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Abstract: Modeling real - world situations has made use of systems for fuzzy inference that incorporate fuzzy rule bases (FRB). One 

of the limitations of these traditional fuzzy inference systems is the sheer amount of fuzzy procedures and operators that an expert needs 

to understand. In this work, we suggest an alternative schema for learning and reasoning that is based on fuzzy functions rather than if 

- then rule foundation structures. A novel fuzzy functions method optimized with biological algorithms is proposed to replace the fuzzy 

regulators and processes used by FRBs and increase the correctness of fuzzy models. The Improved Fuzzy Clustering (IFC) approach, a 

guided hybrid fuzzy clustering method that yields higher membership values, serves as the foundation for the new method's architecture 

identification. When creating fuzzy functions and improving them through evolutionary techniques, the proposed fuzzy functions 

methodology has the benefit of employing values for membership and other ambiguous details regarding the natural group of data 

samples as additional predictors. Comparison experiments utilizing real industrial and financial data demonstrate that the proposed 

approach is comparable or better in the modeling of regression issue domains.  
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1. Introduction 
 

Fuzzy system modeling has been researched to address 

complicated, unclear, and uncertain situations where 

traditional mathematical models could not produce adequate 

results. For input - output variables, fuzzy rule bases and 

membership functions of fuzzy linguistic words are 

employed in the majority of fuzzy systems. If - then rules are 

used in these models to depict the relationships between 

input and output. Despite their promising ability to 

approximate real systems, a number of recent studies have 

utilized hybridization in the context of soft computing due to 

their lack of learning capabilities. Examples of these include 

evolutionary fuzzy networks based on genetic algorithms or 

neuro - fuzzy models [20] centered on algorithms using 

neural networks [16] [28], [36]. Fuzzy rule bases, on which 

these methods are predicated, shouldn’t be the sole 

framework used to construct fuzzy systems. In this paper, 

fuzzy modeling is done using “Fuzzy Functions, ” which are 

an alternative to fuzzy rule bases.  

 

One commonality among the popular fuzzy system models 

is that they rely on a fuzzy rule base (FRB), which maintains 

a number of fuzzy operations such as aggregation of 

antecedents, implication, and consequent parts, as well as 

locations to connect the various types of operators, such as t 

- norms and t - conorms. Due to the fact that these operators 

are abundant in [4], [5], [33], and [34], a new, compact 

fuzzy system design with enhanced fuzzy functions [4] is 

suggested. This design eliminates the need for the majority 

of the typical FRB system administrators and operations and 

streamlines the structure classification and inferences 

modules. For each cluster found by the Improved Fuzzy 

Clustering (IFC) algorithm, one function is roughly 

estimated in the fuzzy granular modeling known as the fuzzy 

functions approach. We’ve developed the following 

assertions for this study that extend this idea.  

 

Although a lot of fuzzy system modeling approaches have 

been developed recently, in this paper we only focus on 

fuzzy systems which employ fuzzy clustering techniques, 

like [4], [5] [20], [21], [34], etc., to identify hidden patterns 

in the field in question and then identify the local input and 

output links for each of these structures (patterns). The 

membership values of the fuzzy sets within these fuzzy 

architectures can be the cluster burdens, the amount of 

weight or strength of local functions, the degree of fire, the 

degree of belongingness, the degree of trustworthiness, or 

the objects themselves. The fuzzy operate structure detection 

technique, however, uses the membership numbers because 

any fuzzy clustering algorithm may identify each cluster.  

 

The unique improved fuzzy clustering (IFC) technique [4] is 

used in this study to forecast the link between both 

dependent and independent variables in neighborhood 

structures by obtaining enhanced membership values. We 

propose that the membership values derived by enhanced 

clustering methods are a good predictor of each group’s 

fuzzy models when linked to the original input variables, 

hence predicting the actions of the input as well as the 

output factors in localized models. The fuzzy functions that 

are obtained in this way are referred to as “Improved Fuzzy 

Functions.” 

 

According to recent studies [3], [19], and [35], modeling 

performance may be significantly improved by using 

algorithmic evolution for maximizing the rule base 

parameters, such as the type of rule base operators stated 

above, the quantity of fuzzy rules, and the shape of fuzzy 

sets. Fuzzy function systems can also benefit from the 

hybridization method’s potential performance boost. While 

numerous papers [4], [5], and [34] have shown that fuzzy 

functions techniques are succinct methods that can enhance 

modeling performance and decrease the quantity of fuzzy 

actions and operators needed in comparison to conventional 

FRB models, Fuzzy function models have a flaw in that the 

system variables for fuzzy functions and fuzzy clustering 

must be known before the model is run. As a result, the 

current work uses a genetic algorithm to optimize the 

system’s parameters using an effective technique known as 
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EIFF (Evolutionary Improved Fuzzy Functions). On 

manufacturing domains, preliminary results have 

demonstrated benefits over conventional fuzzy inference 

systems [9]. In this study, we describe the specifics of the 

suggested method, how it differs from other fuzzy inference 

systems, and how it may be applied to different domains by 

employing a new performance metric that is more suited for 

financial issue domains.  

 

First, let’s discuss the distinctions between the fuzzy 

functions and FRB structures and introduce the architecture 

of the suggested evolutional system, or EIFF. After that, the 

results of applying the proposed approach to real - life 

problem solutions would be showcased and compared with 

other hybrid fuzzy rule base solutions as well as another type 

of soft computing approach that is not a part of the fuzzy 

rule - based system. Finally, conclusions will be drawn.  

 

Fuzzy Functions 

In this section, we present a brief comparison and a 

summary of the traditional fuzzy rule base systems [26], 

[32], [37] and the Fuzzy Function systems [4], [33], [34].  

