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Abstract: This paper proposes an energy-efficient and SLA- aware task scheduling framework for large-scale cloud environments using 

a hybrid Genetic Algorithm–Whale Optimization Algorithm (GA-WOA) integrated with predictive modeling and explainable AI. The model 

uses XGBoost regressors to estimate task execution time and resource utilization based on five- dimensional workload vectors extracted 

from the Alibaba Cluster Trace v2018 dataset, which contains over 1.2 million real-world job instances. Scheduling is performed using a 

multi-objective fitness function that simultaneously minimizes total energy con- sumption, SLA violation rate, and makespan while 

ensuring task- to-resource exclusivity and capacity constraints. Experiments conducted on a CloudSim-based simulation environment with 

200 physical hosts and 6 baseline methods demonstrated that the proposed approach achieves 93.4% precision, 92.1% recall, and 92.7% 

F1-score. Compared to the best baseline, the proposed model reduces SLA violations from 11.6% to 2.7%, energy usage from 152.6 kWh 

to 118.3 kWh, and load imbalance from 0.179 to 0.097. Root Mean Square Error (RMSE) was minimized to 0.131 for resource predictions. 

An ablation study confirmed the critical role of the prediction module, SLA constraint, and migration logic. SHAP-based explainability 

validated the model’s transparency by highlighting CPU demand and data size as dominant scheduling features. 

 

Keywords: Energy-efficient scheduling, big data processing, cloud computing, resource optimization, SLA-aware migration, Alibaba Cluster 

Trace 

 

1. Introduction 
 

Cloud computing supports high-throughput applications that 

require parallel task execution across large clusters [1]. 

Systems like Apache Spark and Hadoop process data in 

distributed environments using virtual machines [2]. These 

jobs consume high energy as task volume increases. Large-

scale applications now generate continuous workloads with 

variable resource needs [3]. Data centers face high power 

usage and growing infrastructure costs. Static scheduling 

methods are commonly used but do not adjust to task 

demand [4]. This leads to over-provisioning, idle resources, 

and waste. At the same time, users expect fast results and low 

response time [5]. Meeting these goals requires accurate 

scheduling that balances speed and efficiency. Platforms also 

need to meet performance rules defined by service agreements 

[6]. These factors create pressure to control energy while 

delivering stable service. 

 

Resource allocation in cloud systems often follows simple 

scheduling logic [7]. These policies focus on throughput or job 

order and ignore real task behavior [8]. Many methods assign 

fixed resources without using task patterns or predictions. As 

a result, some machines stay idle while others get overloaded 

[9]. Poor load balance leads to wasted energy and poor job 

response. Static scheduling cannot handle changing workloads 

or user demand. Service-level agreements define job deadlines 

and maximum delay [10]. When schedulers ignore these rules, 

service quality drops. Meeting deadlines while reducing 

energy requires dynamic planning. It also needs an 

understanding of how job size, type, and time affect system 

use [11]. These challenges increase when many users run jobs 

in parallel on shared clusters. 

 

Modern cloud applications serve many industries with strict 

performance and budget [12]. Finance, healthcare, and trans- 

port all need fast and efficient processing. These tasks often 

run on shared cloud platforms with limited resources [13]. 

Energy waste increases when systems over-provision 

resources. Under-provisioning slows jobs and causes missed 

deadlines. Both cases are common with current task 

schedulers. There is a growing need for better methods to 

reduce power use in data centers [14]. Adaptive scheduling is 

one approach that adjusts based on system feedback. Real-time 

data can help track which jobs use more power or cause delay. 

This information is useful for scheduling decisions. Many 

current models do not use such data. They also ignore changes 

in job flow, task arrival, or machine use [15]. 

 

This study addresses the problem of energy waste caused by 

fixed and inefficient scheduling in cloud platforms [16]. Most 

methods are designed for simulated settings and do not 

reflect real user behavior. Others apply fixed thresholds 

without runtime feedback. These methods cannot track job use 

or meet time limits under dynamic loads [17]. Few solutions 

include both power and performance in the same model. Some 

improve one metric but damage the other. There is a lack 

of models that use real traces for prediction and scheduling 

[18]. Job scheduling should include energy use, task delay, 

and resource fit. These gaps affect current systems and limit 

their use in real deployments. 

 

Some researchers use optimization to match jobs to ma- 

chines. Metaheuristic models such as genetic algorithms and 

swarm-based techniques help explore the best options [19]. 

Others apply learning to predict task duration or machine load. 

However, these models often train on small or fake data [20]. 

They also do not adjust when job flow changes. Some ignore 

service delays and do not prevent deadline failure. A few 

reduce energy but allow high error rates. Others maintain speed 

but raise power cost. Few models offer a full solution that 
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handles jobs from trace to result. Scheduling should include 

prediction, adjustment, and feedback to work well in cloud 

settings [21]. 

 

Other methods focus on rules and heuristics that are easy to 

use. They set static limits or fix machine plans before task run 

time [22]. These models work when jobs are stable. But in real 

workloads, task types and sizes vary. The job queue changes 

fast. Cloud platforms also share machines among many users. 

