
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

SRE-Driven Cost Optimization in Kubernetes Using

Resource Profiling

Kiran Thankaraj

Sephora USA Inc

Abstract: In today's cloud-native era, managing the cost of Kubernetes is more business requirement than a tech issue. In this journal,

we look at how Site Reliability Engineers (SREs) can face cost inefficiency head-on through resource profiling. Through the use of

hands-on tools and production-grade workflows, SREs can identify what is over-provisioned, under-used, or mis-configured. We guide

you through a hands-on, step-by-step method to optimizing Kubernetes workloads without compromising reliability. Along the way, we’ll

highlight key lessons, real challenges, and proven practices that empower SRE teams to make smarter, cost-conscious decisions.

Keywords: Kubernetes, Site Reliability Engineering, Cost Optimization, Resource Profiling, Observability, Cloud-Native, Performance

Tuning

1. Introduction

Kubernetes has quickly become the backbone of modern

application infrastructure. Its flexibility, scalability, and rich

ecosystem are game-changers—but they come with a price.

Literally. As usage scales, so do cloud bills, and often,

resources are over-provisioned "just to be safe." That’s

where SREs step in. SREs don’t just keep systems reliable—

they ensure they run efficiently. One powerful approach?

Resource profiling. It’s about knowing what your

applications truly need to run well—and cutting the fat. This

journal explores how SREs can lead the charge in cost

optimization using the data and tools they already have.

Why This Matters for SREs?

As companies move more toward Kubernetes and cloud-

native setups, the job of Site Reliability Engineers (SREs) is

becoming more expansive. Sure, we’re still laser-focused on

keeping systems reliable, but these days, we’re also being

asked to think about cost efficiency. It’s no longer enough

for systems to just work well—they need to use resources in

the smartest way possible to avoid unnecessary spending.

One of the best tools we have as SREs is observability. This

is where we finally get to start noticing inefficiencies. For

example, sometimes services ask for way more CPU or

memory than they even use. Yes, this may avoid failures, but

it also leads to wasted resources and huge cloud bills. On the

other hand, if a service lacks resources, then it can lead to

slowdowns or even outages, which is not great. This is

where resource profiling comes in. By looking more closely

at how resources are being used, we can make better

decisions about how to optimize. For instance, we can

dynamically set CPU and memory limits according to actual

usage, avoiding over- and under-provisioning. SREs are

well-placed to do this because we sit at the intersection of

infrastructure and the applications that execute on it.

2. Methodology: Step-by-Step SRE Workflow

for Cost Optimization

Paper ID: SR25504223646 DOI: https://dx.doi.org/10.21275/SR25504223646 354

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3. Challenges in Resource Profiling &

Optimization

• Dynamic Workloads: Application workloads vary

over time due to traffic patterns, seasonality, or

business events. Profiling based on a static snapshot

often leads to inaccurate or short-lived optimizations.

• Limited Usage Visibility: Kubernetes doesn’t natively

provide granular resource usage data. Without the right

observability stack, understanding real consumption

versus allocation is difficult.

• Performance vs. Efficiency Trade-offs: Tuning for

cost savings can impact system stability or response

times. Striking the right balance between efficiency and

reliability is a constant challenge.

• Autoscaling Complexity: Horizontal and vertical pod

autoscalers rely on clean, timely metrics.

Misconfigured thresholds or noisy signals can lead to

unpredictable scaling behavior.

• Multi-Tenancy Conflicts: In shared environments,

noisy neighbors and lack of resource isolation muddy

profiling data. Ownership and accountability also

become harder to enforce.

• Fragmented Tooling: Monitoring, cost analysis, and

resource tuning often span multiple tools. Stitching

insights together from disparate systems slows down

decision-making.

• Organizational Resistance: Engineering teams often

default to over-provisioning out of caution. Promoting

resource-conscious development requires cultural

change and education.

4. Best Practices

• Establish Baseline Metrics: Keep an eye on how your

services utilize CPU, memory, and other critical

resources over time. This is a good reference point and

enables you to spot anything unusual early on.

• Use Profiling in Staging First: It's a less risky

environment to test out your profiling methods before

you start making changes in production. It's a better

place to figure out what works—and what doesn't—

without risking user dissatisfaction.