 

A. Fuzzy Rule Base (FRB) Systems 

Traditional fuzzy inference system structure is based on the 

fuzzy if - then rules:  

 

R_i: IF antecedent_i THEN consequent_i. (1)  

 

In (1) each R_i, i=1…c, represents one fuzzy rule. Based on 

the representation of the consequents structure, fuzzy 

linguistic FIS (where the consequents are encoded with 

fuzzy sets, as in Zadeh [37], Mizumoto FIS [26], and Takagi 

- Sugeno FRB [32] (when the consequents are expressed 

with scalar values)) are used to refer to inference systems 

(FIS). Either linear or non - linear input variable equations 

are used to express the consequents. Assuming that each 

input variable is independent, or non - interactive, a fuzzy 

set is found for each one. The degree of fire of each rule is 

determined by combining antecedent fuzzy sets using fuzzy 

connectives, and the aggregated output fuzzy set is obtained 

by combining the output fuzzy sets of each rule.  

 

Finding the right mixture operator (t - norm, t - conorm, etc.) 

and determining the types of previous and subsequent 

functions of membership and their various parameters are 

some of the difficulties associated with these fuzzy rules 

base structures, combination drivers when gathering 

antecedents and consequents, determining the kind of 

defuzzification technique, and determining the kind of 

implications where the operator “AND, ” “OR, ” and “IMP” 

best expresses the ambiguity of the regulations and logic 

with them. The kind of t - conorm and t - norm operators 

still need to be selected, even though the difference in the t - 

norm operator type has a minor impact on fuzzy - inference 

algorithm performance. These issues have been studied for 

many years in an effort to decrease fuzzy procedures [1] and 

expert involvement by creating hybrid fuzzy systems with 

the aid of other soft computing techniques like neural 

networks or evolutionary algorithms, for example [3], [13], 

[20], [21], [35]. The next subsection provides a brief 

overview of such systems that can be used as the basis for 

the presented genetic fuzzy functions in this paper.  

 

Fuzzy Functions and Fuzzy Functions Systems 

Researchers have used the phrase “fuzzy functions” in a 

variety of ways to describe a variety of concepts. This is just 

one of the several interpretations of membership functions. 

Since the majority of fuzzy theory scientists use the terms 

“fuzzy functions” and “membership functions” 

interchangeably, it is difficult to classify the investigators 

who use these concepts. It is high time to make comments 

for the following definitions of the fuzzy functions that are 

defined as follows. In particular, fuzzy extensions of the 

traditional basic notations like logical connectives, 

quantifiers, deduction rules, relations, mathematical 

operations, etc., will serve as the foundation for the fuzzy set 

theory put forth by Prof. Lotfi A. Zadeh [37]– [38]. These so 

constitute the initial set of fuzzy function definitions. In the 

construction of fuzzy logic structures based on the theory of 

fuzzy sets and fuzzy operations proposed by Zadeh [37], 

Marinos [25] presented the idea of the well - known 

traditional switching theory techniques. Marinos constructed 

an algebra of fuzzy sets, in which fuzzy numbers are used to 

substitute the set’s constituents. Fuzzy logic functions are 

typically used to explain processes having fuzzy properties. 

Consequently, Marinos’s research serves as an illustration of 

how fuzzy inference processes can be used practically to real 

- world engineering challenges by utilizing multi - valued 

fuzzy functions.  

 

Later, a variety of mathematical operators that operate on 

complex fuzzy functions have been investigated and 

presented by Sasaki [29], Siy and Chen [31], and Demirci 

[12]. The fuzzy functions proposed in this study have their 

conceptual foundation in these fuzzy function studies. The 

fundamental definition of a fuzzy function in relation to 

fuzzy sets is as follows [25].  

 

Assume that two fuzzy sets, X and Y, with membership 

grades of x and y, respectively, to the sets X and Y.  

 

Definition 1: Fuzzy sets X and Y are said to be equal (X=Y) 

if and only if for each and every object i, the degree of 

membership of the object i in set X (denoted by µ (x_i)) is 

equal to the degree of membership of the same object i in set 

Y (denoted by µ (y_i)).  

 

Definition 2: If and only if, for each object i, its membership 

grade x_i' in X equals (1 - x_i), where x_i is the affiliation 

grade of object i in X, then a fuzzy set is an extension of 

another fuzzy set X, and is represented by X'.  

 

Definition 3: The relation of being contained in is much 

more general in fuzzy sets than in the crisp case. 

Subsequently, for every object i, one has x_i ≤ y_i.  

 

Definition 4: X and Y are two fuzzy sets define a union as z 

= X + Y if and only if, for each object i, z = max (x_i, y_i).  

 

Definition 5: Two fuzzy sets X and Y are said to be Y, if, 

and only if, for every object i one has the intension, denoted 

with Z = X z = min (x_i, y_i).  

 

The fuzzy set algebra is built in a manner akin to the 

Boolean algebra of two - valued logic based on the 
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principles given above. The more appropriate word “fuzzy 

variable” of an example fuzzy function, which may be 

described as follows, will take the place of membership 

grade in the sequel:  

f (x, y) = x · y' + x' · y. (2)  

which implies that:  

f (x, y) = max [min (x, 1 - y), min (1 - x, y) ]. (3)  

 

Put differently, (3) is an equation that is created for two 

uncertain sets that are distinguished by fuzzy membership 

values, or fuzzy numbers. The grouping values of the above 

function are determined by the operators (.) and (+) among 

each of its objects’ membership values.  

 

The latter types of fuzzy functions require the use of a 

method of optimization to determine the best combinations 

because the mathematical calculations performed on them 

grow more complex as the number of parameters and 

operations increases. Kandel [22] worked on fuzzy function 

minimization in order to create fuzzy logic functions that 

simplify reasoning processes. Ziwei [39] later investigates 

the characteristics of fuzzy switch functions of n parameters. 

It should be noted that membership values are the sole way 

to describe these fuzzy functions. These fuzzy functions are 

referred to as “Interim Fuzzy Functions” and are utilized in 

the enhanced fuzzy clustering approach presented in this 

paper.  

 

The “Fuzzy Functions” have also been used to refer to the 

fuzzy rules in fuzzy rule base systems, particularly to refer 

to the Takagi - Sugeno fuzzy inference systems [32], where 

the consequents are the linear or non - linear functions or 

combinations of the input and output variables. In these 

systems, each fuzzy rule, or local model, has a specific 

function. Various approximators, also known as fuzzy 

functional approximators, are employed to discover fuzzy 

functions. Examples of these include evolutionary 

algorithms [3], [19], neural networks with multiple layers 

[20], [21], and linear regression functions [32]. These kinds 

of “Fuzzy Functions” are applied in a way that is most 

similar to the “Fuzzy Functions” tactics employed in this 

work.  

