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Abstract: This paper presents a comprehensive methodology for developing a SQL agent leveraging LangChain to interact with Big 

Query. The agent facilitates seamless generation and execution of efficient SQL queries against Big Query, returning results in a readily 

interpretable format. We explore optimization strategies for enhancing agent performance and delve into advanced functionalities 

including natural language processing (NLP) powered query construction and data visualization techniques. Best practices for integrating 

LangChain with Big Query are also discussed, providing developers with a practical guide to building robust and performant data access 

solutions. 
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1. Introduction 
 

In today's data-driven world, efficiently querying and 

analyzing vast datasets is paramount. Big Query, a powerful 

cloud-based data warehouse, offers the scalability and 

performance needed for handling such data. However, 

interacting with BigQuery often requires specialized SQL 

knowledge and can be time-consuming for complex queries. 

This white paper introduces a novel approach to simplifying 

and streamlining BigQuery interactions through the 

development of a SQL agent powered by LangChain. This 

agent acts as an intelligent intermediary, allowing users to 

generate and execute SQL queries against BigQuery using 

natural language or simplified prompts. By leveraging 

LangChain's capabilities, the agent handles the complexities 

of SQL construction and execution, returning results in an 

easily digestible format. This empowers both technical and 

non-technical users to access and analyze data within 

BigQuery more efficiently, ultimately accelerating insights 

and decision-making. This paper details the methodology for 

constructing such an agent, exploring optimization strategies, 

advanced functionalities, and best practices for seamless 

integration with BigQuery, offering a practical roadmap for 

building robust and high-performing data access solutions. 

 

2. Gen AI Agents 
 

a) Base Level: Language Models (LLMs)  

• What they do: LLMs, like the ones that power ChatGPT, 

are primarily focused on understanding and context within 

language. They can generate text, translate languages, and 

answer questions based on the information they've been 

trained on. 

• Limitations: They are reactive. They respond to prompts 

but don't have goals, memory, or the ability to plan or 

interact with the world beyond text.  

 

b) Intermediate Level: GenAI Applications 

This level builds upon the foundation of LLMs, adding 

capabilities like:  

• Conditional Data Generation: Controlling the output of the 

LLM more precisely. For example, specifying the length, 

style, or topic of the generated text. 

• Creativity and Novelty: Going beyond simply 

regurgitating training data to generate new and original 

content, like poems, code, scripts, musical pieces, email, 

letters, etc. 

• Gen AI Applications: Utilizing these enhanced capabilities 

for specific applications like writing assistance, code 

generation, or creative content creation. 

 

c) Advanced Level: GenAI Agents 

What they do:  

Gen AI agents represent a significant leap beyond LLMs. They 

combine the language capabilities of LLMs with reasoning, 

problem-solving, and agentic workflows. Crucially, they can 

interact with their environment, take actions, and pursue goals.  

 

Key Differences from LLMs: 

• Proactive: Agents can initiate actions without explicit 

human prompting. They are goal-driven and can plan steps 

to achieve those goals.  

• Memory and Learning: Agents can retain information from 

past interactions and use it to inform future actions. They 

learn and adapt over time.  

• Data Synthesis (Agentic Workflows): Agents can interact 

with various data sources and tools, synthesize 

information, and use it to achieve their goals.  

• Human-Like Interactions: The ultimate aim is to create 

agents that can interact with humans in a natural and 

intuitive way, understanding complex requests and 

carrying out multi-step tasks. They are designed to be more 

autonomous and require less direct human supervision. 

Figure 1: Gen AI Agent Evolution 
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3. Sql Agent using lanchain and Sql Alchemy 
 

An SQL AI agent uses Large Language Models (LLMs) to 

translate natural language questions into SQL queries. The 

agent receives a question, the LLM converts it into a SQL 

query, executes it against the SQL database, and then another 

LLM translates the result set back into a natural language 

answer. The SQL agent acts as the orchestrator of this process, 

managing the interaction between the LLMs and the database 

 
Figure 2: SQL Agent Overview 

 

3.1 Connecting to BigQuery with SQLAlchemy 

 

a) Creating an Agent 

Once installed, you can create a connection to connect to your 

BigQuery project: 

 

 
 

Remember to replace your-project-id with your actual 

BigQuery project ID, which you can find in the Google Cloud 

console. 

 

b) Authentication Methods 

• Service Account Key: Provide the path to your service 

account key JSON file: 

 
 

• Application Default Credentials: If you've set up 

application default credentials, the library will 

automatically use them. 