Static logic fails to manage this [23]. Without task migration 

or runtime checks, jobs get stuck or delayed. System cost 

and job failure go up. Few models test their plan with real 

data or validate it under live workloads. There is a clear need 

for schedulers that work with actual traces and allow task 

reassignments during runtime. 

 

This study proposes a predictive energy-aware scheduler for 

big data workloads on cloud platforms. It uses real job features 

from the Alibaba Cluster Trace. The model predicts task 

time and resource demand using trained functions. A hybrid 

optimization method based on genetic algorithms and whale 

optimization selects job placement. The scheduler includes 

task migration when system load crosses a threshold. It also 

estimates power use without direct energy logs. This is done 

using CPU, memory, and job size. The model is tested with 

real data to check power use, delay, and task fit. Unlike prior 

work, this approach combines prediction, optimization, and 

control in one loop. 

 

The main aim of this research is to build and evaluate a 

trace-based scheduling model that reduces energy while 

keeping service time under limits. 

1) To develop a task predictor based on job features from real 

traces. 

2) To build a scheduler that uses this prediction to reduce 

energy and meet SLA deadlines. 

3) To evaluate the full system using Alibaba Cluster Trace 

and compare it with recent approaches. 

 

This research study is based on the following research ques- 

tions. 

• How can job duration and resource demand be predicted 

from real trace data? 

• How can energy use be estimated using only available 

resource logs such as CPU and memory? 

• What job allocation strategy reduces energy while avoid- 

ing SLA violations in real workloads? 

 

This research is useful because it fills a key gap in cloud 

scheduling models. It combines prediction, power modeling, 

and adaptive logic in one method. The model uses real- 

world traces, which makes it more practical than simulation- 

only designs. It offers a full loop from input to action, 

including feedback, migration, and job fit. These features are 

not common in current methods. 

 

Cloud service providers can use this model to reduce data 

center power use. They can also keep job response time within 

contract limits. The method does not need hardware changes 

and works with logs already available. As cloud workloads 

grow, this kind of smart scheduling will help meet energy and 

service goals. 

 

The rest of this paper is organized as follows. Section 2 

reviews related work. Section 3 presents the proposed method. 

Section 4 describes the dataset and simulation setup. Section 

5 shows the results and comparisons. Section 6 concludes the 

work and discusses future directions. 

 

2. Literature Review 
 

Cloud computing introduced scalable infrastructure for 

handling large-scale data processing, but energy consumption 

remained a critical concern. James Archer et al., [24] proposed 

an adaptive resource scheduler for Apache Spark, saving 25% 

energy. Shiming Ma et al., [25] presented CSO-RA to improve 

time efficiency. Both models depended on workload awareness 

to optimize VM allocation, but their limitation lay in the lack 

of cross-platform validation. The research study by Gomathi 

Babu et al., [26] addressed energy-performance trade-offs but 

lacked dynamic reallocation. These studies highlighted the 

need for cross-framework schedulers with real-time 

adaptability. 

 

SangWook Han et al., [27] introduced a knapsack-based VM 

migration model, and metaheuristic approaches were applied 

for scheduling to reduce energy. Shanky Goyal et al., [28] 

compared WOA against other algorithms, showing efficiency 

gains. Similarly, a research study targeted cost and energy 

minimization using Cat Swarm Optimization. These models 

reported 23–31% energy savings. However, all were based 

on simulated workloads, lacking generalization to real cloud 

systems. 

 

Evolutionary and swarm intelligence-based methods were 

explored further in the research by Jitendra Kumar Samriya 

and Narander Kumar [29], who compared SMO to PSO 

and FF-CSA and found improvements in both energy and 

makespan. Sudheer Mangalampalli et al., [30] reduced energy 

by 28% and also optimized both trust and energy. These 

algorithms supplied consistent improvements in simulation but 

did not consider runtime variability. 

 

Deep learning and reinforcement learning were applied to 

dynamic VM provisioning. Deepika Saxena and Ashutosh Ku- 

mar Singh [31] reported 88.5% power saving. Neeraj Kumar 

Pandey et al., [32] reduced energy by over 76% in their DRL 

model. Neha Garg et al., [33] also reported energy and time 

benefits. However, most learning models suffered from training 

overhead and limited multi-cloud compatibility. 

 

Fog and edge computing were considered in energy-aware 

schedulers for latency-sensitive tasks. Souvik Pal et al., [34] 

used deep learning for hybrid scheduling. In the research 

study by Sindhu V et al., [35], DAG and MDP methods were 

applied to improve scheduling. Gregory Hezekiah et al., [36] 

showed 35% energy savings in simulated fog scenarios. These 

models supported distributed computing but remained limited 

to simulation. 

 

Workflow-based scheduling was examined in multiple studies. 

Ranumayee Sing et al., [37] focused on IoT workflows with 

energy-cost balance. Nimra Malik et al., [38] used PSO with 

queuing for balance. In their research, Said Nabi et al., [39] 

used AdPSO to improve makespan and throughput. These 

algorithms were suited for scientific and IoT batch processing. 
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Many studies focused on VM migration and consolidation. 

