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Abstract: This article introduces a new class of models for handling complex semantic queries-Conceptual Graph RAG Models-which 

combine the representational strengths of Conceptual Graphs (CG) with the dynamic retrieval capabilities of the Retrieval-Augmented 

Generation (RAG) paradigm. The paper examines two recent architectures, Graph RAG and G-Retriever, focusing on the extraction of 

relevant subgraphs, their optimal construction using Prize-Collecting Steiner Tree algorithms, and integration with large language models 

(LLMs) via soft prompt tuning. Methods such as Prompt Tuning and LoRA are discussed for enhancing efficiency while reducing the 

number of trainable parameters. A comprehensive review of evaluation metrics is presented, including precision/recall in retrieval, 

BERTScore, Mean Reciprocal Rank (MRR), Hop-Accuracy, and hallucination detection. Benchmark datasets such as PATQA, MINTQA, 

and WebQSP are also analyzed. The results show that the proposed approaches deliver high answer accuracy, improved interpretability, 

and greater robustness against misinformation-particularly when scaled to large knowledge graphs. The insights offered in this work will 

be of particular interest to researchers focused on ontology formalization and knowledge representation, especially those working at the 

intersection of symbolic reasoning and neural retrieval-generation systems. The topic also holds practical value for system architects and 

engineers of enterprise semantic platforms aiming to optimize and scale complex semantic queries by integrating graph-based knowledge 

representations with LLMs in intelligent data processing pipelines. 
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1. Introduction 
 

Large Language Models (LLMs) have demonstrated strong 

capabilities in natural language generation and understanding. 

However, when applied to complex question answering (QA) 

tasks, they face notable limitations, including insufficient 

reasoning capabilities, outdated or absent domain knowledge, 

limited context length, and a tendency toward factual 

hallucination [1]. Conceptual Graphs (CGs) are a formalism 

for graph-based knowledge modeling, in which nodes 

represent concepts and edges represent relationships between 

them. Their explicit semantics and support for multi-hop 

reasoning make them particularly effective for complex logic-

based tasks [2]. The Retrieval-Augmented Generation (RAG) 

paradigm combines external knowledge retrieval with answer 

generation via LLMs, helping reduce hallucinations and 

incorrect responses [3]. 

 

In recent years, traditional RAG methods have evolved 

through the integration of LLMs with structured knowledge 

representations, such as knowledge graphs (KGs). Pan et al. 

[1] propose a unified roadmap for merging the strengths of 

LLMs and KGs, delineating the stages of subgraph retrieval, 

transformation into LLM-consumable formats, and the 

reintegration of generated outputs into the graph structure. 

Gao et al. [7] offer a systematization of RAG architectures, 

knowledge indexing strategies, and dynamic graph handling 

methods, while also pointing out the lack of standardized 

benchmarks for evaluating the quality of generation in 

semantically complex queries. Perozzi et al. [8] introduce a 

method for encoding structured data into formats directly 

consumable by LLMs—preserving graph topology via 

specialized encoders that translate nodes and edges into 

semantic role-based textual templates. 

 

Regarding empirical RAG models, Lewis et al. [3] formalized 

the RAG architecture for knowledge-intensive QA tasks, 

combining retrieval and generation into a unified pipeline that 

improves accuracy on questions requiring external 

knowledge. He et al. [2] proposed the G-Retriever model, 

designed to interpret textual graph descriptions through a two-

stage process: initial subgraph retrieval followed by semantic 

node representation refinement based on the query. This 

approach achieved state-of-the-art results in graph-based QA 

tasks. Sen et al. [10] addressed complex chain-of-thought 

questions by introducing KG-augmented LMs that leverage 

graph-based ontological knowledge through hybrid attention 

and planning mechanisms for long-form reasoning. Zhao et 

al. [11] presented GraphText, a model that transforms graph 

representations into textual form—treating edges and nodes 

as sentences and fragments—thus enabling the use of any 

state-of-the-art LLM without architectural changes. While 

simplifying integration, this transformation introduces 

challenges in result interpretability. 

 

Another active area of research focuses on prompting and 

adapting LLMs using graph-derived information. Tian et al. 

[5] introduced the concept of Graph Neural Prompting, where 

GNN-generated prompts encode the graph’s logic and 

context, enabling LLMs to solve logic-driven and 

semantically rich queries more effectively. Li et al. [4] 

presented GraphAdapter, a method for tuning multimodal 

(vision-language) models using dual graphs—one for visual 

data and one for knowledge—each encoded separately and 

fused during generation. This showcases the generalizability 

of graph encoders beyond textual tasks. 