 

3.2 Creating a SQL Agent with LangChain 

 

With the BigQuery connection established, we can now create 

the SQL agent using LangChain. LangChain provides a 

framework for building agents that can interact with various 

tools, including databases. 

 

LangChain offers different types of SQL agents, each with its 

own approach to generating and executing queries 4: 

• zero-shot-react-description: This agent type relies on a 

prompt to guide its behavior. It analyzes the user's query 

and the database schema to generate a SQL query. 

• openai-functions: This agent type leverages OpenAI's 

function-calling capabilities to select and execute 

appropriate actions, such as generating SQL queries or 

retrieving table schemas. 

The choice of agent type depends on your specific needs 

and the complexity of your application. 

 

Basic example 

 
 

SQL Agent life cycle 

 
 

Figure 3: SQL Agent lifecycle 

 

The SQL AI Agent lifecycle describes the process of 

answering a user's natural language question by leveraging 

large language models (LLMs), a SQL toolkit like 

SQLAlchemy, and a database such as BigQuery. The agent 

translates the question into SQL queries, executes them 

against the database, and then translates the results back into a 

natural language response. This involves several steps 

involving different components working together, consider:  

Here's a breakdown of the SQL AI Agent Lifecycle: 

a) User Input: The process begins with a user posing a 

question in natural language. This question can be about 

anything related to the data stored in BigQuery. 
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b) Initial LLM Processing: The first LLM takes the user's 

question as input. It analyzes the question to understand its 

intent and the information requested. This stage might 

involve natural language processing tasks such as intent 

recognition, entity extraction, and preliminary query 

formulation. 

c) SQL Alchemy Interaction: The output from the first LLM, 

which might be a partially formed query or a set of 

instructions, is then passed to SQL Alchemy. SQL 

Alchemy acts as the intermediary between the LLM and 

the BigQuery database. It performs several crucial 

functions: 

• List Tables: SQL Alchemy queries BigQuery for 

schema information, including a list of available tables 

and their structure. This information is then passed back 

to the LLM to aid in generating a relevant SQL query. 

• Schema and Sampling: SQL Alchemy can also fetch 

sample data and schema details from BigQuery. This 

can assist the LLM in understanding the data's structure 

and content, allowing it to generate more effective and 

precise queries. 

• Query Syntax Validation: Once the LLM generates a 

SQL query, SQL Alchemy validates its syntax before 

sending it to BigQuery. This ensures that the query is 

structurally sound and prevents errors during execution. 

• Query Execution: If the SQL query is valid, SQL 

Alchemy sends it to BigQuery for execution. 

d) BigQuery Execution: BigQuery receives the validated 

SQL query from SQL Alchemy and executes it against the 

relevant dataset. The result of this execution is a data table 

containing the answer to the user's question in a structured 

format. 

e) Result Retrieval: SQL Alchemy retrieves the results of the 

query execution from BigQuery. This result set might 

contain raw data, aggregated values, or other information 

depending on the user's original question and the executed 

query. 

f) Final LLM Processing: The second LLM receives the 

structured data returned by BigQuery. Its task is to process 

these results and translate them back into a human-

readable, natural language response. This stage may 

involve summarizing data, formatting the response, and 

adding context relevant to the user's initial question. 

g) Answer Output: Finally, the processed answer generated 

by the second LLM is presented to the user. This completes 

the lifecycle of answering the user's question, providing a 

seamless experience of interacting with the data using 

natural language. 

 

Challenges with Complex Databases 

When working with complex database structures or 

ambiguous table names, the SQL agent might face challenges 

in accurately understanding user queries and generating 

correct SQL 4. To address this, consider:  

• Providing a clear database description: Include a detailed 

description of the database schema and table structures in 

the prompt to guide the agent. 

• Hardcoding example questions and queries: Provide the 

agent with a few examples of questions and their 

corresponding SQL queries to help it learn the 

relationships between natural language and SQL. 

 

 

Benefits of Using SQL Agents 

SQL agents offer several advantages for interacting with 

databases 6:  

• Schema Awareness: SQL agents can understand and 

interpret the database schema, enabling them to generate 

more informed and accurate queries. 

• Error Recovery: They can handle errors gracefully by 

regenerating queries when encountering issues, ensuring a 

smoother user experience. 

• Multi-Query Handling: SQL agents can manage complex 

questions that require multiple dependent queries, 

streamlining the data retrieval process. 

• Token Efficiency: By focusing only on relevant tables and 

columns, they save tokens, making them more efficient in 

terms of resource usage. 