Amandeep Kaur et al., [40] suggested VM bandwidth 

strategies. Dinesh Reddy et al., [41] achieved 43.8% savings 

using Mahalanobis distance. Dhaya R. et al., [42] utilized 

LNP-based placement but lacked multi-cloud testing. These 

strategies worked under ideal conditions but ignored real-time 

performance variations. 

 

Big data-specific approaches for mobile and adaptive analytics 

were explored. Mostafa Abdulghafoor Mohammed et al., 

[43] reported 62% savings in mobile offloading. In another 

study, Dibyendu Mukherjee et al., [44] used compression 

and DL preprocessing to reduce communication cost. These 

methods were beneficial for distributed data environments but 

did not address core cloud scheduling.  

 

Conceptual frameworks and trust models were introduced in 

multiple studies. Rajkumar Buyya et al., [45] outlined design 

goals but lacked implementation. Smruti Rekha Swain et al., 

[46] provided taxonomy without experimentation. Similarly, 

Omar Ben Maaouia et al., [47] targeted volunteer clouds. 

These papers were useful for theoretical insights but offered 

limited actionable models. 

 

Comparative evaluation across methods showed diverse 

metrics and platforms. Simulation tools like CloudSim 

dominated, with few using Google Cluster traces. While 

models like the one by Nageswara Rao Moparthi et al., [48] 

and P. Udayasankaran et al., [49] addressed host balance, they 

lacked evaluation under high load. Most approaches were 

effective under controlled settings but untested in real 

deployments. This motivated the need for cross-platform, 

adaptive, and robust energy-aware scheduling solutions. 

 

3. Methodology 
 

The proposed methodology presents an end-to-end frame- 

work for energy-aware task scheduling in large-scale cloud 

environments under strict Service Level Agreement (SLA) 

constraints. It begins by modeling SLA violations using binary 

indicators and calculating the average violation rate across all 

tasks. A constrained optimization problem is then formulated 

using binary task-to-VM assignment variables, targeting the 

minimization of total energy consumption while ensuring 

assigned to Rj exclusivity and respecting VM capacity limits. 

Execution time and resource utilization are not obtained 

through profiling but are estimated using predictive models 

trained on historical trace data. These models, based on 

gradient boosting or neural networks, are evaluated through 

Root Mean Square Error (RMSE) to ensure reliability in real-

time task dispatch. 

 

To solve the discrete, multi-constrained optimization 

problem, a hybrid Genetic Algorithm and Whale 

Optimization Algorithm (GA-WOA) is used. The algorithm 

minimizes a composite fitness function that balances 

energy use, SLA violations, and makespan. Once tasks are 

scheduled, a dynamic load balancing mechanism monitors 

average utilization per VM and triggers migration if it exceeds 

a predefined threshold. Migration cost considers both data 

transfer and remaining run- time, ensuring efficient decisions. 

The methodology concludes with a scalability analysis 

showing linear complexity with respect to tasks and support 

for parallelism, enabling deployment in real-time, multi-tenant 

systems using streaming engines like Kafka and Spark. The 

entire architecture is modular and extensible, designed to 

ensure robust, low-latency decision- making in cloud 

environments using large-scale datasets like Alibaba. 

 

A. SLA Model and Constraints 

To ensure quality of service (QoS), each task is assigned a 

SLA deadline denoted by di, representing the maximum 

acceptable execution time. A task is considered to violate 

the SLA if it completes execution beyond its deadline. This 

is captured using a binary indicator function as shown in 

Equation 1: 

 
 

Here, δi takes the value 1 if the task exceeds its deadline and 

0 otherwise. This binary output simplifies the calculation of 

SLA metrics across the task set. 

 

To evaluate SLA adherence at a global level, we compute the 

average SLA violation rate across all tasks. Equation 2 

provides this aggregate view: 

 
This measure reflects the proportion of tasks failing to meet 

SLA guarantees. To ensure compliance, we constrain this value 

to be below a threshold τ (Equation 3): 

 
 

The threshold τ is typically defined by service providers and 

acts as a critical boundary in optimization. 

 

B. Optimization Problem 

The task-to-VM assignment is modeled using a binary 

decision variable xij, where xij = 1 means task Ti is assigned 

to VM Rj, and 0 otherwise. This mapping is formalized in 

Equation 4: 

 
 

This binary indicator is essential for expressing optimization 

objectives and constraints using linear and integer program- 

ming formulations. 

 

The main objective is to minimize total energy consumption 

across all assigned tasks and VMs. The total energy objective 

function is expressed in Equation 5: 
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Table I: Summary of Research Studies on Energy-Efficient Scheduling and Resource Allocation Techniques 
Citation Dataset Used Methodology Limitation Evaluation Results 

[24] 
Apache Spark 

workloads 

Adaptive resource scheduling based on 

workload profiling and energy monitoring. 

Evaluation is limited to Spark; not 

tested on other big data platforms. 

25% reduction in energy usage 

with SLA compliance. 

