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Abstract: This paper presents a comprehensive data quality frame-work implemented as a microservice architecture on Google 

Kubernetes Engine (GKE). The framework leverages Great Expectations for data validation and BigQuery for efficient data processing, 

ensuring high data quality across diverse data pipelines. Comparative analysis with leading data quality solutions demonstrates significant 

improvements in scalability (40% better throughput) and cost-efficiency (35% lower processing costs). Our architecture supports both 

batch and near real-time validation with measured latency under 30 seconds for streaming workflows. Implementation at a large financial 

institution resulted in a 78% reduction in data quality incidents. The empirical evaluation confirms the framework’s effectiveness across 

varying workloads while maintaining security and governance standards required in enterprise environments. 
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1. Introduction 
 

In contemporary data-driven organizations, maintaining high data quality has become increasingly critical as busi-ness decisions 

increasingly rely on data-derived insights. Poor data quality can lead to flawed analysis, incorrect business decisions, and 

substantial financial losses [10], [8]. Despite this importance, many organizations struggle to implement effective data quality 

frameworks that can scale with growing data volumes while remaining cost-effective. 

 

This research paper presents a microservice-based data quality framework designed to address these challenges. The framework 

utilizes Great Expectations to define, vali-date, and document data quality rules and uses Google Big-Query for efficient data 

processing and storage. Deployed on Google Kubernetes Engine (GKE), the framework offers exceptional scalability and 

flexibility to adapt to evolving data needs. 

 

The contributions of this paper include the following. 

1) A detailed architecture for a microservice-based data quality framework that can be implemented in cloud environments 

2) Implementation strategies for integrating Great Expec-tations with BigQuery for both batch and streaming data quality 

validation 

3) Comparative analysis with current state-of-the-art data quality solutions, highlighting performance improve-ments and 

unique capabilities 

4) Cost optimization techniques for data quality valida-tion at scale with empirical cost reduction metrics 

5) Security and governance features that enable enterprise-grade data quality management 

 

The rest of this paper is organized as follows. Section II discusses related work and provides a comparative analysis with existing 

solutions. Section III details the architecture of our microservice-based data quality framework. Section IV describes the 

technology stack used in our implementa-tion. Section V explains the data quality validation process. Section VI outlines the 

security and governance features. Section VII presents cost-effectiveness strategies. Section VIII discusses scalability 

considerations. Section IX covers monitoring and alerting mechanisms. Section X details ma-chine learning integration. Section 

XI presents an empirical evaluation of our framework. Section XII provides a case study of enterprise implementation. Finally, 

Section XIII concludes the paper and outlines future work. 

 

2. Related Work and Comparative Analysis 
 

2.1 Data Quality Frameworks 

 

Data quality has been extensively studied in literature. Wang and Strong [1] proposed a conceptual framework for data quality 

that identifies four categories: intrinsic, contextual, representational, and accessibility. Building on this foundation, numerous 

data quality frameworks have been proposed. 
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Recent work by Sadiq et al. [11] explored data quality in big data environments, highlighting challenges related to volume, 

variety, and velocity. Batini and Scannapieco [2] provided a comprehensive methodology for data quality assessment and 

improvement in enterprise systems. 

 

2.2 Cloud-Based Quality Solutions 

 

In the realm of cloud-based solutions, Chen et al. [3] pro-posed a framework for data quality assessment in cloud data 

warehouses, focusing on performance optimization. Gao et al. [4] introduced DQStream, a real-time data qual-ity monitoring 

system for streaming data, which achieved validation latencies of 50-65 seconds. 

 

Table 1: Comparison with State-of-the-Art Data Quality Frameworks 
Feature Our Framework AWS Deequ DQStream Informatica DQ 

Architecture Microservices Library Monolithic Monolithic 

Deployment Cloud-native Cloud-agnostic On-prem/Cloud On-prem/Cloud 

Real-time Yes (30s latency) No Yes (50s latency) Limited 

Scalability Horizontal & Vertical Limited Horizontal only Limited 

Expectation Version-controlled Manual Manual Proprietary 

ML Integration Anomaly detection Statistical only No Rules-based 

Cost Opt. Auto-scaling, spot Manual Manual Fixed pricing 

Performance 10,000 rec/sec 7,500 rec/sec 6,000 rec/sec 5,000 rec/sec 

 

 
Figure 1: System Architecture of the Data Quality 

Framework 

 

2.3 Comparative Analysis 

 

Table 1 compares our proposed framework with three lead-

ing data quality solutions: 

• desired width while maintaining its proportions. 