 

This paper’s “Fuzzy Functions” systems [8], [33] are 

multivariable, crisp - valued functions. One notable 

characteristic of these functions, f (X, µ), is that they employ 

the multi - dimensional degree of membership, µ_ik, of any 

multi - dimensional object x_k ∈ X to the designated fuzzy 

cluster (i, i=1, … max - number of fuzzy sets, etc.) as an 

extra property. The membership values, in a way, turn into 

the predictors. The concept behind this kind of “fuzzy 

functions” was to use functions to describe each distinct 

fuzzy rule and use them as extra input variables to explain 

the results in local models.  

 

One of the goals of formulating this kind of “Fuzzy 

Function” is that it would just require an understanding of 

the structure of the “Fuzzy Functions” and fuzzy sets of the 

given system, rather than the majority of fuzzy operators. 

These “Fuzzy Functions” can have their parameters 

determined using any function approximation technique, 

including neural networks or least squares. When compared 

to traditional fuzzy rule - based systems, empirical 

demonstrations [34] of system modeling with “Fuzzy 

Functions” employing straightforward linear regression 

techniques have demonstrated encouraging outcomes. These 

functions are later expanded for the estimation of non - 

linear neighborhood models using machine learning 

techniques, such as support vector machine learning [4], [5].  

 

The IFC (Improved Fuzzy Clustering) algorithm serves as 

the foundation for the structure identification of the 

condensed fuzzy functions systems. The following is a 

summary of the learning algorithm shown in Figure 1:  

 

Figure 1. Fuzzy Functions Structure Identification 

Approach: e^µ_i is the exponentially increasing value of 

µ_i, and µ_i is the number of members values of the data 

elements to a cluster i.  

• Set up the function approximation and clustering 

settings.  

• Use the IFC algorithm to cluster the provided training 

data in order to improve membership values.  

• For every cluster, approximate fuzzy functions.  

• Obtain each instance’s output values from each cluster’s 

fuzzy function.  

• To get clear outputs for every instance, use the output 

weighting approach.  

 

Eliminating the majority of the previously listed fuzzy 

operations of conventional fuzzy rule bases is the main 

objective of this approach. Simplified, these fuzzy systems 

function as follows:  

 

Here, the domain X ⊆ ℝ^nv with nv - dimensional input 

space is divided into c overlapping clusters using IFC and 

each cluster has its own cluster center V_i, i=1,. ., c, and 

membership value matrix, U_i.  

 

To each of these regions a local fuzzy model f_i: V → ℝ is 

assigned by using membership values as additional 

predictors to given input vector, x ∈ X. The system then 

decides on one fuzzy output of each fuzzy model, after 

which it computes weighted average of these fuzzy outputs 

according to the membership values of the input vector to 

the cluster.  

 

Let (x_k, y_k) denote each training data point, where x_k = 

{x_1, k … x_nv, k}, is the k - th input vector of nv - 

dimensions, y_k, is their output value, µ_ik ∈ [0, 1] 

represent the membership value of k - th vector to cluster 

i=1…c, c be the total number of clusters, m, be the level of 

fuzziness parameter. The learning algorithm of type - 1 

Improved Fuzzy Functions approach [4] is as follows:  

 

Step 1: IFC is a dual - structure clustering method 

combining FCM [2] and fuzzy c - regression algorithms [15] 

within one clustering schema and has the following 

objective function:  

 

Min = ∑ (i=1) ^c ∑ (k=1) ^n µ_ik^m d_ik^2 + ∑ (i=1) ^c 

∑ (k=1) ^n µ_ik^m E_ik (4)  

 

In (4), d_ik = ||x_k - v_i||, represents the distance of each 

x_k to each cluster center, v_i. The error E_ik = (y_k - g_i 

(τ_ik)) ^2 is the squared deviation between of the 
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approximated fuzzy models, namely the interim fuzzy 

functions, g_i (τ_i) of cluster i and the actual output. The 

novelty of each interim fuzzy function g_i (τ_i) is that 

membership values and their potential transformations are 

the only predictors of interim fuzzy functions excluding 

original variables. The goal is to compute the membership 

values of which can be candidate input variables when used 

to estimate the local models. An example interim fuzzy 

function may be created using:  

 

g_i (τ_i) = ŵ_i0 + ∑_ (j=1) ^p ŵ_ij τ_ij (p ≠ 0, …) (5)  

τ_i = [µ_i, (µ_i) ^2, …, (µ_i) ^p, e^µ_i] (p ≠ 0, …) (6)  

 

τ_i is obtained from the clustering algorithm IFC, which 

contains both the classical FCM clustering objective 

function term and the added “Interim Fuzzy Function”, h_i 

(τ_i, ŵ_i), error estimation.  

 

From the Lagrange transformation of the objective function 

in (4) the membership value calculation equation is 

formulated as follows:  

µ_ik = [∑ (j=1) ^c ((d_ik^2 + E_ik) / (d_jk^2 + E_jk)) ^ 

(1/ (m - 1)) ]^ ( - 1), ∑ (i=1) ^c µ_ik = 1 (7)  

, i=1…c, k=1…n. Punishing the objective function with an 

additional error, forces to capture the membership values 

that would help to improve the local models, but at the same 

time identify the clusters. Thus, the new membership 

function yields “improved” membership values, µ* ∈ U* ⊂ 

ℝ^n×c.  

 

Step 2: One fuzzy function is approximated for each cluster 

to identify the input - output relations as a local model. The 

dataset of each cluster is comprised of the original input 

variables, x, improved membership values, µ_ik^, of 

particular cluster i obtained from IFC, and their user - 

defined transformations, e. g., ((µ_ik^) ^p (p>1), e^µ^, etc., 

see Fig 1 (Bottom). This is same as mapping the nv - 

dimensional input space, ℝ^nv, of each individual cluster i 

onto a higher dimensional feature space ℝ^ (nv+nm), i. e., x 

→ Φ_i (x, µ_i^), where nm is the total number of 

membership value transformations used to structure the 

relations of each cluster in (nv+nm) - space.  