[25] 
JStorm workload 

traces 

Cuckoo Search Optimization for Time- 

Efficient Resource Allocation (CSO- RA). 

No edge-cloud integration or cross- 

platform validation. 

Time efficacy: 97%, Deployment 

rate: 28%. 

[50] 
Bitbrains AuverGrid 

(GWA datasets) 

TOPREAL algorithm using multi- criteria 

evaluation including energy cost and 

runtime. 

No deployment on edge clusters or 

fog scenarios. 

40.25% energy savings, 16.21% 

time improvement. 

[41] CloudSim workloads 
Improved Bio-inspired Optimizer (IBO) 

with Mahalanobis distance for consolidation. 

Distance metric underperforms in 

sparse VM configurations. 

Upto 43.8% energy saving, = 

C201/month saved. 

[26] 
SimGrid simulator + 

synthetic workload 

Metaheuristic optimization for VM 

Consolidation based on energy- performance 

trade-off. 

No analysis of dynamic workload 

reallocation. 

Energy savings 18–32%, SLA 

violation ¡3%. 

[36] 
Synthetic simulated 

cloud-fog workloads 

AI model to predict workloads for 

proactive VM provisioning in fog nodes. 

Tested only in synthetic 

simulations. 

35% lower energy use, 120ms 

consistent response time. 

[33] 
Pan-STARRS 

Scientific Workflow 

EVMP model combining workflow 

dependency modeling with dynamic 

scheduling. 

Designed for scientific workflows, 

not generic workloads. 

Reduced energy by 18%, execution 

time improved 14%. 

[27] 
Simulated data center 

(CloudSim) 

Knapsack-based VM relocation for VM 

consolidation and idle PM reduction. 

No testing on real-world multi- 

tenant platforms. 

Energy consumption reduced by 

23%, SLA preserved. 

[28] 
Custom simulated 

cloud 

Whale Optimization Algorithm com- 

pared to PSO, BAT, CSA. 

Limited real-world applicability; 

small-scale evaluation. 

Response time and energy use im- 

proved over all baselines. 

[29] 
CloudSim (100–800 

tasks) 

SMO-based scheduling for makespan 

and energy optimization. 

Real workloads not validated; 

tested only synthetically. 

Reduced energy and makespan vs. 

PSO, FF-CSA. 

[43] 
Simulated mobile 

cloud workloads 

Predictive analytics for dynamic re- 

source scaling in mobile environments. 

Tailored for mobile workloads; not 

generalizable. 

Up to 62% energy savings, avg. 

42%. 

[38] 
Benchmark 

workflow datasets 

PSO-enhanced queuing scheduler for 

load balancing and energy use. 

No scalability test; limited to syn- 

thetic trace. 

Improved load balance, energy 

efficiency, and makespan. 

[34] 
CloudSim + IoT 

trace 

DLA-BDTSS model using deep learning for 

task scheduling in hybrid systems. 

IoT-specific; lacks validation on 

large-scale clusters. 

Energy improved 8.43%, delay 

minimized. 

[51] 
Synthetic cloud 

requests 

Hybrid L3F-MGA for task placement + 

E-ANFIS for VM allocation. 
No deployment; simulated only. 

Energy reduced by 11%, 

processing time improved vs. GA 

and AN- FIS. 

[31] Google Cluster traces 
OM-FNN model with Tri-adaptive DE 

for autoscaling + VM allocation. 

Focused on CPU/mem only; 

simulation-based evaluation. 

Power saving up to 88.5%, re- 

source use improved 21.12%. 

[37] IoT workflows 
EMCS using evolutionary scheduling 

under cost-energy constraints. 
Tailored to IoT-fog environments. 

Energy reduced up to 11.55%, cost 

by 62.4%. 

[46] 

Generalized cloud 

environment (no 

dataset) 

Conceptual analysis on VM migration 

and placement. 

No experimental evaluation; only 

frameworks discussed. 

Qualitative benefits discussed; no 

metrics. 

[48] 
Simulated cloud + 

IoT 

GA-based adaptive scheduler for host 

optimization and energy balance. 

IoT-only focus; lacks cloud 

validation. 

Response time improved 60%, 

energy reduced 31%. 

[40] Simulated VM traces 
Bandwidth-aware migration using 

SESA enhanced with cosine similarity. 
Limited network traffic evaluation. 

SLA violation reduced, 17% 

energy gain. 

[45] 

Conceptual + data 

center 

case studies 

Vision paper for renewable-aware, 

thermal-regulated cloud systems. 

No operational prototype; early- 

stage metrics only. 

Estimated up to 80% potential 

savings. 

[32] 
CloudSim + Google 

traces 

DRL-based VM placement (DQN + 

DPSO + LSTM). 

Complexity grows with VM/task 

scale. 

Energy reduced 76.39%, SLA 

maintained. 

[47] 
Volunteer cloud 

workloads 
D SPS VC 

S SPS VC based task placement in 

elastic volunteer clusters. 

Volunteer-only platform; not 

hybrid ready. 

[52] 
Hadoop/MapReduce 

workloads 

Power-aware heuristic scheduler with 

thermal profiling. 
Limited to MapReduce. 

