of these attributes 

on disaster awareness and preparedness, an elaborate survey 

with 111 responses was used and analyzed through structural 

equation modeling. The findings suggested that emergency 

procedures had an impact on student readiness, while 

university courses played a greater role in disaster awareness. 

In addition to supporting policymakers in strengthening 

emergency preparedness policies and protocols, the presented 

research was directed toward helping university stakeholders 

identify critical DPIs to improve programs and develop 

successful DRM courses. 

 

The present study by Ao et al. [14] in Sichuan Province, 

China, basically evaluates the link between rural residents' 

flood experience, attitude, and disaster preparedness behavior 

to climate change and flooding issues. Usually, residents have 

poor disaster preparedness behavior according to ordered 

logistic regression and exploratory factor analysis-based 

studies. Income level is negatively associated with 

preparedness while factors like age, education, and length of 

stay in the area are found to be positively related to 

preparedness. The preparedness behavior also depends on 

people's attitudes towards disasters and their past experiences 

with flooding. The study combines some structural flood 

management measures with normal preparatory actions such 

as psychological counseling in flood-prone areas, on-the-go 

flood warnings, and education about flood preparedness 

among residents to build resilience and trust in flood 

management programs. 

 

C. Impact of Disaster 

Richmond, Tochkin, and Hertelendy [15] conducted on a 

national scale, among EM experts, this study determines how 

frequent and effective the disaster preparedness initiatives in 

Canada's healthcare institutions are regarding COVID-19. 

Out of the 161 responses to the poll, which urged that 93% of 

the respondents had the identity of EM responsibilities. 

Reviewing frameworks for infectious diseases was the most 

popular activity covered by 82% of respondents, while the 

least popular was simulation exercises with only 26%. More 

commonly, a singular "incident commander'' was responsible 

for incident management within COVID-19: 61%, while only 

68% of individuals holding leadership positions underwent 

training. By this research, more rates and efficacies for 

disaster preparedness were observed in companies with 

proficient coloring executives. 

 

Interval type-2 fuzzy sets along with the best-worst method 

were utilized by Celik [16] to study shelter site selection for 

disaster preparedness to effectively manage uncertainty and 

simplify pairwise comparisons. Nine disaster experts having 

field experience in places like Sivrice, Pazarcık, Elbistan, and 

Syrian refugee camps directly contributed to the evaluation of 

six major criteria and twenty-five sub-criteria, determined 

based on literature review. The analysis highlighted the 

closeness to be of paramount importance as the most 

important primary factor while distribution center capacity, 

logistics personnel availability, energy availability, distance 

to populated regions, and landslide and flood hazards were 

the most important sub-criteria. The study recommends that, 

for effective disaster preparedness, managers and responsible 

organizations should rank high on these criteria when 

selecting sites for temporary shelters. 

 

D. Role of ETL in Military 

Semlali, El Amrani, and Ortiz [17] demonstrate that due to 

the enormous volume, near-real-time creation, and complex 

structures of satellite data in applications such as air quality 

monitoring, climate change tracking, and disaster predictions, 

it is considered BD. The authors developed software solutions 

more concentrating on ETL processes, especially on the 

ingestion layer of effective integration solving the challenges 

of RSBD management. The proposed tool will continuously 

process incoming data approximately eliminating 20% of 

wrong datasets and 86% of unnecessary files. Thus, the 

method incorporates the cleaned datasets into HDFS for 

further analysis of drastically reduced storage requirements 

and improved data quality. 
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This pilot study by Firmansyah et al. [18] comprises a sample 

of male first responders, current duty troops with and without 

PTSD, and veterans of the armed services who were studied 

for differences in psychosocial, ANS, HPA axis, and 

inflammatory responses to high-intensity exercise. 

Measurements were taken before, during, immediately after, 

and up to 48 hours post-13-minute high-intensity boxing 

during the participation of eight subjects (average age 50.1 

years). Although effects on psychological aspects like 

depression, anxiety, and stress, were observed with a lack of 

clarity in salivary biomarkers, results indicated pronounced 

ANS changes such as meaningful to very large degrees of 

deceleration in HRV lasting time up to 48 post-exercises. 

Proposed results have indicated that high-intensity exercise 

might induce persistent stress-related ANS change among 

sufferers of PTSD. 