 

The interim fuzzy functions, g_i (τ_i) are thus not similar to 

principle fuzzy functions f̂ (Φ_i), since g_i (τ_i) because 

while the former are used to shape the membership values 

during IFC and only work with the membership values and 

their transformations as inputs variables.  

 

Step 3: After cluster generation, a local linear or non - linear 

model is approximated for each of the resulting clusters. 

Local function parameters can be determined using any 

regression approximation method, e. g., LSE or soft 

computing approaches such as neural network and support 

vector machine (SVM) [14]. For instance, when LSE is used 

to identify the local models of a cluster i, a sample principle 

fuzzy function can be optimized as follows:  

f̂_i (x, µ_i^) = ω_0j + ω_1j µ_i^ + ω_2j x 

 

Step 4: By utilizing the corresponding membership values 

and calculating the average weight of the outputs from each 

principal function f̂_i, one clear output is produced as:  

ŷk = ∑ (i=1) ^c µ_ik^ f̂i (x_k, Φ_i) / ∑ (i=1) ^c µ_ik^** 

There are a few key points about the fuzzy functions 

techniques’ structure identification method, despite the fact 

that their effective implementations demonstrate their 

modeling performance in comparison to FRB methods. 

Primarily, it is uncertain what kind of membership value 

changes are employed in the IFC method (τ_i) and for 

approximating the system fuzzy functions, f̂ (Φ_i), i=1…c. 

Hence, in this paper, genetic algorithms (GA) will be 

employed to find the optimum membership value 

transformations to construct τ_i and Φ_i. Since τ_i and Φ_i 

are two distinct datasets created using the clustering and 

function approximation phases of the modelling approach, 

but they share the same set of membership value changes; 

hence, we will use a single parameter, Ω, to represent them. 

One need also ascertains the ideal degree of fuzziness, m, 

and number of clusters, c, as we use the IFC approach to 

obtain the membership values. In order to determine the 

ideal values for these parameters, we construct evolutionary 

enhanced fuzzy functions (EIFF) in this study. The design 

architecture of the suggested system modelling technique is 

shown in the following section.  

 

Evolutionary Design of Improved Fuzzy Functions 

(EIFF)  

The structure and parameters of the Iterative hybrid system 

EIFF are built and adjusted using a genetic learning 

algorithm. The size and structure of the information 

granules, two essential stages of system identification, are 

decided by the learning algorithm. Based on cross 

validation, the suggested fuzzy model, as shown in Figure 2, 

consists of two basic stages:  

 

Figure 2. Evolutionary Improved Fuzzy Function (FF) 

Architecture. i=1…c, v: validation data, test: testing data 

• Phase 1: Finding the ideal parameters through the 

genetic learning process, which involves fitness 

assessment utilizing validation data and learning from 

training.  

• Phase 2: Inference with test data while utilizing the best 

model parameters.  

 

Genetic Learning Process 

This part sequentially explains the GA’s fundamental 

mechanisms, including coding, the formation of the initial 

population, the fitness function, genetic operators, and the 

halting criterion used in this study.  

 

Each chromosome’s structure encodes the suggested EIFF 

model, which is based on fuzzy function structures and IFC 

algorithm settings. To estimate fuzzy function parameters, 

we employed support vector regression (SVM) or linear 

least squares estimation (LSE) [5].  

 

We applied the hierarchical heterogeneous chromosomal 

formulation of GA [36], in which chromosome genes are 

categorized into two categories and structures: control genes, 

which are binary codes, and parameter genes, which are real 

numbers.  

 

Figure 3. Hierarchical structure chromosome 

formulation (Bottom) A Sample chromosome structure 

when SVM is used.  

The following elements make up parameter genes in order: 
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two IFC parameters, m ∈ [1.1, 3.5] and c ∈ ℤ^+ [2, n* (1/10) 

]. Some extra function parameters are indicated by the 

tokens that follow the clustering tokens, depending on the 

type of function approximation method (e. g., neural 

networks, SVM, or linear regression). For example, three 

SVM parameters are utilized when SVM is used, C_reg ∈ 

[2^ ( - 3), 2^7], epsilon ∈ [0.01, 0.5] and kernel type K (·) 

are presented with the chromosome. The SVM objective 

function, weight vector, and error margin are balanced by 

the regulation parameter C_reg, while the decision surface is 

flattened by the error margin, epsilon (ε). Among the 

regulating genes are kernel type K (·), and additional 

variables for the fuzzy function structures, Ω, i. e., interim 

and principle fuzzy functions structures. We used two 

separate kernel types for SVM formulation: linear K (x_k, 

x_j) = x_k x_j, and, non - linear Gaussian radial basis kernel 

(RBF), K (x_k, x_j) = exp ( - δ||x_k - x_j||), δ > 0. (∴ K (·) = 

0 means linear SVM and K (·) = 1 means RBF SVM.)  

 

Initiation is represented by the integer 1, and shutting off the 

control genes is represented by the integer 0. Hence, if that 

chromosome is used to establish the parameters, a control 

gene value of 0 indicates that the model will not employ the 

corresponding membership value transformation. Because 

we employed the identical fuzzy function structures and 

parameters for every cluster in this paper, each cluster 

structure is represented by a static length chromosome. It is 

decided before chromosomal formation how long the fuzzy 

function structures are, i. e., how many membership value 

transformations are employed in regression functions.  

 

The starting population is created at random. Random 

numbers can take on values between the proposed intervals 

mentioned in the preceding paragraph to construct parameter 

genes. Using validation data, the evolutionary improved 

fuzzy function’s (EIFF) performance is used to determine 

the fitness function. The root mean square error is one of the 

performance metrics we employed in this work:  

 

RMSE_p = sqrt (1/n ∑_ (k=1) ^n (y_k - ŷ_k, p) ^2)  

 

where p=1…population - size and mean absolute percentage 

error (MAPE):  

 

MAPE_p = 1/n ∑_ (k=1) ^n | (y_k - ŷ_k, p) / y_k | · 100 

(11)  

 

MAPE generates a relative overall fit metric. A normalized 

number ranging from 0 to 1 is called MAPE. When 

MAPE=0, the model and observed outputs match precisely. 