4. Optimization and Improvements 
 

Optimizing SQL Queries for Big Query 

When working with large datasets in BigQuery, optimizing 

SQL queries for performance is essential 6. Here are some 

strategies to consider: 

• Use SELECT statements wisely: Only select the columns 

you need to reduce the amount of data processed. 

• Filter early: Apply WHERE clauses early in the query to 

limit the data scanned. 

• Leverage partitioning: If your tables are partitioned, 

ensure your queries utilize this feature to minimize data 

scanned. 

• Avoid SELECT *: Specify the required columns instead of 

retrieving all columns. 

• Use indexes: Create indexes on frequently queried columns 

to speed up data retrieval. 

 

Optimization can be achieved with above strategies and many 

more by providing the agent prefix context which guides the 

agent to create queries based on the recommendations.   

 

Enhancing the SQL Agent with Few-Shot examples and 

Data Visualization 

To further enhance the SQL agent, consider incorporating 

Few-Shot examples and data visualization. 

 

a) Dynamic Few-Shot Example:  

Improve the agent's performance by dynamically selecting 

relevant examples based on the user's query 13. This involves: 

• Creating a repository of examples: Store a collection of 

question-query pairs. 

• Using semantic similarity: Analyze the user's query and 

select the most semantically similar examples from the 

repository. 

• Including the selected examples in the prompt: Provide the 

selected examples to the language model to guide its query 

generation. 

 

b) Data Visualization 

Data visualization can make the information retrieved from 

the database more engaging and understandable. 

Visualization Techniques: Consider using various 

visualization techniques to present the data, prompt the agent 

LLM to present data in a particular format based on the 

question and convert the data to relevant chart to make it more 

interactive. 
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• Column charts: Compare different categories or values. 

• Bar charts: Display data with distinct categories. 

• Scatter plots: Show the relationship between two variables. 

• Line graphs: Illustrate trends over time. 

• Pie charts: Represent proportions of a whole. 

 

 
Figure 4: Charts 

 

 

Figure 5: Enhanced Sql Agent 

 

Enhancing Chatbots with Memory 

Incorporating memory into your SQL agent can enhance its 

ability to handle follow-up questions and maintain context 13. 

This involves:  

• Storing previous interactions: Keep a record of the user's 

previous questions and the agent's responses. 

• Referring to past context: When answering a new question, 

the agent can refer to the stored memory to understand the 

context and provide more relevant answers. 

 

Example Scenario 

User: "What were the total sales in 2023?" 

Agent: "Total sales in 2023 were $1,000,000." 

User: "And in 2022?" 

 

With memory, the agent can understand that "2022" refers to 

the sales in the previous year and provide the correct answer 

without needing the user to repeat the entire context. 

 

Caching with data portal metadata APIs 

 

To enhance the performance of our SQL agent tool, we are 

investigating methods to optimize metadata retrieval. 

Currently, the agent fetches metadata directly for each query. 

Our proposed solution involves leveraging internal APIs, such 

as the Data portal assets API or custom table metadata APIs, 

to retrieve this information. By caching the retrieved metadata, 

we can drastically reduce the number of API calls and the 

associated latency. This caching strategy aims to significantly 

improve the overall performance and responsiveness of the 

SQL agent, especially for frequently accessed tables. We 

expect this optimization to minimize query execution time and 

enhance the user experience. 

 

5. Conclusion 
 

By combining the capabilities of LangChain, BigQuery, and 

SQL Alchemy, you can create a powerful SQL agent that can 

effectively interact with your data and provide valuable 

insights. Incorporating advanced techniques like NLP and data 

visualization, along with following best practices, can further 

enhance the agent's performance and user experience. This 

opens up a wide range of applications for SQL agents in 

various domains, from data analysis and reporting to customer 

service and decision-making. 

 

This article provided a comprehensive guide to building and 

enhancing a SQL agent with LangChain and BigQuery. We 

started by establishing a connection to BigQuery using SQL 

Alchemy, exploring different authentication methods and 

connector options. Then, we delved into creating the SQL 

agent with LangChain, discussing various agent types and 

addressing challenges with complex databases. We 

highlighted the benefits of using SQL agents, such as schema 

awareness and error recovery, and explored techniques for 

generating, executing, and validating SQL queries. We also 

discussed strategies for optimizing queries for BigQuery and 

presenting the output in a user-friendly format. Finally, we 

explored advanced techniques like NLP and data visualization 

to further enhance the agent's capabilities and discussed best 

practices for using LangChain with BigQuery. 
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