• 1 message remaining until 4:00 AM 

 

Our framework offers significant advantages in deploy-ment 

flexibility, cost optimization, and near real-time valida-tion 

capabilities. Although AWS Deequ provides similar val-

idation functionality, it lacks the microservice architecture 

that enables independent scaling of components. DQStream 

offers real-time capabilities, but with higher latency and 

without the cost optimizations our framework provides. 

 

3. Architecture 
 

The proposed architecture follows a microservice pattern, 

promoting modularity and independent deployment. Fig. 

illustrates the architecture of the high-level system. The 

architecture consists of the following components: 

 

 

3.1 Data Ingestion Service 

 

The Data Ingestion Service is responsible for ingesting data 

from various sources (e.g., APIs, databases, streaming 

platforms) into BigQuery. This service supports multiple 

ingestion patterns including batch processing and stream 

processing, allowing organizations to implement the ap-

proach that best suits their data pipeline requirements. The 

service uses BigQuery’s native loading mechanisms to ensure 

efficient data transfer and minimal latency. 

 

3.1.1 Streaming Ingestion 

For near real-time validation, the Data Ingestion Service 

utilizes BigQuery’s streaming API with an event-driven 

architecture: 

1) Data events are published to Cloud Pub/Sub 

2) Event-driven triggers activate validation workflows 

3) Streaming inserts use BigQuery Storage Write API with 

buffer management 

4) Latency monitoring ensures performance within 30-

second SLA targets 

 

3.2 Data Quality Service 

 

The Data Quality Service forms the core of the framework, 

executing data quality checks against data residing in Big-

Query. It leverages Great Expectations to define and run 

expectations (rules) that validate the quality of data. This 

service maintains a repository of expectations organized by 

dataset and can be scaled independently based on workload 

requirements. 

 

The service implements a declarative approach to defin-ing 

data quality rules, allowing data engineers and analysts to 

specify what quality looks like rather than how to check for 

it. This approach promotes reusability and standardiza-tion of 

quality checks across the organization. 

 

3.2.1 Expectation Management 

Expectations are managed through a Git-based versioning 

system that provides: 

• Change history tracking 

• Peer review workflows 
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• Automated validation 

• Environment-specific deployment (dev, test, prod) 

• Role-based access controls 

 

3.2.2 Real-Time Validation Architecture 

For streaming data validation, the service implements: 

• Micro-batch processing with configurable window sizes 

(5-30 seconds) 

• Window-based aggregation for expectations requiring 

multiple records 

• Stateful validation for temporal consistency checks 

• Prioritization mechanisms for critical data elements 

 

3.3 Notification Service 

 

The Notification Service handles alerts and notifications 

based on the results of data quality checks. It supports in-

tegration with various communication channels (e.g., Slack, 

email, PagerDuty) and implements flexible notification poli-

cies. The service includes features such as alert throttling, 

aggregation, and prioritization to prevent alert fatigue. 

 

3.4 Metrics Service 

 

The Metrics Service collects and aggregates metrics related 

to data quality, service performance, and resource utiliza-tion. 

These metrics provide valuable insights into the health of the 

data ecosystem and can be used for monitoring, optimization, 

and reporting. The service exposes metrics in formats 

compatible with monitoring tools like Prometheus, enabling 

integration with existing observability stacks. 

 

3.5 API Gateway 

 

The API Gateway provides a unified interface for access-ing 

the services. It handles authentication, authorization, request 

routing, and rate limiting. By centralizing these cross-cutting 

concerns, the API Gateway simplifies client interactions with 

the framework and enhances security. 

 

3.6 Schema Registry and Evolution Service 

 

A new addition to our architecture is the Schema Registry and 

Evolution Service, which: 

• Maintains a versioned catalog of data schemas 

• Handles schema evolution gracefully 

• Automatically adjusts expectations when schemas 

change 

• Provides backward compatibility checks 

• Ensures validation continues to function during schema 

transitions 

 

4. Technology Stack 
 

The framework leverages several modern technologies to 

achieve its objectives: 

 

4.1 Google Kubernetes Engine (GKE) 

 

GKE provides the container orchestration platform for de-

ploying and managing the microservices. Key benefits in-

clude: 

• Automated scaling and self-healing capabilities 

• Simplified deployment and management of container-

ized applications 

• Integration with Google Cloud monitoring and logging 

services 

• Support for advanced networking and security features 

 

4.2 BigQuery 

 

BigQuery serves as the data warehouse and provides the 

computational power for data processing. Its serverless 

architecture enables cost-effective data processing at scale. 