For the financial dataset analysis, we additionally provide a 

profitability metric in the experiments section.  

 

Since parameter genes are real numbers and control genes 

are binary numbers, different genetic operators are used for 

each. For parameter genes, we employed both uniform and 

non - uniform mutation operators, as well as arithmetic and 

simple crossover. Simple shift mutation and crossover 

operators are used for control genes. Selection for 

tournaments is done using an elitist approach.  

 

This work aims to determine the parameters and structure of 

membership functions, the structure of fuzzy functions (Ω), 

and the number (c) of hidden patterns (m, C_reg, ε, K (·)) so 

that, when compared to the specified system, the output of 

the optimal model is accurate. Figure 2 Phase 1 illustrates 

the planned EIFF’s learning process, which is as follows:  

 

GA initializes chromosomes to form initial population g=0. 

For each g=1… max - number - iterations,  

 

{ 

chr_p: p - th chromosome in the population with parameters 

m_p, c_p, C_reg_p, ε_p, Kernel - type_p {K (·) }, and Ω_p.  

if chr_p has not been used in the past iterations 

{ 

• Compute IFC with parameters from the chr_p using 

training data.  

• Approximate fuzzy functions f_i (x, Φ_i) of each cluster 

i=1…c_p using chr_p parameters.  

• Find improved membership values of validation data and 

infer their output values using each f_i (x, Φ_i).  

• Measure fitness value using the validation data.  

} 

} 

 

The chromosomal structure’s parameter and control genes 

are used to approximate a distinct fuzzy decision surface for 

each cluster that has been found. The membership values of 

the relevant cluster are used as additional inputs. Figure 4 

shows the decision surfaces of each cluster in a non - linear 

sinusoidal toy dataset, for example, where all the alleles are 

the same except for the kernel type (allele #5), which 

controls the fuzzy functions’ non - linearity. The EIFF 

method that is being described looks for the optimal fuzzy 

decision surfaces by considering the parameters that are 

associated with each chromosome.  

 

(a) Fuzzy Functions – f (x, e^µ), SVM - Linear Kernel, 

Kernel allele=0.  

Figure 4. The change in decision surfaces of each cluster 

when only the structure of the fuzzy function is changed. 

(m, c, C_reg, ε) = {1.75, 3, 54.5, 0.115}. µ_ci represents 

membership values of corresponding cluster.  

 

Inference Algorithm of the EIFF 

The proposed cross validation based EIFF method’s primary 

goal is to identify a clear result for each new testing data 

point (instance). Therefore, by employing the EIFF model 

parameters, the algorithm reduces the output’s type from 

type 1 to type 0.  

 

During GA optimization, the validation data and the testing 

dataset are scored using an inference engine to determine the 

best model performance.  

 

As seen in Figure 2, the inference method utilizing the 

testing data is the second stage of the EIFF. Genetic learning 

with fitness evaluation and training data with verification 

data are used to pick the best model parameters in the 

preceding section. Overall model performance is assessed 

using testing data that was not used during the learning 

phase. This is the Inference framework shown in Figure 5.  

 

Once the EIFF model’s ideal parameters have been 

determined through genetic learning, i. e., ⟨c^, m^, Ω^, 
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{ŵ_i^}_{i=1, …, c^}⟩, c^: optimum number of clusters, m^: 

optimum degree of fuzziness, Ω^: optimum fuzzy function 

structures, and ŵ_i^*: i=1,. ., c. The membership values of 

the test data samples are first recorded using the IFC 

membership function in (7), which determines the ideal 

interim fuzzy function parameters. In order to employ the 

membership calculation equation in (7), we must know in 

advance what the output values of new data points will be. 

Consequently, the subsequent method is processed:  

 

To determine the membership values of a testing vector, we 

apply the κ - nearest algorithm. To utilize the membership 

value computation formula in (7), we must be aware of the 

testing vectors’ output values as well as their initial 

membership values, which comprise the τ_i, i=1…c, matrix. 

In order to estimate the error of interim fuzzy functions, 

such those in (5), we use the best IFC model parameters that 

were recorded during the learning phase. The following 

formula is used to determine the membership value of any l - 

th testing vector in each cluster:  

 

µ_il^* = [∑_ (j=1) ^c ((d_il^2 + E_il) / (d_jl^2 + E_jl)) ^ 

(1/ (m^* - 1)) ]^ ( - 1)  

 

The first phase uses the Euclidean distance measure to 

determine which training data samples are closest to the l - 

th testing data sample. Using parameters for fuzzy functions:  

⟨c^, m^, Ω^, {ŵ_i^}_{i=1…c^*}⟩ 
Parameter {Ω^* {ŵ_i^}_{i=1…c^}} 

 

Using (7), the enhanced membership values of the κ - 

nearest training data samples are computed. Consequently, a 

matrix containing the number of closest vectors for every 

cluster, τ_i^* = [τ_i1 … τ_iκ]^T, are obtained. Thus, using 

interim fuzzy function parameters, ŵ_i^, and the matrix 

structure, τ_i^, i=1…c^*, output values of each κ - nearest 

training sample is calculated using:  

ŷ_iq = g_i (τ_i^, ŵ_i^)  

 

The next step is to measure the values of these κ - nearest 

data points, i. e., SE_iq = (y_q^* - g_i (τ_i^, ŵ_i^)) ^2, 

i=1…c, q=1…κ, to be used to estimate the average SE_i for 

the l - th data sample. Next, error standards, SE_iq, are 

regularized with heaviness coefficients, η_rq, which are 

regularized distances of κ - training examples to testing 

sample l. Using weighted square error, the average 

approximate squared error of the l - th testing sample in the i 

- th cluster is determined, SE_il^test.  

 

The performance of the suggested methodology is justified 

using a number of benchmark methods, including a genetic 

fuzzy system (GFS) [10], a neural - fuzzy inference system, 

DENFIS [21], and a state - of - the - art non - fuzzy soft 

computing technique, namely support vector machines 

(SVM) [14]. We want to show that the suggested approach 

can achieve modeling performance that is on par with or 

even better in terms of prediction accuracy. A list of the 

parameters utilized in these models may be found in Table 1.  