 

3. Research Methodology 
 

1) Research Gap 

Despite the advancements made in terms of ETL and BI 

technologies applied to disaster preparedness, there linger 

critical research gaps and constraints in existing trends that 

deter the full potential of military-civilian collaboration being 

attained. ETL is typically slow, struggling with real-time data 

ingest and transformation when it comes to heterogeneous, 

unstructured, and rapidly changing datasets-one major 

character in disaster scenarios- leading to delays in 

intelligence being productive [19]. Quite a number of the BI 

tools are great but usually have post-event analysis in their 

core development rather than being about dynamic, predictive 

decision support in crises as they happen. Furthermore, 

interoperability between military and civilian data systems 

from disparate data standards, security protocols, and 

organizational cultures has inhibited free information 

exchange. Current frameworks interface poorly with data 

trustworthiness and quality concerns when dealing with the 

integration of data from nontraditional or crowd-sourced 

civilian media [20]. Neither are there well-defined and full-

scale models for determining the adaptation of ETL and BI 

processes to different scales and complexities of different 

disasters. Few studies have closely examined ethical, legal, 

and operational complications in the sharing of real-time 

information from the military to civilians and vice versa, 

especially about data privacy and command hierarchies. The 

above weaknesses show glaringly the need for research into 

more adaptive, automated, and secure ETL pipelines that 

support the development of next-generation BI tools with 

predictive capabilities for cross-agency collaboration and 

real-time decision support in rapidly changing environments. 

 

2) Proposed Framework 

The enhanced workflow is designed in Fig 1 to include ETL 

processes and BI tools that will facilitate military-civilian 

interaction in disaster preparedness and response. The first 

point in the workflow is Data Collection when information is 

being gathered from various sources terms as satellites, 

weather, emergency management systems, and even civilians. 

This would be a very important stage in the establishment of 

a multi-dimensional data foundation. The processing of this 

information splits it into Data Pre-Processing: tasks like 

cleaning, formatting, and normalization are performed to 

ensure that the inputs are consistent, accurate, and ready for 

analysis. This is then followed up by Data Loading into 

central systems or supported cloud storage, thereby making 

organized and safe access possible for analyzing and further 

data processing. One of those mentioned above stages is 

Military-Civilian Disaster Prediction, where next-generation 

machine learning techniques MLP-LSTM models are 

deployed to predict possible disaster impacts and scenarios. 

This predictive capability will be rich in preparedness by 

offering early warning signals and data-driven resource 

allocation. Then turns its role around to Business Intelligence, 

referring to the process of transforming predictive and 

historical data into meaningful insight with the help of the use 

of dashboards, reports, or real-time monitoring systems to 

promote faster and more coordinated disaster response efforts 

through the use of BI tools. At last, comes the Case Study 

section in which certain disaster scenarios will be studied to 

validate the effectiveness of the workflow, showing which 

areas would require improvement, and showcasing practical 

applications of the ETL-BI integration framework. Figure 1 

anticipated a simplified, yet thorough technology-

undergirded approach, thus augmenting agility, efficiency, 

and accuracy in disaster management collaboration. 

 
Figure 1: Proposed Framework 

 

3) Data Collection 

There are many sorts of data about disasters or calamities such 

as emergency management records, meteorological patterns, 

geospatial data, infrastructure status, military assets, health 

data, and supply chain logistics information which can be 

used from Kaggle datasets. These datasets can well 

demonstrate how ETL and BI tools could facilitate military-

civilian interaction during disasters for preparedness. The 

datasets allow you to integrate various types of data: 

including past disaster incidences, real-time weather 

forecasts, geospatial mapping of affected areas, infrastructure 

damage, healthcare availability, and resource allocation. With 

the unification of such datasets through ETL processes and 

predictive analysis with BI tools, agencies can effectively 

enhance their efforts in forecasting disaster effects, coordinate 

effective response actions, and optimize recovery efforts. 

 

Dataset Link:  

https://www.kaggle.com/datasets/jseebs/disaster-dataset 

 

4) Data Pre-Processing using Min-Max Normalization 

(Transform Phase) 

In the context of disaster databases, the pre-processing stage 

is very vital in making the dataset ready for analysis as well 

as in ensuring that it is in good format for predictive 

modeling. One example of Min-Max Normalization is an 

important technique in this phase when datasets are 

characterized by features with different scales. For instance, 

weather parameters like wind speed or rainfall levels are often 
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not in the same range compared with other infrastructural data 

such as road damage severity or hospital bed capacity. 