Key advantages include: 

• Separation of storage and compute resources 

• Ability to process terabytes of data in seconds 

• Pay-per-use pricing model 

• Built-in machine learning capabilities 

 

4.3 Great Expectations 

 

Great Expectations forms the core data quality tool, used for 

defining, validating, and documenting data quality rules. It 

offers: 

• A rich library of pre-built expectations 

• Extensibility to create custom expectations 

• Automatic documentation generation 

• Integration with data pipelines and orchestration tools 

 

4.4 Additional Technologies  

 

The framework also utilizes: 

• Python as the primary programming language 

• Flask/FastAPI for building API endpoints 

• Prometheus/Grafana for monitoring and visualization 

• Cloud Pub/Sub for asynchronous communication be-

tween services 

• Terraform for infrastructure as code 

• GitOps workflows for CI/CD 

• Vault for secrets management 

 

5. Data Quality Validation Process 
 

The data quality validation process involves several steps: 

 

1) Expectation Definition: Data engineers define expec-

tations (rules) using Great Expectations. These expec-

tations capture domain-specific data quality require-

ments. 

2) Validation Execution: The Data Quality Service exe-

cutes these expectations against the data in BigQuery, 

generating validation results. 

3) Result Processing: Validation results are processed to 

extract insights about data quality. 

4) Notification: If data quality issues are detected, the 

Notification Service alerts relevant stakeholders. 

5) Documentation: Validation results are documented for 

compliance and auditing purposes. 

 

Great Expectations allows us to define expectations about our 

data in a declarative manner. Examples include: 

• expect table row count to be between 

• expect column values to be in set 

• expect column values to be unique 

• expect column mean to be between 
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These expectations are stored as JSON files and can be easily 

versioned. The Data Quality Service executes these 

expectations against the data in BigQuery. 

 

5.1 Real-Time Validation Workflow 

 

The real-time validation process follows these steps: 

1) Data arrives via streaming insert or Pub/Sub ingestion 

2) The Data Quality Service receives a notification 

3) Micro-batch validation is triggered on the incoming data 

4) Results are compared against thresholds with config-

urable severity levels 

5) Violations trigger immediate alerts to designated chan-

nels 

6) Metrics are updated in real-time dashboards 

 

Performance benchmarks show average validation la-tency of 

18.5 seconds for simple expectations and 28.3 seconds for 

complex ones across streaming workflows. 

 

6. Security and Governance 
 

Our framework implements comprehensive security and 

governance features: 

 

6.1 Authentication and Authorization 

 

• Identity-based access control using OAuth 2.0 and 

OpenID Connect 

• Fine-grained role-based permissions 

• Service account management with least privilege prin-

ciple 

• API token rotation and management 

 

6.2 Data Governance 

 

• Data lineage tracking across validation workflows 

• Automated documentation of quality rules and results 

• Audit logging of all data access and modifications 

• Integration with data catalogs for metadata manage-ment 

• Regulatory compliance reporting capabilities 

 

6.3 Network Security 

 

• Private GKE clusters with limited external access 

• Service mesh for secure service-to-service communica-

tion 

• Network policies to restrict pod-to-pod traffic 

• VPC Service Controls to prevent data exfiltration 

 

7. Cost-Effectiveness Strategies 
 

To maintain cost efficiency while ensuring robust data qual-

ity validation, the framework implements several strategies: 

 

7.1 Resource Allocation 

 

Resources are allocated based on workload requirements, 

avoiding over-provisioning. This includes: 

• Right-sizing Kubernetes pods based on actual resource 

consumption 

• Implementing autoscaling policies that balance perfor-

mance and cost 

• Using node pools with appropriate machine types for 

different workloads 

 

7.2 BigQuery Optimization 

 

The framework optimizes BigQuery usage to minimize costs: 

• Partitioning and clustering tables to reduce data scanned 

during queries 

• Implementing query caching where appropriate 

• Using BigQuery’s cost controls and quotas 

• Scheduling heavy validation jobs during off-peak hours 

 

7.3 Spot Instances 

 

For non-critical workloads, the framework utilizes pre-

emptible VMs (spot instances) to reduce costs. While these 

instances may be terminated at any time, the framework is 

designed to handle such interruptions gracefully. 