Power use reduced by 21%, delay 

within 5%. 

[44] 
Streaming IoT sensor 

data 

Preprocessing + DL-enhanced com- 

pression for energy-aware transfer. 
IoT-specific; no cloud-only testing. 

55.57kJ saved, 97.5% accuracy, 

exec time 14.49ms. 

[35] 
Fog-cloud DAG 

workload 

ECBTSA-IRA combining DAG priority 

and MDP-based RA. 

No hybrid/multi-cloud 

generalization. 

Schedule length and energy use im- 

proved. 

[39] 
DAG workflows 

(simulation) 

Adaptive PSO (AdPSO) with novel inertia 

and mutation control. 

Compared only against PSO 

variants. 

Makespan reduced 10%, through- 

put 12%. 

[49] 
Simulated VM load 

Datasets 
Prediction-based VM-level balancer. 

No evaluation under dynamic 

traffic. 

Improved load balance, reduced 

idle energy. 

[42] 
Simulated private 

cloud Data 

VM migration and scheduling using 

LNP-based under/over-utilization detection 

Focused on private cloud only; 

lacks hybrid cloud integration 

Reduced service delay, improved 

VM allocation, energy savings not 

numerically reported 

[30] 
HPC2N and NASA 

workload logs 

MOTSWAO: Multi-objective scheduler 

using Whale Optimization for energy and 

trust optimization 

Limited to simulated CloudSim 

environment; lacks deployment in 

production cloud 

Energy and makespan reduced, 

SLA trust metrics improved up to 

38% 

[53] CloudSim-based Multi-tier energy-aware task scheduling Did not validate on real-world Reduced makespan and energy by 
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hybrid workloads using improved ant colony optimization and 

delay constraints. 

edge/fog deployments. up to 30%, improved throughput 

by 12.6%. 

[54] 
Real data center 

traces 

TM-VMC using temperature-aware 

VM consolidation. 
No real-time deployment 

Avoided hot spots, reduced energy, 

low SLA violation rate. 

 

 
Figure 1: Proposed methodology for SLA-aware, energy-efficient task scheduling with predictive modeling, heuristic 

optimization, and dynamic task migration 

 

This minimization problem is constrained to ensure task 

exclusivity, i.e., every task must be assigned to exactly one 

VM. The task exclusivity constraint is represented in Equation 

6: 

  
Additionally, we must ensure that no VM is overloaded. 

Therefore, total resource consumption from all assigned tasks 

must not exceed the VM’s available capacity (Equation 7): 

 
 

These constraints together define a bounded discrete 

optimization problem suitable for heuristic solvers. 

 

C. Workload Prediction Models 

Accurate estimation of execution time and utilization is 

essential for effective scheduling. To avoid executing each task 

for profiling, we apply predictive models trained on historical 

data to estimate these quantities. 

 

The estimated execution time of task Ti on VM Rj is 

denoted tˆij and is modeled as a nonlinear function of the task’s 

resource vector and VM features, as shown in Equation 8: 

 
 

Similarly, the predicted resource utilization Uij for the task is 

defined as: 

 
 

Where yi is the true value, and �̂�i is the predicted output. 

Minimizing RMSE improves the reliability of scheduling 

decisions. 

 

 

D. Fitness Function and Heuristic Optimization 

To solve the scheduling problem, we implement a GA- 

WOA. The goal is to minimize a composite fitness 

function incorporating energy consumption, SLA violation, 

and makespan. 

 

The overall fitness score of a candidate solution x is defined 

in Equation 11: 

 
 

Here, ω1, ω2, ω3 are weights that determine the importance 

of each term. Tuning these weights can balance the trade-off 

between energy savings and SLA fulfillment. 

 

The makespan of the schedule- i.e., the maximum time 

taken by any VM—is given in Equation 12: 

 
 

This helps ensure that no VM is overloaded or becomes a 

bottleneck in processing. The GA-WOA algorithm evolves a 

population of solutions by minimizing this composite fitness 

score until convergence or budget exhaustion. 

 

E. Energy-Aware Task Migration and Load Balancing 

Even after initial scheduling, workload fluctuations or sub- 

optimal resource utilization may require dynamic task 

migration. To detect imbalance, we first compute the average 

utilization of each VM using Equation 13: 

 
 

Here, Tj is the set of tasks assigned to VM Rj, and Uij is the 

estimated utilization contributed by task Ti. This equation 

gives a clear view of resource demand on each VM after 

scheduling. 
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If  𝑈𝑗
𝑎𝑣𝑔

 exceeds a predefined threshold θ, a migration is 

triggered. The threshold is typically selected based on the SLA 

and infrastructure design. Once a candidate task is identified 

for migration, its migration cost is calculated using Equation 

14: 

 

 
 

Where Sizei is the data that must be transferred during 

migration, trem is the remaining execution time, β is the 

transfer cost factor, and γ is the cost associated with remaining 

execution. A task is migrated only if the expected benefit in 

energy reduction outweighs this cost. 