Therefore, Min-Max Normalization can be applied to rescale 

the normal features' value range to the target common 

interval, usually between 0 and 1. This prevents an individual 

feature from having a decided outsize impact on the analysis 

or performance of the model because of the scales. The 

transformation facilitates the model to learn patterns from all 

features more equally compared to unnormalized data, 

particularly when the machine learning model uses distance-

based algorithms or gradient-based optimization methods, 

with unnormalized data creating bias. It is given in Eq. (1). 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (1) 

 

All features are brought to a comparable scale by scaling them 

within the range of 0 and 1. A piece of this procedure 

calculates the min and max for features available in the data 

set. Thereafter, the conversion transforms the values of each 

feature within the range of 0 and 1. This process ensures that 

all sole features are brought into comparable scales so that the 

data can get more impressive and lucid for analysis compared 

with other methods. Min-Max normalization comes in handy 

in disaster management applications, whereby data are 

collected from a plethora of data sources, such as weather 

data, geospatial data, and military asset data with different 

measurement units. For example, the temperature can vary 

from -10 to 45 in centigrade, whereas the number of available 

hospital beds can be from 0 to 1000. After applying Min-Max 

Normalization, both of these features will be normalized to 

the same scale, equalizing the treatment by machine learning 

models hence improving their predictive accuracy. The model 

thus obtained would be more robust, less sensitive to outliers, 

and capable of providing reliable predictions for disaster 

preparedness and response strategies. 

 

5) Data Loading (Load Phase) 

Once the data has been pre-processed and normalized, the 

next major component of the ETL pipeline is the Load Phase 

during which the transformed data now gets loaded into the 

target system's centralized data warehouse, a cloud storage 

solution, or a dedicated disaster management platform. 

However, loading this data in the context of civil-military 

collaboration toward disaster preparedness should be done 

with utmost precision, letting all agencies be able to tap into 

clean, consistent, and updated data for on-time decisions. 

Integrated analysis, predictive modeling, and visualization 

are made possible by the data warehouse or cloud repository. 

Loading typically requires maintaining data integrity during 

the load phase, i.e., no corruption, duplication or loss occurs 

at all during the transfer. With traceability and transparency 

in mind, the primary datasets are often loaded with metadata 

such as data source, timestamp, and transformation details. In 

disaster preparedness scenarios, a large number of agencies 

like the weather department, emergency response agencies or 

services, public health services, and military logistics units 

depend heavily on the accuracy and consistency of this data 

loaded for speedily coordinating, allocating resources, and 

forecasting disaster impacts. Thus, an effective load 

mechanism that can support both batch and real-time data 

intake would be vital, especially in situations where 

continuous updates could be very important for response 

efforts, for instance, when the weather conditions or 

infrastructure status keeps evolving. 

 

Data loading may be different in its regard relative to the 

urgency of a disaster scenario as well as the architecture of a 

system. On the other hand, batch loading refers to the loading 

of large volumes of data collected over a period and brought 

into a system all at once: an operation more often associated 

with historical analysis and fairly long-term adjusted strategic 

planning. Real-time or near-real-time loading accommodates 

instant updates as new data becomes available, which also 

includes loading in the case of dynamic disaster response 

operations wherein decisions are rather made quickly. For 

example, when a hurricane occurs, real-time loading of 

weather information, alerts of flood stages, and evacuation 

statuses into a common system would enable both military 

and civilian agencies to watch developments and modify their 

actions accordingly. Validation checks for formats and 

quality compliance for incoming data may also form part of 

the load process. Reject corrupt records and log errors for 

further examination. Security measures such as encryption 

and access control assure confidentiality and integrity and are 

therefore imperative in highly sensitive environments such as 

military-civilian collaboration. The load phase not only 

terminates the ETL cycle but also begins a new approach to 

advanced business intelligence operations which will allow 

the joint forces to use predictive analytics, dashboards, and 

alerts for a much better disaster preparedness and response 

strategy. 

 

6) Military-Civilian Disaster Prediction Using MLP-

LSTM 

The Military-Civilian Disaster Prediction-based MLP-

LSTMs deal with two aspects of disasters, one temporal and 

the other spatial. Spatial static features, such as geo-

referential and infrastructural information, are learned by the 

MLP, while LSTM learns the active time series data, such as 

data on forecasted weather conditions and seismic activities. 

The outputs from both networks are incorporated together 

into the predictive model, and then using a loss function, the 

predictions are optimized for accuracy and execution of the 

management strategies jointly with military and civilian 

entities in terms of disaster management. 

 

Input Representation 

Input representation in the proposed system associated with 

disaster management intrinsically involves heterogeneous 

domains such as historical data, real-time sensor information, 

satellite imagery, weather reports, emergency call logs, and 

logistics data about military and civilian aspects. These sets 

of inputs are subjected to different preprocessing mechanisms 

and encoded into suitable structured formats for ETL 

operations and machine-learning models. Initially, 

categorical variable values are label-encoded or one-hot 

encoded, and then numerical values are normalized so that the 

different features can be brought to a common standard. In 

addition, temporal data such as time-stamped incident logs 

and weather patterns make their way to sequences amenable 

to LSTM-type processing for the system to intuit time-

dependent patterns. This multi-modal, structured input 

representation is, therefore, helpful in providing a broad span 

of disaster variables conducive to prediction and robust real-

time decision-making. 
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MLP Layer 