 

Alongside engineering solutions, some studies focus on 

foundational adaptation techniques for LLMs. Hu et al. [9] 

proposed LoRA, a low-rank adaptation method that enables 

efficient fine-tuning of LLMs through small adaptation 
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matrices, reducing training overhead—an approach 

applicable to graph-based RAG systems. Qian et al. [6] 

examined LLM potential in property prediction tasks, 

comparing them to classical GNNs. While effective at 

generating property descriptions, LLMs showed limited 

applicability in domains requiring explicit graph structure, 

such as molecular modeling. 

 

This literature review reveals several thematic clusters: 

• Methodological and integrative studies on combining 

LLMs and graphs [1, 7, 8] 

• Algorithmic advancements in graph-based RAG for QA 

tasks [2, 3, 10, 11] 

• Prompt engineering and model adaptation using graph 

inputs [4, 5, 9] 

• Application of LLMs in graph-reliant domains [6] 

 

A notable tension emerges between two core approaches: 

transforming graphs into text for easier LLM integration 

(which risks losing semantic precision) and preserving graph 

topology (which demands complex encoders and high 

computational costs). Another gap lies in the lack of robust 

evaluation frameworks for RAG systems handling deep 

semantic queries—there are no widely accepted benchmarks 

that assess logical depth or the structural alignment of 

generated answers with the original graph. Furthermore, little 

attention is given to the dynamic updating of knowledge in 

real time or handling evolving graphs, which is crucial for 

applications requiring continual information integration. 

 

The aim of this study is to analyze conceptual graph-based 

RAG models used for processing complex semantic queries. 

 

This research introduces a conceptual synthesis and 

systematic classification of Conceptual Graph RAG 

architectures—from baseline Graph RAG models to PCST-

optimized G-Retriever enhanced with soft prompt tuning and 

LoRA adaptation. It also formalizes a unified set of metrics 

and benchmarks for comprehensive evaluation of RAG 

systems in terms of quality, scalability, and dynamic 

knowledge integration. 

The central hypothesis is that integrating conceptual graphs 

with the RAG paradigm—via optimized subgraph retrieval 

and soft prompt tuning of LLMs—can significantly enhance 

answer accuracy and reasoning explainability for complex 

semantic queries. 

 

The study is based on a comparative analysis of existing 

research in this field, drawing insights from both conceptual 

frameworks and empirical results. 

 

2. Theoretical Foundations and Unification 

Paradigms of Conceptual Graphs and RAG 
 

Conceptual Graphs (CG) are a graph-based formalism for 

knowledge representation, where nodes denote concepts and 

edges encode semantic relations between them. Due to their 

explicit structure, CGs offer a flexible medium for 

representing and integrating facts from diverse sources [2]. 

When CGs are used as background knowledge, the core task 

becomes identifying relevant subgraphs and incorporating 

them into the context provided to the LLM. Knowledge fusion 

and RAG frameworks enable the alignment of linguistic 

embeddings with graph-based representations through two 

principal strategies: 

• Knowledge Integration and Fusion: This approach 

adaptively selects relevant graph fragments to fine-tune 

the LLM. For example, KG-Adapter injects graph-specific 

adapter layers into the LLM architecture, allowing it to 

process graph-augmented inputs. 

• Retrieval-Augmented Generation on Graphs: In 

architectures like Graph RAG, subgraphs are retrieved and 

trimmed using graph neural networks (GNNs), and their 

embeddings are combined with textual vectors to support 

answer generation [3]. 

 

Conceptual Graphs also function as reasoning scaffolds, 

guiding LLMs through permitted inference paths in multi-hop 

logic tasks. Figure 1 below outlines representative approaches 

to CG-LLM integration. 

 

 
Figure 1: Approaches in LLM [1, 3] 

 

Integrating CGs into both the filtering and final answer 

generation stages helps improve the accuracy and reliability 

of responses by enabling: 

• Filtering and Validation: Methods such as ACT-Selection 

filter candidate answers based on Wikidata entity types; 

KG-Rank reorders outputs according to graph-based 
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relationships; and KGR retrofits LLM-generated outputs 

using graph alignment. 

• Answer Refinement: Techniques like EFSUM reformulate 

LLM outputs based on CG-based summaries; 

InteractiveKBQA orchestrates iterative queries to graph 

databases; and LPKG trains LLMs in structured planning 

using CG templates [4]. 

 

The main paradigms for unifying CG and RAG architectures 

are summarized in Table 1. 