• Set Realistic Requests & Limits: Avoid guessing and

the default settings—use what your metrics are already

indicating. This prevents both waste from over-

provisioning and slowdowns from under-provisioning.

• Implement Fine-Grained Autoscaling: Enabling

autoscaling and then bail is not enough—ensure that it's

calibrated for your true workloads. Accurate autoscaling

is money-saver and keeps things running smoothly

when demand surges.

• Leverage Cost Visualization Tools: Utilize tools such

as Kubecost or your cloud provider's billing dashboards

to illustrate where the spend is occurring. When teams

can see the numbers, they'll care—and take action.

• Run Regular Optimization Reviews: What was good

last quarter might not be good this quarter, so check

your resource settings frequently. A daily or monthly

check-in can prevent bigger problems (and bills) later

on.

• Promote a Resource-Conscious Culture: Get

developers to understand that resources aren't "free" and

over-provisioning expenses accumulate. When everyone

Paper ID: SR25504223646 DOI: https://dx.doi.org/10.21275/SR25504223646 355

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

has skin in the cost story, smarter decisions get made up

front.

• Automate Where Possible: Use policy tools or scripts

to enforce resource limits and avoid surprises. This

keeps your environment clean and saves your team from

chasing configuration drift.

5. Illustration: Profiling & Optimization

Lifecycle

1) Start with Observation: The very first thing to do is to

observe simply. We rely on the monitoring tooling—

Prometheus, Grafana, possibly Datadog or New Relic—

to offer us a proper comprehension of what's going on

underneath the hood. We are not guessing; we are

looking at how services behave at different times during

the day, traffic loads, and deploys.

2) Understand the Baseline: After a couple weeks of

watching, trends begin to emerge. You have an idea of

what is "normal"—how much CPU something typically

uses at its busiest times, or how much memory it holds

after a job completes. This is your baseline, and all else

is built upon it.

3) Spot the Inefficiencies: As soon as you have sufficient

context, inefficiencies are in the forefront. You have

pods that are allocating much more CPU than they ever

will need, or spiked-up, crashed jobs due to memory

constraints which are too tight. It is detective work—it's

either occasionally because of a bad limit or legacy

config that no one ever questioned.

4) Bring in the Dev Team: This section is important: don't

do this by yourself. Sharing these results with the

development team takes profiling from a cost-saving

exercise and makes it a collaborative effort. Maybe they

were over-provisioning because of one bad incident six

months earlier. Sharing real utilization facts, you can

make smarter decisions together.

5) Adjust Resources Carefully: Now comes the tuning

phase. You tweak CPU and memory requests, realign

autoscaler targets, maybe even introduce vertical pod

autoscaling to some pickier services. Roll out changes

piecemeal—canary or blue/green if that makes a

difference—always checking to make sure nothing gets

harmed.

6) Validate, Don’t Assume: Just because you've

"optimized" something doesn't necessarily mean it's

Paper ID: SR25504223646 DOI: https://dx.doi.org/10.21275/SR25504223646 356

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

optimal. After-the-fact monitoring is valuable. Did

latency balloon? Are there retries through? Are you

writing what you're supposed to? Sometimes, proper

settings aren't apparent until they've been deployed in

production for a few weeks.

7) Keep the Loop Going: This is not a one-off activity.

Business needs shift. New features release. Traffic

behavior shifts. Profiling and tuning become a

drumbeat—something you return to during incident

reviews, capacity planning, or simply your monthly

optimization check-ins.

6. Conclusion

Kubernetes gives us tremendous power—but with great

power comes great responsibility (and often, a great cloud

bill). By taking a structured, data-driven approach to

resource profiling, SREs can cut waste, improve

performance, and help their organizations scale more

sustainably. This isn’t just about saving money—it’s about

building smarter systems. With the right mindset and tools,

SREs can lead the way to a more efficient, resilient future.

References

[1] Kubecost. https://kubecost.com

[2] Goldilocks by Fairwinds.

https://github.com/FairwindsOps/goldilocks

[3] Vertical Pod Autoscaler.

https://github.com/kubernetes/autoscaler/tree/master/ve

rtical-pod-autoscaler

[4] ArgoCD. https://argo-cd.readthedocs.io

[5] Prometheus. https://prometheus.io

Paper ID: SR25504223646 DOI: https://dx.doi.org/10.21275/SR25504223646 357

http://www.ijsr.net/