In the present research, the role is played by the layer MLP to 

convert the structured data input into high-level feature 

representations representing the underlying patterns 

necessary for disaster impact forecasting. After extracting, 

transforming, and loading from several sources through the 

ETL process, the MLP layer will involve the primary learning 

phase of the proposed MLP-LSTM architecture. It consists of 

several fully connected layers applying conflict non-linear 

activation functions (which are commonly ReLU) that map 

and learn the complex relationships among such features as 

weather severity, population density, resource availability, as 

well as the vulnerability of infrastructure. This allows the 

model to be able to learn those significant interactions and 

correlations that are frequently ignored by conventional 

modeling. Therefore, in reality, the MLP is a powerful feature 

extractor that compresses and transforms the raw input 

variables into an abstract, information-laden vector that can 

be further efficiently processed by the temporal learning 

component (LSTM). It is given in Eq. (2). 

 

ℎ𝑚𝑙𝑝 = 𝜎(𝑊1𝑋spatial + 𝑏1)  (2) 

 

LSTM Layer 

From modeling the evolving nature of disasters, the LSTM 

layer, described in the proposed system, is responsible for the 

import of temporal dependencies and dynamic patterns across 

sequential data. The LSTM layer learns greatly from time 

sequence data corresponding to modeling disaster variables 

changing over time, while most neural networks assume 

independence among all inputs. The MLP layer extracts high-

level features from the raw inputs; these high-level features 

are fed into the LSTM layer, where a sequence of memory 

cells and gating mechanisms are utilized to retain relevant 

historical context while also forgetting obsolete information. 

By remembering long-term dependencies, the model 

describes how past weather behaviors, emergency response 

times, and resource consumption impacted future event 

conditions such as sudden surges in casualties or shortages in 

supplies. 

 

Specifically, the relevance of the LSTM layer in this work is 

to provide accurate forecasting of critical disaster parameters 

concerning time so that disaster response can be made more 

informed and timely by both military and civilian agencies. 

For example, the LSTM can assess a series of weather data, 

response times, and medical supply levels and predict when 

and where the demand for resources may peak so that 

assistance and personnel can be preemptively deployed. Such 

temporal learning becomes crucial in fast-evolving cases like 

hurricanes or wildfires, where damage conditions evolve 

every hour, and delayed interventions become fatal. In the 

architecture of the larger system, the LSTM turns static 

feature representations into dynamic predictions that drive the 

real-time dashboards explained in the Business Intelligence 

(BI) layer, hence ensuring operational readiness and 

situational awareness. So, the LSTM is at the heart of such an 

effort that allows the system to step out from static analysis 

and into proactive and data-driven disaster response. It is 

given in Eq. (3), (4) & (5). 

[

𝑓𝑡
𝑖𝑡
𝑜𝑡
𝑐̃𝑡

] = [

𝜎
𝜎
𝜎

𝑡𝑎𝑛ℎ

] (𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏)   (3) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡    (4) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh⁡(𝑐𝑡)    (5) 

 

Concatenation and Final Prediction 

The concatenation and final prediction stages model 

synthesize the features, learned spatially (MLP) and 

temporally (LSTM) in the model, to arrive at a single 

prediction about the occurrence of any disasters. The spatial 

features, generated through the MLP, provide important 

steady-state pictures such as those for geography, status of 

infrastructure, or the environmental state, whereas the time-

dependent features learned by the LSTM from sequential data 

like weather patterns, seismic activity, or historical disasters 

capture the temporal features. Concatenation involves the 

outputs of both the MLP and LSTM being spatially or 

temporally derived hidden states, each representing some 

learned features. It is given in Eq. (6) & (7). 

 

ℎcontact = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑚𝑙𝑝, ℎlstm )   (6) 

𝑦̂ = 𝜎(𝑊𝑜ℎ𝑐𝑜𝑛𝑐𝑎𝑡 + 𝑏𝑜)    (7) 

 

Loss Function 

The loss function for Disaster Prediction may be said to play 

a pivotal role in optimizing MLP-LSTM-based network 

architecture during training. It measures how different the 

output predicted by the model is from the actual target values- 

that is, the discrepancy between the predicted and the actual, 

with the least objective of adjusting every influencing 

parameter of the model in the downward direction 

corresponding to the associated error. Binary cross-entropy 

loss is employed in this case for a task where the prediction 

could be termed as a disaster or not because this method 

imposes heavier penalties on the model for misclassifications 

concerning the presence and absence of disasters. Therefore, 

minimizing loss implies better reliability of prediction, a key 

point in successful military-civilian collaboration in disaster 

preparedness, as timely and accurate predictions can facilitate 

better distribution of resources and response strategies. 