 

Table 1: The Main Paradigms of Unification of CG and RAG [2, 5, 6] 
Paradigm Description Example Methods 

CG as Background 

Knowledge 

Integration of relevant CG subgraphs into LLMs through 

knowledge fusion or RAG 
InfuserKI, KG-Adapter, Graph RAG 

CG as Reasoning 

Guidance 

Providing structured inference paths for LLMs via CGs; 

includes both online and offline graph dialogue 
EtD, GCR, Oreo, LLM-ARK, ToG 

CG as Validators and 

Refiners 

Filtering, re-ranking, and refining LLM outputs through 

factual validation and CG-grounded correction 

ACT-Selection, KG-Rank, KGR, 

EFSUM, InteractiveKBQA, LPKG 

 

This classification highlights three complementary ways to 

leverage Conceptual Graphs in RAG-based systems: as 

foundational knowledge, as navigational guides for 

reasoning, and as mechanisms for validating and refining final 

outputs. Together, these paradigms establish a solid 

theoretical basis for the structured development of 

Conceptual Graph RAG Models. 

 

3. Architectures of Contemporary Conceptual 

Graph RAG Models 
 

The Graph RAG method was originally proposed as a way to 

integrate Retrieval-Augmented Generation directly with 

graph structures, bypassing the conventional reliance on 

textual fragments [1, 7]. During knowledge preparation, 

embeddings are generated for nodes and edges of the 

underlying ontological graph using Graph Neural Networks 

(GNNs). For each textual query, the k-nearest elements of the 

graph are retrieved based on cosine similarity, followed by the 

construction of a candidate subgraph: irrelevant edges are 

pruned using predefined thresholds, and the remaining 

components are refined through GNN processing. This 

subgraph is then linearized into textual form and concatenated 

with the original query, serving as augmented context for the 

large language model (LLM)—a design that substantially 

reduces hallucination risk. 

 

Despite notable improvements in answer quality, Graph RAG 

struggles to scale to large graphs. The reliance on basic kNN 

retrieval limits its coverage, and rigid pruning thresholds can 

eliminate structurally important connections, reducing the 

completeness of generated answers. 

 

To overcome these limitations, G-Retriever advances the 

Graph RAG framework by operating on textual graphs and 

formulating subgraph selection as a Prize-Collecting Steiner 

Tree (PCST) optimization problem. During indexing, node 

and edge attributes are encoded using a pretrained language 

model (e.g., SentenceBERT) into embeddings of dimension 

d. Upon receiving a query xₛ, its embedding zₛ is computed. 

The top-k nodes Vₖ and edges Eₖ are selected based on cosine 

similarity (cos(zₛ, zₙ), cos(zₛ, zₑ)). Each element is assigned a 

prize value prize = k – i, where i is its rank; others receive 

zero. The objective becomes finding a connected subgraph S 

that maximizes the sum of prize values minus the edge costs 

[2, 3]. 

 

The selected optimal subgraph is then flattened into a linear 

textual sequence, embedded using a Text Embedder and 

passed through an MLP projection to form a graph 

embedding. This is combined with the query tokens and input 

into the LLM. Importantly, LLM weights remain frozen; 

training is limited to the GNN and MLP layers, enabling 

efficient task-specific adaptation. G-Retriever’s key 

advantages include high scalability (via controlled subgraph 

size), strong robustness against hallucinations (by grounding 

generation in retrieved facts), and high explainability (via 

return of the PCST subgraph). In terms of system 

optimization, two main directions are distinguished: 

• Soft Prompt Tuning: Prompt tokens are concatenated with 

the text embedding and fine-tuned without modifying 

LLM weights. An analogous graph-based variant is 

implemented in GraphToken [8], where the entire graph 

embedding serves as a prompt. However, the lack of node 

selection limits its scalability. 

• Parameter-Efficient Fine-Tuning (PEFT) with LoRA 

(Low-Rank Adaptation): Hu et al. [9] demonstrated that 

introducing sparse low-rank matrices into the model 

allows training a small subset of parameters while keeping 

the LLM core intact. Combined with PCST-based retrieval 

in G-Retriever, LoRA provides performance gains over 

soft-prompt tuning alone [9]. 

 

Table 2 presents a comparison of key features across the main 

graph-based architectures. 

 

Table 2: Comparison of Graph-Based RAG Architectures [2, 7, 8, 9] 
Characteristic Graph RAG G-Retriever GraphToken 

Graph Type Knowledge Graphs (e.g., ontologies) Textual graphs 
Conceptual Graphs / Structured 

Graphs 

Retrieval Method kNN via GNN embeddings kNN + PCST optimization Whole-graph embedding 

Subgraph Size Threshold-based pruning Optimized PCST subgraph All nodes via soft prompt 

LLM Integration concat(subgraph, query) soft-prompt (MLP → LLM) soft-prompt (graph embedding) 

Scalability Moderate High Low 

Robustness to Hallucinations Moderate Strong Weak 

Explainability Limited High (PCST subgraph returned) Low 
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In summary, contemporary Conceptual Graph RAG models 

have evolved from simple subgraph extraction and 

concatenation (Graph RAG) to more advanced optimization-

based architectures like G-Retriever, which incorporate PCST 

algorithms and soft prompt tuning. These developments 

improve scalability, interpretability, and robustness against 

hallucinations—key requirements for handling complex 

semantic QA tasks. 