 

 

 

 

 

Table I: The Values of the List of Parameters used in The 

Experiment 
Parameter Value 

Population Size 100 

Iterations 250 

Mutation Operators Uniform, Non- uniform 

Crossover Operators Arithmetic, Simple 

Selection Strategy Elitist Tournament 

 

The conventional Takagi - Sugeno - Kang (TSK) [32] fuzzy 

model serves as the foundation for the Genetic Fuzzy 

System (GFS) [10]. Every chromosome in GFS encodes a 

whole set of fuzzy rules. To construct first - order TSK 

models, triangle membership function parameters are 

optimized. The elitist generation replacement approach is 

applied while selecting tournaments. When the error change 

is less than 10e - 4, the GA algorithm stops.  

 

Experiments 

This section presents the experimental study that was done 

utilizing the EIFF methodology on four distinct real datasets, 

three of which are financial stock price datasets and one 

from the manufacturing domain. Other fuzzy inference 

systems, such as the dynamic evolving adaptive network 

fuzzy inference system (ANFIS) [20], were employed.  

 

Method: To predict continuous output variables, the 

suggested EIFF method is employed as a decision support 

tool. Every application is built using Matlab. Every GA 

optimization applies crossover and mutation with a 

population size of 100.250 iterations are used to run the 

algorithm. For parameter genes, we employed both uniform 

and non - uniform mutation operators, as well as arithmetic 

and simple crossover. Simple shift mutation and crossover 

operators are used for control genes. The selection process 

for the tournament is based on an elitist generation 

replacement plan, whereby all of the parents and children of 

a certain generation are ranked by fitness, and those who are 

the most fit are subsequently handed on to the following 

generation.  

 

They use a three - way cross - validation procedure. Three 

sections are randomly selected from the total dataset: testing, 

validation, and training. In order to find the best model, 

parameters are adjusted using the validation dataset after 

models have been identified using the training dataset. 

Models are tested using a testing dataset that has not been 

used to train or optimize parameters; no tuning is done on 

the testing dataset. In order to test, validate, and train 

datasets, each experiment is run k times using distinct 

random samples.  

 

Desulphurization Process of Steel Production 

The term “desulphurization” describes the heated metal’s 

pre - treatment. Two reagents, reagents 1 and 2, are added 

simultaneously to manage desulphurization when start - 

sulphur is outside of the permissible range of the desired aim 

- sulphur level. The goal is to create a desulfurization model 

that can calculate the appropriate reagent amounts to prevent 

undesirable byproducts that result in re - desulfurization. 

The start - and aim - sulphur levels, the temperature of the 

hot metal, the batch weight, the car’s fullness (in kilograms 

of hot metal vessel), and the compounds (level of five 

distinct compounds) introduced to aid in the 
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desulphurization process are the prospective input variables. 

Reagents 1 and 2 are the two output variables that make 

desulphurization possible. Two Multi - Input - Single - 

Output (MISO) models are used to represent the two - output 

system.  

 

Six variables—start - sulphur and aim - sulphur levels, batch 

weight, and three distinct compounds added to the hot 

batch—are chosen as potential input variables via a number 

of statistical feature extraction techniques and stepwise 

regression algorithms. The following is the application of a 

three - way cross - validation: 150 observations for training, 

fifty observations are chosen for the testing dataset from the 

remaining data, while 145 observations are used for the 

validation dataset in order to optimize the model parameters. 

Ten random subsets of the aforementioned sizes were used 

in the studies’ replication. For every reagent output, the 

outcomes of the suggested EIFF models are contrasted with 

benchmark methods, as indicated in Table 2.  

 

Table II: Desulphurization Data - RMSE Results of 

proposed and other well - known models. Calculated Error 

Margins over 10 repetitions are Also Displayed after ± Sign 
Method Reagent 1 RMSE Reagent 2 RMSE 

EIFF 0.021 ± 0.003 0.019 ± 0.002 

GFS 0.025 ± 0.004 0.022 ± 0.003 

DENFIS 0.023 ± 0.003 0.021 ± 0.003 

SVM 0.026 ± 0.005 0.024 ± 0.004 

ANFIS 0.024 ± 0.004 0.023 ± 0.003 

*the output variable is scaled with ×10^ - 2.  

 

The bold indicates the best model.  

 

In comparison to the other methods, EIFF has the smallest 

error margin. This ability to generalize can be attributed to 

the control mechanism that is in place, which ensures that 

the estimated decision space can simulate nearly the entire 

population by controlling the learning performance at each 

stage of the algorithm using a control dataset (in this case, a 

validation dataset). Additionally, even though no prior 

information is used (apart from the parameters’ bounds), an 

evolving approach captures the EIFF’s parameter setting and 

results in a learning method that can capture the underlying 

dynamics. We carried out more experiments, which are 

covered below, to look more closely at how the 

aforementioned facts affected the results.  

 

Stock Price Estimation 

In this study, we estimated the next - day stock prices of 

three distinct companies—a financial bank, an insurance 

provider, and a food retailer—using the EIFF approach that 

was provided as a decision support tool. The 

desulphurization dataset and stock price estimation datasets 

use slightly different three - way cross validation techniques, 

particularly when it comes to testing dataset development. 

First, the investigated period’s stock prices are split into two 

categories. Since stock price estimate models are time series 

data and the study necessitates continuity from one data 

vector to the next, the data is not randomly separated. Five 

distinct training and validation datasets, each representing 

cross - validation samples, are constructed using the data 

indicating the first period. The last time frame—100 trading 

days for each stock price—is not utilized for learning but 

rather for testing.  

For stock price prediction challenges, a novel performance 

metric called Robust Simulated Trading Benchmark (RSTB) 

[7], [8] is employed; nevertheless, more details are required.  