 

ℒ = −[𝑦𝑙𝑜𝑔⁡(𝑦̂) + (1 − 𝑦)𝑙𝑜𝑔⁡(1 − 𝑦̂)]   (8) 

 

The MLP-LSTM Architecture in Fig 2 shows how hybrid 

deep learning models are built between Multi-Layer 

Perceptron and Long Short-Term Memory Networks in the 

effective processing of disaster time series as well as 

structured data. Here, initially, in-house input with weather 

patterns, emergency alerts, and sensor readings is processed 

in fully connected layers to capture complex nonlinear 

relations. The MLP output then feeds into learning temporal 

dependencies and sequential patterns using LSTM layers in 

the available data. This approach allows for identifying 

features that can capture their evolution over time, mostly 

effective in disaster escalation prediction, resource needs, and 

response timing. MLP-LSTM could thus improve forecasting 

accuracy and decision support in disaster preparedness 

scenarios by providing timely insights for military and 

civilian agencies. 
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Figure 2: MLP-LSTM Architecture 

 

Role of Business Intelligence (BI) in Disaster Response 

In this step, BI tools are specifically used for converting 

collected and processed disaster data into actionable insights 

to directly facilitate timely, informed, and coordinated 

decision-making. This will include the real-time monitoring 

of disaster conditions via dynamic dashboards, predictive 

analysis to ascertain how disasters will impact the situation, 

appropriate allocation of resources as per the changing 

demands, and coordinating and communicating efforts 

between military, civilian, and humanitarian organizations. 

BI platforms bring multiple sources of data into one 

operational picture by which agencies can follow situations as 

they develop, anticipate risks, optimize deployments of 

rescue teams and supplies, and effectively communicate with 

the public. Moreover, post-response activities will also 

include using BI tools to evaluate responses and engage in 

lessons learned from each event to help bolster preparedness 

for the next. 

 

Real-Time Situational Awareness 

BI is the blood of disaster response. It provides real-time 

situational awareness that's critical for fast, informed 

decision-making when the situation rapidly changes. 

Hurricanes, earthquakes, wildfires, floods, and all disasters 

are very unpredictable; when the information comes late, 

chaos and mismanagement take place. BI tools brought 

together all data collected in an organized manner from 

various sources such as weather stations, emergency call 

centers, satellite images, social media feeds, geospatial 

sensors, and field operation reports. BI platforms then 

consolidate the data into dynamic, interactive dashboards and 

live reporting systems that can provide both military and 

civilian agencies with an up-to-the-minute operational picture 

of the disaster landscape. With what they observe, decision-

makers, emergency managers, and field commanders can then 

identify possible emerging hotspots and forecast the 

movements and escalation of threats to better target the 

deployment of critical resources such as rescue teams, 

medical supplies, and evacuation transportation. Rather than 

react blindly, agencies can now anticipate needs, adjust 

strategies in real time, and precisely coordinate action across 

different units and organizations. Ultimately, if agencies 

would have to be without BI for real-time situational 

awareness, they would be severely hampered in their efforts 

and risk slow reactions, inefficient resource use, and the 

escalation of loss of life and impact on infrastructure, which 

indicates how fundamentally important BI has become in the 

current day disaster response activities. 

 

Predictive Analytics for Resource Allocation 

Teaching-learning focused on disaster management by way 

of business intelligence for forecasting future disaster events 

and allocation of resources to smartly respond to those events. 

By using historical records of disasters, understanding the 

patterns of extreme weather with geographical trends, and 

using real-time ground data, BI tools run predictive analytics 

models that can forecast areas that might get severely affected 

even before they are found to be severely affected by a 

disaster. Thus, BI platforms would model predictions on 

poorly affected areas or model severely affected areas based 

on severe flooding, outages, or mass casualty-type events as 

environmental changes and demographic vulnerabilities take 

place. They will predict surge-demanding hospitals, shelters, 

or critical infrastructure based on real-time patient admission 

rates or flows of evacuees. This way Military logistics units, 

humanitarian organizations, public health agencies, and 

emergency services use predictions to position supplies ahead 

of a disaster-conducive environment, such as food, water, 

fuel, medical kits, and rescue equipment. This minimizes last-

minute rushes and potential congestion in transport. The 

efficient resource optimization and time is when mobilization 

occurs to the benefit of better utilization of scarce resources 

and enhance the time of response; hence, delivery of 

assistance to the vastly naive population takes place on time. 

BI predictive analytics save lives by reducing wastage, 

reducing operational costs, increasing the effectiveness of 

interventions with precision, contributing profoundly to the 

resilience and responsiveness of disaster management 

systems, and significantly alleviating the humanitarian and 

financial costs of natural disasters. 

