
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

A Smart SQL Agent: Enhancing Big Query

Efficiency and Usability

Pushkar Vashishtha

Abstract: This paper presents a comprehensive methodology for developing a SQL agent leveraging LangChain to interact with Big

Query. The agent facilitates seamless generation and execution of efficient SQL queries against Big Query, returning results in a readily

interpretable format. We explore optimization strategies for enhancing agent performance and delve into advanced functionalities

including natural language processing (NLP) powered query construction and data visualization techniques. Best practices for integrating

LangChain with Big Query are also discussed, providing developers with a practical guide to building robust and performant data access

solutions.

Keywords: sqlagent, bigquery, langchain, sqlalchemy, sqloptimization

1. Introduction

In today's data-driven world, efficiently querying and

analyzing vast datasets is paramount. Big Query, a powerful

cloud-based data warehouse, offers the scalability and

performance needed for handling such data. However,

interacting with BigQuery often requires specialized SQL

knowledge and can be time-consuming for complex queries.

This white paper introduces a novel approach to simplifying

and streamlining BigQuery interactions through the

development of a SQL agent powered by LangChain. This

agent acts as an intelligent intermediary, allowing users to

generate and execute SQL queries against BigQuery using

natural language or simplified prompts. By leveraging

LangChain's capabilities, the agent handles the complexities

of SQL construction and execution, returning results in an

easily digestible format. This empowers both technical and

non-technical users to access and analyze data within

BigQuery more efficiently, ultimately accelerating insights

and decision-making. This paper details the methodology for

constructing such an agent, exploring optimization strategies,

advanced functionalities, and best practices for seamless

integration with BigQuery, offering a practical roadmap for

building robust and high-performing data access solutions.

2. Gen AI Agents

a) Base Level: Language Models (LLMs)

• What they do: LLMs, like the ones that power ChatGPT,

are primarily focused on understanding and context within

language. They can generate text, translate languages, and

answer questions based on the information they've been

trained on.

• Limitations: They are reactive. They respond to prompts

but don't have goals, memory, or the ability to plan or

interact with the world beyond text.

b) Intermediate Level: GenAI Applications

This level builds upon the foundation of LLMs, adding

capabilities like:

• Conditional Data Generation: Controlling the output of the

LLM more precisely. For example, specifying the length,

style, or topic of the generated text.

• Creativity and Novelty: Going beyond simply

regurgitating training data to generate new and original

content, like poems, code, scripts, musical pieces, email,

letters, etc.

• Gen AI Applications: Utilizing these enhanced capabilities

for specific applications like writing assistance, code

generation, or creative content creation.

c) Advanced Level: GenAI Agents

What they do:

Gen AI agents represent a significant leap beyond LLMs. They

combine the language capabilities of LLMs with reasoning,

problem-solving, and agentic workflows. Crucially, they can

interact with their environment, take actions, and pursue goals.

Key Differences from LLMs:

• Proactive: Agents can initiate actions without explicit

human prompting. They are goal-driven and can plan steps

to achieve those goals.

• Memory and Learning: Agents can retain information from

past interactions and use it to inform future actions. They

learn and adapt over time.

• Data Synthesis (Agentic Workflows): Agents can interact

with various data sources and tools, synthesize

information, and use it to achieve their goals.

• Human-Like Interactions: The ultimate aim is to create

agents that can interact with humans in a natural and

intuitive way, understanding complex requests and

carrying out multi-step tasks. They are designed to be more

autonomous and require less direct human supervision.

Figure 1: Gen AI Agent Evolution

Paper ID: SR25423072212 DOI: https://dx.doi.org/10.21275/SR25423072212 469

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3. Sql Agent using lanchain and Sql Alchemy

An SQL AI agent uses Large Language Models (LLMs) to

translate natural language questions into SQL queries. The

agent receives a question, the LLM converts it into a SQL

query, executes it against the SQL database, and then another

LLM translates the result set back into a natural language

answer. The SQL agent acts as the orchestrator of this process,

managing the interaction between the LLMs and the database

Figure 2: SQL Agent Overview

3.1 Connecting to BigQuery with SQLAlchemy

a) Creating an Agent

Once installed, you can create a connection to connect to your

BigQuery project:

Remember to replace your-project-id with your actual

BigQuery project ID, which you can find in the Google Cloud

console.

b) Authentication Methods

• Service Account Key: Provide the path to your service

account key JSON file:

• Application Default Credentials: If you've set up

application default credentials, the library will

automatically use them.

3.2 Creating a SQL Agent with LangChain

With the BigQuery connection established, we can now create

the SQL agent using LangChain. LangChain provides a

framework for building agents that can interact with various

tools, including databases.

LangChain offers different types of SQL agents, each with its

own approach to generating and executing queries 4:

• zero-shot-react-description: This agent type relies on a

prompt to guide its behavior. It analyzes the user's query

and the database schema to generate a SQL query.