 

4. Evaluating the Applicability of Graph-Based 

RAG Models 
 

To comprehensively evaluate Conceptual Graph RAG 

models, the literature outlines four main categories of metrics: 

• Retrieval Stage Metrics: These assess the quality of 

extracting relevant graph fragments. Core metrics 

include subgraph-level precision and recall, as well as 

context relevance, which measures how well the content 

of the subgraph aligns with the intent of the query. 

• Answer Generation Metrics: These evaluate the quality 

of the final textual response. Standard measures include 

BERTScore and Mean Reciprocal Rank (MRR) to assess 

linguistic and semantic similarity to reference answers, 

along with faithfulness (factual correctness) and answer 

relevance (logical alignment with the query). 

• Reasoning Metrics: A key indicator is Hop-Acc, which 

captures the proportion of correct transitions within a 

multi-hop reasoning chain. 

• Hallucination Metrics: For systems with explicit graph 

references, these include the proportion of Valid Nodes, 

Valid Edges, and fully accurate Cited Subgraphs (Fully 

Valid Graphs) [2, 10]. 

 

Table 3 presents benchmark datasets commonly used to 

evaluate LLM+KG QA methods. 

 

Table 3: The Main LLM+KG Benchmarks and Their Characteristics [2, 10] 
Dataset Category Graph Type Metric 

PATQA Complex QA Temporal multi-hop QA Accuracy 

MINTQA Complex QA Multi-hop (new/tail knowledge) Accuracy 

MedQA Complex QA Medical exam QA Accuracy 

WebQSP KBQA Freebase subgraphs (2-hop) Hit@1 

CAQA KBQA Attribution QA over KG Accuracy 

CR-LT KGQA KBQA Commonsense + long-tail KGQA Accuracy 

KGs+LLMs for QA SQL QA Enterprise SQL databases Accuracy 

XplainLLM Explainable QA Grounded explanations for LLMs – 

LLM-KG-Bench KG Engineering Scalable KG engineering tasks – 

 

The KAG framework (AntGroup) exemplifies domain-

knowledge augmented generation, combining graph-based 

and vector-based retrieval to enhance response quality. This 

architecture supports both structured ontological relationships 

and semantic text embeddings—especially critical in domains 

such as e-government and e-health, where accuracy and 

completeness are essential. 

 

The Graph RAG demo from NebulaGraph showcases a 

hybrid setup that includes (1) an NLP2Cypher engine for 

translating natural language into graph queries, (2) 

conventional vector-based RAG, and (3) a dedicated Graph-

vector RAG module for complex multi-hop queries. This 

configuration enables advanced semantic navigation across 

large graphs and accommodates topology-aware reasoning. 

 

In e-commerce, the Retrieval-Augmented Customer Service 

QA system illustrates how incorporating a knowledge graph 

boosts chatbot accuracy and answer justification. 

Demonstrated at SIGIR, its architecture fuses vector indexing 

with graph-based search across product data and business 

rules—substantially improving the customer experience 

while reducing the risk of misinformation [2, 7]. 

 

Personalized recommendations and analytics powered by 

CG-RAG models are actively deployed in media platforms 

for relevant content delivery and in medical information 

systems to support diagnostic decisions. Knowledge graphs 

contribute not only to output explainability but also to quality 

assurance by enabling expert inspection of intermediate 

reasoning steps [11]. 

 

These examples underline the wide applicability of 

combining large language models with structured graph 

representations. Such hybrid systems deliver enhanced 

reliability, richer explainability, and improved accuracy 

across diverse QA domains. 

 

5. Conclusion 
 

This study substantiates the necessity and feasibility of 

integrating Conceptual Graphs with Retrieval-Augmented 

Generation for addressing complex, semantically rich 

question-answering tasks involving multi-hop and context-

dependent reasoning. A comparative analysis of Graph RAG 

and G-Retriever architectures demonstrates G-Retriever’s 

advantages in scalability, interpretability, and robustness 

against hallucinations. Optimization methods such as Prompt 

Tuning and LoRA are shown to reduce the number of 

trainable parameters without compromising model accuracy. 

 

A comprehensive review of metrics and benchmarks further 

supports the generalizability and effectiveness of the 

proposed approach across various domains. Looking ahead, 

future research directions include developing dynamic, 

learnable subgraph retrieval modules and expanding into 

multimodal CG-RAG scenarios incorporating audio and 

video attributes. 
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