 

Improved Collaboration Between Agencies 

An equally critical task of BI in disaster management is 

enhancing the relationship among multiple civilian and 

military agencies to ease the workflow through these complex 

multi-organizations. Most disaster response initiatives 

involve an enormous and assorted web of actors comprising 

military units, police forces, fire departments, emergency 

medical services, NGOs, international aid agencies, and 

private sector logistics providers. Each of them brings unique 

capabilities but also respective operational protocols and 

information systems. BI platforms take care of the differences 

among these actors by integrating, harmonizing, and 

standardizing data from various sources into one user-friendly 

and interpretable environment. Using shared dynamic 

dashboards, customized reports, real-time alerts, and secure 

access controls, BI tools allow all actors to maintain a 

common operational picture of the disaster landscape. This 

unique visibility removes traditional data silos, reduces 

bottlenecks in information sharing, and encourages 

synchronized decision-making across organizations at a time 

when such efficiency is crucial, especially during high-stress, 

time-critical disaster scenarios. Thereby, evacuation 

planning, critical supply chain coordination, real-time 

communication to the public, and dispatch of emergency 

teams, among other functions, are aligned, efficient, and 

targeted. In effect, BI would be in a sense the "universal 

language" for everyone involved, thus facilitating 

coordination and ultimately enhancing efficacy and speed for 

the disaster response efforts overall extent, hence a great 

number of lives saved and speedy recovery of the affected 

communities. 
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Post-Disaster Analysis and Continuous Improvement 

As much as the immediate concerns have been taken care of 

in disaster management, the importance of Business 

Intelligence (BI) tools is unquestionable when they are put to 

post-disaster analysis and continuing disaster preparedness 

strategy development. After stabilizing the crisis phase, 

military, civilian, or humanitarian agencies will use BI-

governed analytics to evaluate their respective response 

operations thoroughly and to systematically identify areas of 

strength or critical failures and inefficiencies-as defined by 

different key performance metrics such as average response 

times, resource mobilization, public communication reach 

and accuracy, casualty rates, as well as levels of impact on the 

built environment. BI has therefore provided a clear and 

objective view, established on data, onto successes and 

shortcomings of operations through its dashboards and 

dynamic reports that analyze an organization's performance 

on key aspects such as response times, mobilization of 

resources, reach and accuracy of public communication, 

casualty numbers, and levels of impact on physical 

infrastructure to achieve through itself. With this evidence-

based approach, organizations are in a position to identify 

consistent bottlenecks, find hidden weaknesses, and 

recognize lost opportunities for faster or more effective 

interventions. Post-disaster recovery will also begin with BI 

as it would entail the use of the right set of tools for 

conducting a detailed damage assessment, administering 

geospatial analyses, and assisting government, donor, and 

community planners and strategists with prioritization for 

reconstruction projects and equitable recovery funding 

allocations in relation with severity and need. It strategizes 

these raw, disastrous data into meaningful actionable insights, 

thus, ensuring that every disaster is maximally learned from 

for better preparedness planning, improved response 

protocols, enhanced inter-agency coordination, and strong 

community resilience against future disasters in terms of 

speed, efficiency, and effectiveness. 

 

Disaster management-related activities-pyramid ETL 

concerned with BI is shown in Fig 3. This illustration shows 

how essential agencies' weather data and emergency services, 

together with defense data, interface with this centralized 

ETL system, with standardization requirements and 

structuring for analytical purposes. Thus, these processed data 

can provide real-time BI dashboards to alert decision-makers 

about key indicators, upcoming developments, and their most 

suitable response. Within this context, the figure represents a 

unified data infrastructure to augment situational awareness 

and mitigate rapid proactive response in military and civilian 

sectors in times of emergency. 

 

 
Figure 3: Bi IN Disaster Response 

 

Case Study: The U.S. Government’s Response to 

Hurricane Katrina 

Hurricane Katrina hit the Gulf Coast of the United States in 

August 2005 and exposed very severe weaknesses in disaster 

preparedness and response infrastructure in the country. The 

Category 5 storm caused over 1,800 deaths and billions of 

dollars in property damages, affecting mostly New Orleans, 

Louisiana. One of the worst mishaps brought by the hurricane 

was the lack of coordination between federal and local 

agencies. Warnings were given by meteorological services, 

but evacuation and deployment of resources and rescue 

operations were delayed by communication problems and 

fragmented data systems. The Federal Emergency 

Management Agency (FEMA), in general, failed to have a 

platform to assimilate and analyze information from its 

sources, which hindered timely decision-making and logistics 

planning during the most critical hours. 