 

7.4 Monitoring and Optimization 

 

Continuous monitoring enables ongoing optimization: 

• Tracking resource utilization and costs over time 

• Identifying inefficient queries or services 

• Implementing automated scaling policies 

• Regularly reviewing and optimizing resource allocation 

 

Table 2: Monthly Cost Comparison ($USD) for 10TB Data 

Processing 

 
Cost Category Our Framework Monolithic Third-Party 

Compute $4,500 $7,800 $6,000 

Storage $2,000 $2,000 $3,500 

Network $800 $1,200 $1,500 

Licensing $0 $0 $5,000 

Total $7,300 $11,000 $16,000 

Cost Savings - 34% 54% 

 

7.5 Cost Comparison 

 

Table 2 shows cost comparison between our framework and 

alternative approaches: 

 

8. Scalability 
 

The framework is designed to scale efficiently to handle 

growing data volumes and increasing validation require-

ments: 

 

8.1 Horizontal Scaling 

 

The microservices can be scaled horizontally by increasing 

the number of replicas in GKE. This allows the framework to 

handle increased data volumes and processing loads. The 

stateless nature of the services facilitates horizontal scaling 

without complex coordination. 

 

8.2 Vertical Scaling 

 

The resources allocated to each pod (CPU, memory) can be 

adjusted based on the requirements. This is particularly useful 

for the Data Quality Service, which may require more 

resources for complex validation operations. 
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8.3 Auto-scaling 

 

GKE supports auto-scaling, which automatically adjusts the 

number of pods based on resource utilization. This ensures 

that the framework can handle workload fluctuations ef-

ficiently. The framework implements both Horizontal Pod 

Autoscaler (HPA) and Vertical Pod Autoscaler (VPA) for 

optimal resource utilization. 

 

8.4 BigQuery Scaling 

 

BigQuery’s serverless architecture allows it to scale auto-

matically to handle varying query loads. This eliminates the 

need to provision and manage data processing resources 

explicitly. 

 

8.5 Scaling Performance 

 

Fig. 2 illustrates scaling performance across different work-

loads. 

 

Our framework demonstrates near-linear scaling up to 50TB, 

with a slight performance degradation (15%) between 50-

100TB due to BigQuery optimization limitations. This 

outperforms monolithic approaches which typically show 

exponential performance degradation above 25TB. 

 

9. Monitoring and Alerting 
 

Comprehensive monitoring is essential for ensuring the 

reliability and performance of the data quality framework. 

The implementation leverages Prometheus and Grafana for 

monitoring and visualization: 

 

9.1 Service Metrics 

 

The framework collects various service-level metrics: 

• Request rates, latencies, and error rates 

• Resource utilization (CPU, memory) 

• Queue lengths and processing times 

• Service dependencies and availability 

 

9.2 Data Quality Metrics 

 

Data quality-specific metrics provide insights into the health 

of the data: 

• Number of failed expectations 

• Validation execution times 

• Data profiling statistics 

• Trend analysis of quality metrics over time 

 

9.3 Alerting 

 

Alerts are configured to notify the team about data qual-ity 

issues or performance bottlenecks. The alerting system 

includes: 

• Severity-based alert classification 

• Alert routing based on service and team responsibilities 

• Automated remediation for certain types of issues 

• Integration with incident management systems 

 

 

 

9.4 Dashboards 

 

Custom Grafana dashboards provide visibility into the 

framework’s operation: 

• Service health overview 

• Data quality trends 

• Resource utilization 

• Cost metrics 

 

10. Machine Learning Integration 
 

A significant enhancement to our framework is the inte-

gration of machine learning techniques for advanced data 

quality features: 

 

10.1 Anomaly Detection 

 

We leverage machine learning to detect anomalies that rule-

based approaches might miss: 

 

• Unsupervised learning (isolation forests, autoencoders) 

for outlier detection 

• Time-series analysis for trend and seasonality anoma-lies 

• Distribution drift detection across data batches 

• Feature correlation monitoring for relationship changes 

 

10.2 Implementation Architecture 

 

The ML pipeline is implemented as follows: 

• Historical validation results train baseline models 

• Models deploy as separate microservices with con-

tainerized TensorFlow Serving 

• Periodic retraining occurs using continuous validation 

results 

• A feature store maintains derived features for ML con-

sumption 

• Model versioning aligns with expectation versioning 

 

10.3 Performance Impact 

 

ML-based validation supplements traditional rule-based 

checks: 

• 22% increase in anomaly detection capabilities 

• 18% reduction in false positives 

• Additional compute cost of only 8% 

• 15% improvement in early detection of subtle data issues 

 

11. Empirical Evaluation 
 

We evaluated the framework using a series of experiments 

designed to assess its performance, scalability, and effective-

ness in detecting data quality issues. 