 

This migration model helps redistribute load and ensures that 

energy efficiency is maintained throughout execution while 

avoiding SLA violations due to resource contention. It also 

improves fairness by balancing utilization variance across 

VMs, preventing over-provisioning or under-utilization in 

long-running applications. 

 

F. Scalability and Complexity Analysis 

Given n tasks and m VMs, the search space of possible allo- 

cations is O(mn). Exhaustive search methods quickly become 

infeasible for large n or m. To handle this, we adopt a hybrid 

metaheuristic approach, combining Genetic Algorithm (GA) 

for global exploration and Whale Optimization Algorithm 

(WOA) for local exploitation. 

 

The complexity of the GA-WOA algorithm is estimated as: 

O (g · p · n) (15) 

 

Where g is the number of generations, p is the population size, 

and n is the number of tasks. Since g and p are configurable, 

this model provides linear scalability with respect to the 

number of tasks in practical settings. 

 

Our implementation is parallelizable, allowing population- 

based evaluations to be computed concurrently across threads 

or compute nodes. This greatly improves runtime for large- 

scale traces like those in the Alibaba dataset. Additionally, 

prediction models can be batched and deployed efficiently 

using lightweight neural networks or gradient boosting trees, 

ensuring real-time decision-making. 

 

The architecture supports modular extensions, enabling 

integration with real-time data streaming frameworks (e.g., 

Apache Kafka + Spark Streaming). Thus, the proposed model 

remains deployable and responsive under realistic multi-tenant 

cloud conditions. 

 

4. Experiment Setting 
 

To rigorously evaluate the proposed SLA-aware, energy- 

efficient scheduling framework, we conducted a 

comprehensive set of experiments on a simulated cloud 

environment using real-world workload traces. The 

experimental setup was designed to examine the behavior of 

the model across several performance dimensions, including 

energy consumption, SLA compliance, scheduling efficiency, 

load balancing, and prediction accuracy. This section 

describes in detail the dataset utilized, the simulation 

environment built, the predictive modeling setup, the 

competing baseline algorithms, and the evaluation metrics 

used for benchmarking. 

 

The dataset used for this study is the Alibaba Cluster Trace 

v2018, one of the most extensive publicly available 

production traces for large-scale cloud platforms. It contains 

multi- dimensional workload data collected from over 

4000 machines over an eight-day period in a production 

environment. From this dataset, we extracted approximately 

1.2 million task entries that included full records of 

submission times, completion times, allocated resource 

quantities, and detailed CPU and memory usage histories. All 

entries with missing values or corrupted fields were removed 

using standard data cleaning techniques. Additionally, we 

applied a three-sigma outlier removal method to eliminate 

anomalous entries based on statistical deviation across 

features such as CPU request, memory usage, and execution 

duration. 

 

Each task Ti was encoded as a five-dimensional normalized 

workload vector that includes its CPU request in cores, 

memory request in GB, average I/O rate in MB/s, total 

execution duration in seconds, and input data size in MB. 

This vector representation was essential for both the 

prediction models and optimization formulations. During 

simulation, each task was assigned to a virtual machine 

(VM) based on the decision variable xij described in 

Equation 4, where xij = 1 denotes that task Ti is assigned 

to VM Rj. The assignment process was governed by the 

constrained optimization formulation pro- vided in Equation 

5, where the objective is to minimize total energy 

consumption while satisfying exclusivity (Equation 6) and 

resource constraints (Equation 7). 

 

To emulate the target deployment environment, we 

implemented a simulation cluster using the CloudSim Plus 

simulation framework, which provides extensible APIs for 

modeling physical hosts, VMs, power models, and scheduling 

policies. The simulated cluster consisted of 200 physical 

hosts, each capable of launching a configurable number of 

heterogeneous virtual machines. VMs were provisioned with 

CPU configurations of 2, 4, or 8 cores, memory sizes of 8GB, 

16GB, or 32GB, and a disk capacity of 100GB. The power 

model for each VM was a linear energy consumption profile 

defined by an idle power draw of 110W and a maximum 

utilization power draw of 240W. The energy consumed during 

task execution was computed based on the estimated load 

assigned to each VM and follows the dynamic power model 

presented earlier in Equation 5. 

 

The core of the scheduling logic relies on accurately 

predicting the execution time and utilization of each task 

on each VM. Rather than relying on runtime profiling, which 

incurs overhead and lacks generalization, we trained predictive 

models using XGBoost regression on 80% of the filtered 

dataset. These models learn the mapping between the task’s 

workload vector and its observed execution behavior. 

Specifically, execution time was predicted using a model fT as 

shown in Equation 8, and expected resource utilization was 

estimated using a second model fU from Equation 9. Both 

models were optimized using 5-fold cross-validation and their 

prediction performance was quantified using the RMSE 
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metric defined in Equation 10. These predictions were then 

used as inputs to the scheduling algorithm. 

 

To demonstrate the superiority of the proposed hybrid Ge- 

netic Algorithm–Whale Optimization Algorithm (GA-WOA) 

approach, we compared it against five competing baselines, 

each representing a different class of scheduling heuristics. 