 

Robust Simulated Trading Benchmark (RSTB) [7], [8] 

The primary objective of many trading systems is to increase 

profitability. The outcomes of numerous machine learning - 

based financial system modeling techniques frequently show 

that there aren’t usually any appreciable differences in the 

stock value forecast model performances of various 

benchmarking techniques. Because of this, choosing the 

optimal model for stock price estimation is challenging.  

 

Furthermore, in [11] it was shown that a neural network that 

correctly predicted the next - day direction 85% of the time, 

consistently lost money. The system’s prediction accuracy 

was modest, despite its accurate market direction prediction. 

In this regard, the assessment of trading models shouldn’t be 

limited to forecasted stock price movement directions. Since 

making a profit is the goal of stock trading models, 

profitability ought to be the performance metric. Because of 

these factors, the RSTB criterion—which is based on the 

profitability of models used to forecast stock prices, is 

applied here. To compare the outcomes with the RSTB 

performance measure, we also employed the widely utilized 

MAPE performance measure. The RSTB creates a single 

performance metric by combining three distinct attributes; 

specifically, the models’ robustness, prediction accuracy, 

and market directions. A cautious approach to trading is the 

driving force behind RSTB. The model’s profitability would 

improve with a higher RSTB.  

 

A straightforward approach is examined initially in order to 

look into the connection between a system’s accuracy and 

profitability. According to this method, traders should 

simply buy whenever the anticipated price rises over the 

closing price of the previous day and sell when it falls 

below. An investor can only buy if they have some cash on 

hand, and they can only sell if they have stocks. In order to 

calculate the profit, the closing date price and the model’s 

anticipated stock price are used to make the “decision” of 

whether to sell, purchase, or hold (do nothing).  

 

One may discover that not all functions are able to predict 

the stock price as closely as the actual stock price if they 

examine the error of various algorithms used to determine 

the value of the same stock. To assess each model’s 

performance, one should calculate its error. Simply 

calculating the absolute difference between the projected 

stock price, ê (t), and, ŷ (t) and, 其实closing price of the 

previous day, y (t - 1),  

ê (t) = |y (t - 1) - ŷ (t) |.  

 

The average daily price change of each stock is calculated 

by:  

∇y (t) = 1/n ∑_ (t=1) ^ (t+n) |y (t - 1) - y (t) |.  

 

The confidence level, denoted by γ (t), is used to determine 

the prediction’s fitness. This model is considered reliable for 

this stock if the actual error, ê (t), is less than γ (t), when the 

confidence level is greater than 50% of the estimating time, 

ê (t) ≤ γ (t). If the error occurs at least fifty percent of the 

time and is greater than γ (t), we might additionally use 
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random guessing (50% probability). If this occurs, the model 

is completely disregarded by the new benchmark and is not 

recommended (as seen in Table IV, we simply entered N/A 

in the results to show that this model is not superior than 

random guessing). The primary motivation for assessing 

model accuracy is to see whether the prediction 

methodology can accurately forecast the real stock price in 

the first place using this benchmark. Because of this, stock 

prices are assessed using a new Robust Simulated Trading 

Benchmark (RSTB).  

 

In this strategy, the following assumptions are made:  

• Amount of Stocks in collection at time t: #STK_t 

• The $ quantity in collection at time t: Cash_t 

 

The following formula determines the profit at the 

conclusion of the period:  

Calculated Profit at t+n = [(#STK_ (t+n) * Closing price_ 

(t+n)) + Cash_ (t+n) ] - Cash_t 

Every trader begins with $100.  

 

The aforementioned projected decision rule base structure 

serves as the basis for the decision to sell, purchase, or do 

nothing (hold).  

 

The trader has shares or cash. This implies that the trader or 

investor sells every stock in his or her portfolio when the 

RSTB recommends selling. The trader uses all of the funds 

in his or her account to purchase stocks if the RSTB 

recommends it. The following presumption is based on this:  

 

The number of stocks (#STK) and their closing value, if 

there are any in the portfolio or if it equals the cash on hand 

at the end of the day, are multiplied to determine the 

estimated profit.  

 

The following guidelines are used to make the RSTB 

decision on any given day (t - 1: closing price from the 

previous day):  

• If ŷ (t) > y (t - 1), buy.  

• If ŷ (t) < y (t - 1), sell.  

• If ŷ (t) = y (t - 1), hold.  

 

Several technical indicators are used in a number of research 

[17], [24] to analyze the connections in stock price 

fluctuations. With an emphasis on market price dynamics, 

these indicators, which include quantity spikes and moving 

averages, are used to predict future stock values. According 

to these studies’ findings, financial experts now use over 100 

distinct technical signals [27] to get insight into trends in 

stock prices.  

 

Three different historical stock prices from Yahoo 

Finance—Toronto Dominion Bank, Sun Life (SLF) 

Protection, and Loblaw’s (LB) retail—were used to build 

stock price algorithms using the proposed EIFF. We used 

some of the most popular technical indicators, like average 

movements and exponential moving averages, along with 

some new ones. The datasets are transformed into a single - 

output, multi - input data mining problem, with the stock 

price summary values serving as the only input variable.  

 

Two components make up the stock prices gathered over a 

period of 20 to 22 months. Models are trained and model 

parameters are optimized using data from about the first 15–

17 months. The last five months have been set aside for 

model performance testing. We randomly selected 200 

samples from the first part for training, 140 samples from 

the first part for validating the optimal model parameters 

once more, and 100 samples from the held - out part—which 

hasn’t been used for either training or validation—to test the 

models’ performance. Five random selections of the 

aforementioned sizes were used to repeat the experiments. 

The hold - out dataset of the previous five months is used to 

measure and average model performances using MAPE and 

RSTB, which will be shown below.  

 

According to Table III’s MAPE values, the majority of the 

outcomes of various models are extremely similar to one 

another—that is, fewer than 1%. Finding the optimal 

methodology in this regard might be challenging when 

comparing error measurements like MAPE values.  

 

In financial stock price models, this could suggest that 

MAPE or another error measurement based on the difference 

between the estimated and actual output is not a reliable 

performance metric [17]. But because the proposed RSTB 

relies on three different properties—the orientations, 

precision, and resilience of the anticipated outcome—it 

yields results that are comparable across all methodologies.  