• openai-functions: This agent type leverages OpenAI's

function-calling capabilities to select and execute

appropriate actions, such as generating SQL queries or

retrieving table schemas.

The choice of agent type depends on your specific needs

and the complexity of your application.

Basic example

SQL Agent life cycle

Figure 3: SQL Agent lifecycle

The SQL AI Agent lifecycle describes the process of

answering a user's natural language question by leveraging

large language models (LLMs), a SQL toolkit like

SQLAlchemy, and a database such as BigQuery. The agent

translates the question into SQL queries, executes them

against the database, and then translates the results back into a

natural language response. This involves several steps

involving different components working together, consider:

Here's a breakdown of the SQL AI Agent Lifecycle:

a) User Input: The process begins with a user posing a

question in natural language. This question can be about

anything related to the data stored in BigQuery.

Paper ID: SR25423072212 DOI: https://dx.doi.org/10.21275/SR25423072212 470

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

b) Initial LLM Processing: The first LLM takes the user's

question as input. It analyzes the question to understand its

intent and the information requested. This stage might

involve natural language processing tasks such as intent

recognition, entity extraction, and preliminary query

formulation.

c) SQL Alchemy Interaction: The output from the first LLM,

which might be a partially formed query or a set of

instructions, is then passed to SQL Alchemy. SQL

Alchemy acts as the intermediary between the LLM and

the BigQuery database. It performs several crucial

functions:

• List Tables: SQL Alchemy queries BigQuery for

schema information, including a list of available tables

and their structure. This information is then passed back

to the LLM to aid in generating a relevant SQL query.

• Schema and Sampling: SQL Alchemy can also fetch

sample data and schema details from BigQuery. This

can assist the LLM in understanding the data's structure

and content, allowing it to generate more effective and

precise queries.

• Query Syntax Validation: Once the LLM generates a

SQL query, SQL Alchemy validates its syntax before

sending it to BigQuery. This ensures that the query is

structurally sound and prevents errors during execution.

• Query Execution: If the SQL query is valid, SQL

Alchemy sends it to BigQuery for execution.

d) BigQuery Execution: BigQuery receives the validated

SQL query from SQL Alchemy and executes it against the

relevant dataset. The result of this execution is a data table

containing the answer to the user's question in a structured

format.

e) Result Retrieval: SQL Alchemy retrieves the results of the

query execution from BigQuery. This result set might

contain raw data, aggregated values, or other information

depending on the user's original question and the executed

query.

f) Final LLM Processing: The second LLM receives the

structured data returned by BigQuery. Its task is to process

these results and translate them back into a human-

readable, natural language response. This stage may

involve summarizing data, formatting the response, and

adding context relevant to the user's initial question.

g) Answer Output: Finally, the processed answer generated

by the second LLM is presented to the user. This completes

the lifecycle of answering the user's question, providing a

seamless experience of interacting with the data using

natural language.

Challenges with Complex Databases

When working with complex database structures or

ambiguous table names, the SQL agent might face challenges

in accurately understanding user queries and generating

correct SQL 4. To address this, consider:

• Providing a clear database description: Include a detailed

description of the database schema and table structures in

the prompt to guide the agent.

• Hardcoding example questions and queries: Provide the

agent with a few examples of questions and their

corresponding SQL queries to help it learn the

relationships between natural language and SQL.

Benefits of Using SQL Agents

SQL agents offer several advantages for interacting with

databases 6:

• Schema Awareness: SQL agents can understand and

interpret the database schema, enabling them to generate

more informed and accurate queries.

• Error Recovery: They can handle errors gracefully by

regenerating queries when encountering issues, ensuring a

smoother user experience.

• Multi-Query Handling: SQL agents can manage complex

questions that require multiple dependent queries,

streamlining the data retrieval process.

• Token Efficiency: By focusing only on relevant tables and

columns, they save tokens, making them more efficient in

terms of resource usage.

4. Optimization and Improvements

Optimizing SQL Queries for Big Query

When working with large datasets in BigQuery, optimizing

SQL queries for performance is essential 6. Here are some

strategies to consider:

• Use SELECT statements wisely: Only select the columns

you need to reduce the amount of data processed.

• Filter early: Apply WHERE clauses early in the query to

limit the data scanned.

• Leverage partitioning: If your tables are partitioned,

ensure your queries utilize this feature to minimize data

scanned.

• Avoid SELECT *: Specify the required columns instead of

retrieving all columns.

• Use indexes: Create indexes on frequently queried columns

to speed up data retrieval.

Optimization can be achieved with above strategies and many

more by providing the agent prefix context which guides the

agent to create queries based on the recommendations.

Enhancing the SQL Agent with Few-Shot examples and

Data Visualization

To further enhance the SQL agent, consider incorporating

Few-Shot examples and data visualization.

a) Dynamic Few-Shot Example:

Improve the agent's performance by dynamically selecting

relevant examples based on the user's query 13. This involves:

• Creating a repository of examples: Store a collection of

question-query pairs.