 

11.1 Experimental Setup 

 

The evaluation was conducted using: 

• GKE cluster with 6 nodes (e2-standard-4 machine type) 

• Dataset with 500GB of data across 10 tables 

• 200 data quality expectations of varying complexity 

• Simulated workload patterns representing typical us-age 

scenarios 

• Comparison implementations: monolithic Python ap-

plication, AWS Deequ, and DQStream 
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11.2 Performance Results 

 

The framework demonstrated excellent performance char-

acteristics: 

• Average validation execution time: 45 seconds for sim-ple 

expectations, 3.2 minutes for complex expectations 

• CPU utilization remained below 70% during peak loads 

• Memory usage remained stable throughout the tests 

• The system successfully handled concurrent validation 

requests 

• Throughput of 10,000 records/second for streaming 

validation 

 

Table 3 shows the performance comparison with alterna-tive 

approaches: 

 

11.3 Scalability Results 

 

Scalability tests showed linear scaling properties: 

• Doubling the data volume increased validation time by 

approximately 85% 

• The system effectively scaled from 5 to 50 concurrent 

validation jobs with minimal performance degradation 

• Horizontal scaling improved throughput proportion-ally 

to the number of pods 

 

Table 3: Performance Comparison 

Metric 
Our 

Framework 

Monolithic 

Python 

AWS 

Deequ 

DQ 

Stream 

Simple validation 45 sec 120 sec 60 sec 78 sec 

Complex 

validation 
3.2 min 8.5 min 4.1 min 6.3 min 

CPU utilization 70% 92% 85% 78% 

Throughput 

(records/sec) 
10,000 3,500 7,500 6,000 

 

11.4 Cost Analysis 

     

Cost analysis revealed significant efficiency improvements 

compared to traditional approaches:   

• 40% reduction in compute costs compared to a monolithic 

implementation 

• BigQuery optimization reduced query costs by 

approximately 35% 

• Auto-scaling policies prevented resource wastage during 

low-utilization periods 

 

11.5 Real-Time Validation Metrics 

   

Streaming validation performance showed:   

• Average end-to-end latency: 18.5 seconds (simple 

expectations), 28.3 seconds (complex) 

• Throughput: 10,000 records/second with 6 pods 

• Resource utilization: 65% CPU, 72% memory during peak 

loads 

• Linear scaling up to 25,000 records/second with added 

pods 

 

12. Case Study: Implementation at Enter- Prise 

Scale 
 

The framework was implemented at a large financial ser-vices 

organization with stringent data quality requirements. The 

organization processes over 10TB of data daily across 

hundreds of tables. 

 

12.1 Implementation Approach 

 

The implementation followed a phased approach: 

1) Initial deployment with critical datasets 

2) Gradual expansion to cover additional data domains 

3) Integration with existing data pipelines 

4) Development of custom expectations for domain-

specific requirements 

5) Implementation of ML-based anomaly detection for 

fraud monitoring 

 

12.2 Technical Challenges and Solutions 

 

The implementation encountered several challenges: 

1) Legacy System Integration: We developed specialized 

connectors with adaptable validation logic 

2) Security Requirements: Implemented zero-trust net-

working and encryption 

3) Performance at Scale: Optimized BigQuery execution 

with materialized views 

4) Schema Evolution: Deployed automated expectation 

adjustment workflows 

 

12.3 Results 

 

The implementation yielded significant benefits: 

• 78% reduction in data quality incidents 

• Improved data consistency across systems 

• Enhanced compliance with regulatory requirements 

• Greater visibility into data quality metrics 

• Reduced time to detect and remediate issues from 48 hours 

to 1.5 hours 

• 45% reduction in false positive alerts through ML-based 

anomaly detection 

   

13. Conclusion and Future Work 
 

This paper presented a microservice-based data quality 

framework that provides a scalable, cost-effective, and robust 

solution for ensuring high data quality. By leveraging Great 

Expectations and BigQuery, organizations can effectively 

monitor, validate, and improve the quality of their data assets. 

The modular architecture promotes flexibility and allows the 

framework to adapt to evolving data needs. Our contribution 

significantly advances the state of the art in data quality 

frameworks through: 

• Superior performance metrics compared to existing 

solutions 

• Real-time validation capabilities with sub-30 second 

latency 

• Cost optimization strategies that reduce infrastructure 

expenses by 34-54% 

• Integration of machine learning for enhanced anomaly 

detection 

• Enterprise-grade security and governance features 

 

Future work will focus on: 

1) Expanding real-time validation capabilities with lower 

latency targets (sub-10 seconds) 
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2) Enhancing ML-based anomaly detection with explain-

able AI techniques 

3) Implementing federated data quality validation across 

multi-cloud environments 

4) Developing domain-specific expectation libraries for 

common use cases 

5) Creating automated remediation workflows based on 

common quality patterns 

 

The source code and documentation for the framework will 

be made available as open-source to facilitate adoption and 

further development by the community. 
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