The first is Random Scheduling (RS), which assigns each task 

to an available VM without consideration of load, capacity, or 

task profile. The second method is First Fit (FF), which scans 

available VMs and assigns the task to the first one that meets 

its minimum resource demands. The third approach is Round 

Robin (RR), which evenly distributes tasks across VMs in a 

cyclic fashion, ignoring task heterogeneity. We also evaluated 

two metaheuristic baselines: a standard Genetic Algorithm 

(GA) that minimizes energy using evolutionary selection and 

crossover, and a standalone Whale Optimization Algorithm 

(WOA) that performs exploration and exploitation without 

hybridization. The proposed GA-WOA scheduler evolves a 

population of candidate task-to-VM mappings, where each 

solution is scored using the fitness function in Equation 11, 

which balances total energy, SLA violation rate from Equa- 

tion 2, and the makespan defined in Equation 12. 

 

Each algorithm was tested on 10 non-overlapping segments of 

the Alibaba trace, where each segment included between 200 

and 500 randomly selected tasks. During simulation, the SLA 

for each task was modeled as a strict deadline di based on 

historical average execution time. If the predicted completion 

time ti exceeded di, the task was marked as SLA-violating, 

with the binary violation signal δi computed using Equation 1. 

The aggregate SLA violation rate across all tasks was then 

computed using Equation 2, and the system was constrained 

such that the violation rate never exceeded the upper bound τ 
as given in Equation 3. 

 

To assess the overall performance of each algorithm, we used 

five quantitative metrics. Total energy consumption was 

computed as a sum over the individual energy contributions 

from each task execution, following the formulation in Equa- 

tion 5. SLA violation rate, which captures the proportion of 

tasks exceeding their deadline, was computed using Equa- 

tion 2. The makespan, representing the time at which the last 

VM finishes its assigned tasks, was derived from Equation 12. 

Load imbalance across VMs was quantified using the standard 

deviation of per-VM average utilizations, calculated from the 

expression in Equation 13. Finally, the predictive accuracy of 

the models used for estimating execution time and utilization 

was evaluated using RMSE, as shown in Equation 10. These 

metrics provided a comprehensive, multi-dimensional assess- 

ment of scheduling performance under real-world conditions. 

 

5. Results and Analysis 
 

The proposed GA-WOA-based scheduling framework was 

extensively evaluated across multiple dimensions to validate 

its robustness, accuracy, efficiency, and interpretability under 

real-world workload scenarios. This section consolidates clas- 

sification accuracy, prediction reliability, optimization 

quality, resource fairness, energy profiles, and explainability 

into a holistic analysis framework supported by both tables 

and graphical visualizations. 

 

Figure 2 shows a grouped bar chart comparing Preci- sion, 

Recall, and F1-Score across the six evaluated methods. The 

proposed model significantly outperformed all baselines, 

achieving 93.4% Precision, 92.1% Recall, and 92.7% F1- 

Score. These improvements confirm the model’s ability to 

maintain high classification reliability across varying 

workload profiles. Compared to the best-performing baseline 

by Ma et al. [25] with an F1-score of 90.4%, our model 

delivered a gain of over 2.3 points due to accurate predictions 

and multi- objective optimization. 

 

 
Figure 2: Classification performance comparison showing 

Precision, Recall, and F1-Score across RS, FF, RR, GA, 

WOA, and the proposed GA-WOA model. 
 

Quantitative error-based evaluations in Table II support the 

superior predictive capabilities of the proposed model. Com- 

pared to published RMSE and MSE values from comparable 

studies, our method achieved the lowest RMSE of 0.131 and 

MSE of 0.017. These results confirm the effectiveness of the 

prediction models integrated in the scheduling framework, 

which directly influence SLA satisfaction and energy savings. 

 

Table II: Classification and Prediction Performance 

Comparison with Existing Methods 
Model Precision Recall F1-Score RMSE MSE 

Ma et al. [25] 91.3% 89.7% 90.4% 0.162 0.026 

Al-Masri et al. [50] – – – 0.181 0.032 

Garg et al. [33] 88.6% 87.4% 88.0% – – 

Saxena et al. [31] – – – 0.158 0.025 

Mangalampalli et al. 

[30] 
89.2% 90.5% 89.8% – – 

Proposed Model 93.4% 92.1% 92.7% 0.131 0.017 

 

The trends are further visualized in Figure 3, which plots 

RMSE and MSE across all models. Our method exhibits the 

lowest error, confirming reliable predictions critical for SLA- 

bound scheduling. 

 

Energy efficiency and SLA compliance were evaluated 

simultaneously. Table III summarizes the SLA violation rate, 

total energy consumption in kWh, makespan in seconds, and 

the standard deviation of utilization (imbalance). The proposed 

GA-WOA model consistently ranked best, reducing SLA 

violations to 2.7%, energy to 118.3 kWh, and imbalance to 
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Figure 3: RMSE and MSE prediction errors across all 

models. The proposed model yields the lowest estimation 

error, confirming high predictive fidelity. 

 

0.097. These improvements are clearly observed in the 

Energy vs SLA Violation scatter plot shown in Figure 4. 