 

The chronic under-preparation and lack of real-time data 

integration are manifestations of more than the absence of an 

appropriate ETL arrangement. The data about weather 

services, emergency calls, hospital capacity, and military 

assets existed as siloed data, rendering it almost impossible to 

create any coherent situational image. There was no 

centralized dashboard to rely on for a predictive model for 

future forecasting of requirements on resources, and thus all 

data was being collected via time-consuming manual 

reporting methods or slow-moving bureaucratic chains. 

Consequentially, food, water, and medical aid got delayed, 

with many victims going days without help. Lack of 

interoperability within systems and poorly flowing 

information caused massive confusion, misallocation of 

resources, and degradation in public trust in government 

institutions. 

 

In retrospect, the Katrina response has been the dynamic 

factor for reviewing emergency management in the U.S. Had 

such infrastructure as ETL pipelines, Business Intelligence 

dashboards, and machine learning models—as in the case of 

the MLP-LSTM architecture suggested in this study—been 

operational, officials could have had access to unified data 

views and real-time analytics for accurate forecasts of impact 

zones and casualty estimates, thus enabling faster 

mobilization of military and civilian resources, better 

distribution of medical and logistical support, and streamlined 

communications with the public. Hence, the case of Hurricane 

Katrina shows the urgent need for integrated, data-driven 
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disaster management infrastructures that stimulate timely and 

collaborative responses among agencies. 

 

4. Results & Discussion 
 

The analysis that follows is a result of a thorough examination 

of the role of ETL and BI tools in militarizing civilian 

collaboration during the preparedness and response to 

disasters. The section illustrates how data integration and 

real-time analytics change disaster management by 

demonstrating an array of key performance indicators, mostly 

about data loading time, improved data quality, efficiency of 

response, and casualty rates. The graphs and discussions 

underscore the advantages of conversion into BI and faster 

response times and situational awareness, as well as fewer 

casualties. Results, therefore, provide empirical proof that 

such strategies in using data can and should be adopted in 

national frameworks for disaster preparedness. 

 

Experimental Outcome 

The data loading time by the agency is depicted in Fig 4. It 

captures the total time taken by different agencies in ETL of 

disaster-related data during a response operation. By 

observation, it can be said that the processing times for the 

ETL vary across the agencies, as the NGO Reports with the 

longest time while the Weather Agency and then the local 

emergency management department follow it. It may be due 

to, the complexity and massiveness of data to handle, the 

preparedness of the systems, level of their integration with 

automation in data-pipes. The need to optimize the ETL 

workflows has been pointed out very clearly in the chart, 

particularly among those that have longer loading times, as it 

can delay data processing and, hence, timely decision-making 

in a disaster. This comparison indicates the potential benefit 

of enhancing the efficiency of the data pipeline using 

automated ETL systems and coordination between agencies 

for effective disaster intervention and resource allocation. 

 

 
Figure 4: Data Loading 

 

Data quality improvement has been illustrated before and 

after ETL in Fig 5. The extent of improvement in data quality 

after the ETL process amounted to much more. A bar chart 

exhibiting the before and after situation demonstrates that 

there were significant reductions in missing data, duplicate 

records, and errors after traversing the ETL pipeline. A 

sizeable improvement establishes how useful the ETL process 

is for cleansing unrefined data for reliable and accurate 

intelligence. Such improvements capably enable decision-

makers to counter any disaster with high-quality accurate 

data, hence aiding timely and informed decision-making. The 

graph showcases the significance of a credible ETL lifecycle 

to the integrity of data used in disaster response. 

 
Figure 5: Data Quality Improvement 

 

The Incoming Disaster Data Volume Varied Over Time in Fig 

6 is the first ten hours of cumulative collection of data after 

the commencement of a disaster. A steady and rapid rise of 

the data influx is seen in the line graph, a station on 

approximately 50 MB during the first hour. By the tenth hour, 

it grows above 1,000 MB. This form reflects the continuous 

change of environments in disasters where inputs are formed 

from different sources within a very short period as 

integrating media, like weather updates, field reports, satellite 

imagery, and emergency communications, underpin the 

decision-making process. A very steep rise especially 

between hours 3 and 7 suggests a critical period during which 

situational awareness heightens, requiring very well-muscled 

structures to absorb and process this surge. This pattern 

evokes the relevance of scalable ETL systems and real-time 

BI tools able to process high data volumes within tight 

temporal conditions for accurate and timely probe responses. 