• Using semantic similarity: Analyze the user's query and

select the most semantically similar examples from the

repository.

• Including the selected examples in the prompt: Provide the

selected examples to the language model to guide its query

generation.

b) Data Visualization

Data visualization can make the information retrieved from

the database more engaging and understandable.

Visualization Techniques: Consider using various

visualization techniques to present the data, prompt the agent

LLM to present data in a particular format based on the

question and convert the data to relevant chart to make it more

interactive.

Paper ID: SR25423072212 DOI: https://dx.doi.org/10.21275/SR25423072212 471

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Column charts: Compare different categories or values.

• Bar charts: Display data with distinct categories.

• Scatter plots: Show the relationship between two variables.

• Line graphs: Illustrate trends over time.

• Pie charts: Represent proportions of a whole.

Figure 4: Charts

Figure 5: Enhanced Sql Agent

Enhancing Chatbots with Memory

Incorporating memory into your SQL agent can enhance its

ability to handle follow-up questions and maintain context 13.

This involves:

• Storing previous interactions: Keep a record of the user's

previous questions and the agent's responses.

• Referring to past context: When answering a new question,

the agent can refer to the stored memory to understand the

context and provide more relevant answers.

Example Scenario

User: "What were the total sales in 2023?"

Agent: "Total sales in 2023 were $1,000,000."

User: "And in 2022?"

With memory, the agent can understand that "2022" refers to

the sales in the previous year and provide the correct answer

without needing the user to repeat the entire context.

Caching with data portal metadata APIs

To enhance the performance of our SQL agent tool, we are

investigating methods to optimize metadata retrieval.

Currently, the agent fetches metadata directly for each query.

Our proposed solution involves leveraging internal APIs, such

as the Data portal assets API or custom table metadata APIs,

to retrieve this information. By caching the retrieved metadata,

we can drastically reduce the number of API calls and the

associated latency. This caching strategy aims to significantly

improve the overall performance and responsiveness of the

SQL agent, especially for frequently accessed tables. We

expect this optimization to minimize query execution time and

enhance the user experience.

5. Conclusion

By combining the capabilities of LangChain, BigQuery, and

SQL Alchemy, you can create a powerful SQL agent that can

effectively interact with your data and provide valuable

insights. Incorporating advanced techniques like NLP and data

visualization, along with following best practices, can further

enhance the agent's performance and user experience. This

opens up a wide range of applications for SQL agents in

various domains, from data analysis and reporting to customer

service and decision-making.

This article provided a comprehensive guide to building and

enhancing a SQL agent with LangChain and BigQuery. We

started by establishing a connection to BigQuery using SQL

Alchemy, exploring different authentication methods and

connector options. Then, we delved into creating the SQL

agent with LangChain, discussing various agent types and

addressing challenges with complex databases. We

highlighted the benefits of using SQL agents, such as schema

awareness and error recovery, and explored techniques for

generating, executing, and validating SQL queries. We also

discussed strategies for optimizing queries for BigQuery and

presenting the output in a user-friendly format. Finally, we

explored advanced techniques like NLP and data visualization

to further enhance the agent's capabilities and discussed best

practices for using LangChain with BigQuery.

References

[1] Rangchekar, M. (n.d.). Getting started: Building your

first SQL database agent with LangChain. Medium.

Retrieved February 12, 2025, from

https://medium.com/@mandarangchekar7/getting-

started-building-your-first-sql-database-agent-with-

langchain-bc8b45a9ba70

[2] Agents | LangChain. (n.d.). Retrieved February 12,

2025, from

https://python.langchain.com/v0.1/docs/use_cases/sql/a

gents/

[3] Langchain knowledge SQL agent BigQuery cat AI. (n.d.).

Restack. Retrieved February 12, 2025, from

https://www.restack.io/docs/langchain-knowledge-sql-

agent-bigquery-cat-ai

[4] SQL agent for Google Big Query · Discussion #17760 ·

langchain-ai/langchain. (n.d.). GitHub. Retrieved

Paper ID: SR25423072212 DOI: https://dx.doi.org/10.21275/SR25423072212 472

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 5, May 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

February 12, 2025, from https://github.com/langchain-

ai/langchain/discussions/17760

[5] Using LangChain and GPT to chat with your BigQuery

data. (n.d.). DataScienceEngineer. Retrieved February

12, 2025, from

https://www.datascienceengineer.com/blog/post-chat-

with-bigquery

[6] SQL - LangChain. (n.d.). Retrieved February 12,

2025, from

https://python.langchain.com/v0.1/docs/use_cases/sql/

[7] Best practices for SQL query optimizations. (n.d.).

GeeksforGeeks. Retrieved February 12, 2025, from

https://www.geeksforgeeks.org/best-practices-for-sql-

query-optimizations/

Paper ID: SR25423072212 DOI: https://dx.doi.org/10.21275/SR25423072212 473

http://www.ijsr.net/