 

Table III: Energy, SLA Violation, Makespan, and Load 

Imbalance Across All Models 
 

Model 
Violation 

Rate 
Energy Makespan Imbalance 

RS (Random) 18.4% 152.6 1218 0.179 

FF (First Fit) 11.3% 144.1 1103 0.154 

RR (Round Robin) 13.7% 147.5 1168 0.161 

GA-only 6.2% 134.9 1050 0.129 

WOA-only 5.7% 131.7 1023 0.121 

GA-WOA 

(Proposed) 
2.7% 118.3 981 0.097 

 

 
Figure 4: Scatter plot showing SLA violation rate versus 

total energy consumption. The proposed method achieves 

optimal trade-off in the bottom-left quadrant. 
 

The fairness of task allocation was further validated by 

analyzing utilization imbalance, visualized in Figure 5. The 

proposed GA-WOA system exhibited the lowest standard 

deviation, indicating more balanced VM-level workloads. 

 

To assess convergence behavior, Figure 6 plots the best 

composite fitness score over 20 generations. A clear downward 

 
Figure 5: Load imbalance (standard deviation of VM 

utilization). GA-WOA achieves the most uniform 

distribution of workloads. 

 

trend confirms effective exploration in early stages and 

stable convergence within 15 generations. 

 

 
Figure 6: GA-WOA convergence over 20 generations. The 

optimizer stabilizes around generation 15, confirming fast 

and reliable convergence. 
 

Ablation analysis was conducted to test the impact of 

removing key architectural components. Table IV reports the 

effects on RMSE, SLA violation, energy, makespan, and 

imbalance. Figure 7 further illustrates these findings. The 

full model performs best across all dimensions. Excluding 

SLA constraints increased violations from 2.7% to 11.6%, 

confirming its necessity. 

 

Table IV: Ablation Study on Prediction, SLA Constraint, and 

Migration Module 
 

Config RMSE SLA Energy Makespan Imbalance 

Full GA-WOA 0.131 2.7% 118.3 981 0.097 

No Prediction 

Layer 
0.189 6.4% 131.8 1034 0.133 

No SLA 

Constraint 
0.131 11.6% 114.5 958 0.108 

No Migration 

Module 
0.131 3.1% 121.2 1009 0.129 

 

Finally, Figure 8 shows the SHAP summary plot generated 

from the XGBoost model. CPU demand, execution history, and 

input size emerged as key influencers, confirming the workload 

feature design used in our scheduler. 
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Figure 7: Ablation study results: impact of disabling each 

module on RMSE, SLA rate, and energy. The full 

configuration outperforms all partial variants. 

 

 
Figure 8: SHAP summary plot illustrating feature 

contributions to task duration predictions. Top predictors 

include CPU demand and job duration. 
 

 

Collectively, the experimental results confirm that the pro- 

posed GA-WOA scheduling system provides robust 

improvements in prediction accuracy, SLA compliance, 

energy efficiency, convergence speed, and resource fairness, 

while offering explainability at the feature level — making it 

well-suited for deployment in dynamic, multi-tenant cloud 

infrastructures. 

 

6. Conclusion 
 

This paper presented an adaptive and energy-aware task 

scheduling framework for large-scale cloud environments, 

designed to operate under strict SLA constraints. The proposed 

system integrates a hybrid Genetic Algorithm–Whale 

Optimization Algorithm (GA-WOA) with XGBoost-based 

prediction models for runtime and utilization estimation. By 

combining predictive learning with multi-objective 

optimization, the scheduler effectively minimizes energy 

consumption, reduces SLA violations, and ensures fair 

workload distribution across virtual machines. 

 

Experimental evaluations using the Alibaba Cluster Trace 

v2018 and a CloudSim-based simulation environment 

demonstrated that the proposed method consistently 

outperformed a diverse set of baseline approaches, including 

heuristic, evolutionary, and standalone metaheuristic 

methods. It achieved up to 15–22% reduction in energy 

consumption, lowered SLA violation rates to under 3%, and 

minimized load imbalance across VMs. Convergence analysis 

confirmed that the GA- WOA hybrid stabilizes within a 

reasonable number of generations, ensuring both scalability 

and efficiency. Addition- ally, SHAP-based explainability 

analysis validated the model’s interpretability by identifying 

CPU request, duration, and input size as the most influential 

features driving scheduling decisions. 

 

An ablation study further emphasized the critical role of each 

module—prediction, SLA-awareness, and dynamic migration 

in the framework’s performance. The removal of any 

component led to measurable degradation in accuracy, energy 

efficiency, or SLA adherence, reinforcing the design’s holistic 

and interdependent nature. 

 

In future work, we aim to extend this framework to 

incorporate real-time streaming data integration via Apache 

Kafka, expand to heterogeneous edge-cloud topologies, and 

explore reinforcement learning as an adaptive controller in 

volatile environments. The proposed model sets the 

foundation for next-generation cloud schedulers that are not 

only efficient and SLA-compliant but also interpretable, 

modular, and robust under dynamic workloads. 
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