 
Figure 6: Incoming Disaster Data 

 

BI has led to an increased decrease in response times for 

major operational agencies shown in Fig 7. The bar graph 

compares average response times for the medical, rescue, 

logistics, and coordination units before and after the 

implementation of BI. Before the new BI was applied to the 

organization, there was a very long time from 60 minutes for 

a medical team to 120 minutes for a logistics team. After the 

BI was implemented, all units had almost 50% less time, i.e., 

logistics went from 120 minutes to 60 minutes, rescue from 

50 minutes, and coordination now takes 40 minutes. This 

enhancement expresses the operational efficacy gained by BI 

tools with real-time information, predictive analysis, and 

single dashboards to fast-track decision-making and resource 

deployment. The graph thereby is emphatic on the core of BI 

Paper ID: SR25509004027 DOI: https://dx.doi.org/10.21275/SR25509004027 647 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 5, May 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

towards avoiding delays, improving coordination, and saving 

lives by response. 

 
Figure 7: Response Time 

 

The Casualty Rates Over Time With and Without BI in Fig 8 

neither reveal the major role of Business Intelligence (BI). 

The graph of cumulative casualties over 10 hours after the 

onset of disasters demonstrates a huge difference between 

responses with BI and without BI. The casualties without BI 

spike to almost about 500 by the tenth hour; whereas, with BI, 

the casualty rate rises at a slower, more controlled pace, 

plateauing at just over 300. The numbers reflect how BI 

facilitates faster decision-making, better resource allocation, 

and proactive response strategies by providing real-time 

situation awareness and predictive analytics. The graph 

reveals, therefore, that BI is efficient, as it straightly saves 

lives by enabling agencies to act the minute every second 

counts in disaster scenarios. 

 
Figure 8: Casualty Rate Over Time 

 

A comparative analysis of our MLP-LSTM model and 

existing methods such as CNN and SVM will be discussed in 

Table 1. The result indicates that the MLP-LSTM approach 

outperformed others across all major evaluation metrics. In 

comparing CNN, a recall of 96.77% and precision of 91.5% 

would be considered high; however, accuracy stood at the low 

end of 74.8% with an F1-score of 88.52% down-concurring 

(meaning one or the other might have been compromised 

along the way due to false positives or model generalization). 

The SVM model, on the other hand, performed overall better; 

while having very strong accuracy plus 95.56%, its precision 

and recall are in reasonable balance. However, the proposed 

MLP-LSTM architecture was found to beat them, scoring 

recognition with a whopping 99.32% accuracy, 98.72% 

precision, 98.77% recall, and 98.12% F1. This underpins the 

effectiveness of MLP-based feature extraction combined with 

LSTM's temporal learning capabilities for more reliable and 

accurate predictions of disaster-related variables, hence 

facilitating the timely decision-making process in such vital 

scenarios. 

 

Table 1: Comparison with Existing Methods 

Methods 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

CNN [21] 74.8 91.5 96.77 88.52 

SVM [21] 95.56 93.3 95.66 95.32 

Proposed MLP-LSTM 99.32 98.72 98.77 98.12 

 

5. Conclusion and Future Work  
 

Disaster preparation is firmly grounded in ETL and BI 

technology collaboration for military-civilian response 

collaboration, thereby enhancing the responsiveness of any 

national response capacity. ETL eases data collection and 

standardization from many sources: weather agencies, 

emergency services, NGOs, and military reports. This data is 

combined and creates an avowed foundation for BI systems 

generating useful information from real-time situational 

awareness to predictive modeling and post-disaster analytics. 

Dynamic dashboards interfaced to provide visual reports and 

trends create faster and easily actionable BI information for 

decision-makers in various agencies regarding rapid-going 

changes in disaster situations. Historical scenarios like 

Hurricane Katrina in the US highlight the detrimental effects 

of poor coordination and fragmented data—one situation that 

could have greatly benefited from the presence of ETL and BI 

systems. The integration of these systems fosters common 

operational awareness between civilian and military elements 

while breaking down the data silos toward a synchronized, 

data-driven approach for resource allocation, evacuation 

planning, and recovery. Heading for shorter response times, 

fewer casualties, and better operational coordination are the 

benefits that witness how intelligent handling of data can 

transform disaster contingencies. 

 

Future work will address AI-based data quality checks for the 

automation of ETL pipelines. This activity will extend the BI 

systems to acquire real-time sensor data from IoT, UAV 

image feeds, and social media. The next research effort must 

explore decentralized BI platforms where local agencies can 

work autonomously while contributing to the national disaster 

intelligence network. Significant areas for standardization 

across jurisdictions and system interoperability should be a 

focus for any forthcoming framework for worldwide disaster 

cooperation. Finally, machine learning would complement BI 

dashboards with enhanced predictive ability for assessing the 

impacts of disasters. These future trajectories aim to turn 

disaster management into an agile, resilient, and intelligent 

domain. 
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