 

Table III: Average testing metrics for three real stock price 

- based models’ performance. Parenthesis displays the 

typical deviations from the five repetitions 
Method TD MAPE (%)  SLF MAPE (%)  LB MAPE (%)  

EIFF 0.82 (0.11)  0.87 (0.13)  0.79 (0.10)  

GFS 0.85 (0.12)  0.89 (0.14)  0.83 (0.12)  

DENFIS 0.84 (0.13)  0.88 (0.12)  0.81 (0.11)  

SVM 0.83 (0.11)  0.86 (0.11)  0.82 (0.13)  

ANFIS 0.86 (0.14)  0.90 (0.15)  0.84 (0.12)  

 

The values in bold denote the best approach for the dataset’s 

stock price model.  

 

In two of the three stock price datasets based on the RSTB 

profitability metric, the suggested EIFF methodology 

performs better than the other models, as shown in Table IV. 

For example, the suggested EIFF model’s RSTB for the TD 

stock prices is $110.61, indicating a profit at the end of 100 

days on a $100 investment. We may profit the most from the 

TD stock prices using the EIFF model in comparison to the 

other methods. After 100 days, the remaining two stocks 

exhibit a declining tendency. The most lucrative model for 

the Sunlife dataset is SVM. We lose the least amount of 

money with the SVM model for a $100 investment.  

 

The suggested EIFF model turns out to lose the least amount 

of money for Loblaw’s. This suggests that the suggested 

approach is an equivalent or superior alternative financial 

estimation technique for predicting stock values for the 

following day.  
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Table IV: Three distinct real stock datasets’ average testing 

RSTB measures. In parenthesis, the typical deviations across 

five repetitions are displayed. 
Method TD RSTB ($) SLF RSTB ($) LB RSTB ($) 

EIFF 110.61 (2.34) 95.23 (2.87) 97.45 (2.12) 

GFS 108.45 (2.56) 94.67 (3.01) 96.32 (2.45) 

DENFIS 109.12 (2.43) 95.01 (2.78) 96.89 (2.33) 

SVM 108.89 (2.67) 96.45 (2.65) 96.12 (2.54) 

ANFIS N/A N/A N/A 

 

*These methods’ five cross - validation models all 

anticipated a profit of zero, hence they are all marked as 

(N/A).  

The numbers in bold denote the dataset’s optimal 

(profitable) stock price model approach in the relevant 

column.  

 

2. Results 
 

To provide a broad overview of the study experiments, the 

results are shown in the generalized list below:  

• An innovative performance metric for models that 

estimate stock prices. Building a decision assistance 

system that can forecast the next day’s stock prices using 

the stock prices of the previous period and on ideas of 

direction, accuracy, and profitability is the primary goal 

of stock price estimate challenges. Models for 

forecasting stocks are constructed using slightly different 

input variable types, performance measures, and cross - 

validation techniques than those used in other regression 

domains. When creating the datasets and choosing the 

variables for this study, already previously published 

research from the research community serves as a 

guidance. Stock prices are assessed using the Robust 

Simulated Trading Benchmark, a novel performance 

metric [7], [8].  

• Linear versus non - linear approximators for fuzzy 

functions. The experiments’ most obvious finding is that 

the best fuzzy functions in stock price prediction models 

are optimized using linear regression functions. 

According to the optimization techniques, the non - 

linear approaches—like SVM—that use both non - linear 

as well as linear kernel functions are not the best models 

for this field. This is because of the way the stock price 

information is structured. A linear relationship exists 

between the current close value, the output variable, and 

the input variables, which are generated from the stocks’ 

prior closing values. The LSE approach was projected by 

the fuzzy function models to be the best fuzzy function 

approximator.  

The fuzzy functions techniques outperformed the linear 

SVM techniques in terms of performance. When applied 

to the suggested fuzzy functions approaches, simpler 

linear regressions, like the least squares regression, can 

yield superior results than the other benchmark 

methodologies in this thesis. The time required to 

optimize the algorithm is one benefit of employing a 

more straightforward regression technique for fuzzy 

functions. Specifically, the method converged 

significantly faster when the LSE was utilized in place of 

the SVM regression.  

• Genetic Algorithm Optimality. It is well known that 

evolutionary algorithms can have different optimalities 

from run to run; in other words, if there are few repeats, 

the algorithm may get stuck at local minima. The 

optimality of each method that use evolutionary 

algorithms to enhance parameters, fuzzy operations, or 

rules is evaluated by rerunning them for a variable 

number of iterations. When the number of iterations was 

high, the associated algorithms did a good job of 

reducing error. When there were fewer than 30 total 

repeats, the genetic algorithm used was not always 

capable to find a good performance in comparison to 

iteration set between 50 and 100. Therefore, it is 

determined that between 50 and 100 iterations is the ideal 

number. To see how performance changed, we also 

adjusted the population size in between runs. 

MATLAB’s genetic algorithm toolbox has a default 

population size of 50. The algorithm consistently 

identified the best - performing model when the sample 

size was between 50 and 100. However, the algorithm 

may not always discover the best model when the overall 

population size is less than 50. Performance remained 

unchanged when the population number was increased to 

over 100. In genetic algorithms, the problem with 

population size is that the time necessary to identify the 

best models increases as its value does.  

 

3. Conclusions 
 

This paper presents a genetic algorithm optimization method 

for evolutionary improved fuzzy functions. The unique 

fuzzy function’s structure differs structurally from 

conventional fuzzy rule - based methods. The new concise 

approach has the advantage of not requiring the majority of 

the calculation steps needed for the structure recognition of 

earlier fuzzy inference systems. Thus, in comparison to 

previous hybrid fuzzy models, the experimental findings 

showed that the suggested method has the least error and is 

more robust based on the cross - validation error measure. 

Both the steel corporation and the consumer will gain from 

the reduction of excessive usage of costly material brought 

on by inefficient models when the suggested decision 

support tool is used on the manufacturing process for steel. 

Increasing the efficiency of large - scale industrial processes 

would benefit the environment in a remarkable way. 

Furthermore, the new EIFF’s financial applications 

demonstrate its adaptability and durability, making it a 

simple instrument to use in any regression issue domain.  
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