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Abstract: Cardiovascular disease (CVD) remains a leading global cause of mortality, necessitating innovative, non-invasive methods 

for early detection to enable timely interventions. Breast arterial calcifications (BAC), visible in mammograms, have emerged as a 

promising biomarker for assessing CVD risk. This research investigates the application of deep learning, specifically convolutional 

neural networks (CNNs), to detect BAC in mammograms and stratify CVD risk. We propose a robust CNN-based model trained on a 

large, annotated mammogram dataset to identify calcifications indicative of cardiovascular risk. The model demonstrates high 

accuracy, precision, and recall, highlighting its potential to integrate seamlessly into routine mammography screening workflows, 

thereby enhancing early CVD detection in a cost-effective and scalable manner Key words Alzheimer’s disease, dementia, deep 

learning, neuroimaging, biomarkers, convolutional neural networks (CNNs), recurrent neural networks (RNNs), Explainable AI (XAI), 

early diagnosis, disease progression modeling. 
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1. Introduction 
 

Cardiovascular disease (CVD) is a major global health 

challenge, accounting for approximately 17.9 million 

deaths annually, making it the leading cause of mortality 

worldwide (World Health Organization, 2020). CVD 

encompasses a spectrum of conditions, including coronary 

artery disease, heart failure, stroke, and peripheral artery 

disease, which collectively impose a significant burden on 

healthcare systems, particularly in low- and middle-income 

countries where diagnostic resources are scarce (Roth et al., 

2020). Early detection of individuals at risk is paramount 

for implementing preventive measures, such as lifestyle 

changes, pharmacological therapies, or invasive 

interventions like coronary artery bypass grafting, to 

mitigate disease progression and improve patient outcomes 

(Arnett et al., 2019). However, traditional diagnostic 

methods, such as coronary angiography, computed 

tomography (CT) coronary artery calcium (CAC) scoring, 

or stress echocardiography, are often invasive, costly, or 

require specialized infrastructure, limiting their feasibility 

for population-wide screening (Greenland et al., 2018). 

 

Mammography, a cornerstone of breast cancer screening, is 

routinely performed for women over the age of 40 in many 

countries, with millions of mammograms acquired annually 

as part of national screening programs (U.S. Preventive 

Services Task Force, 2016). Beyond its primary role in 

detecting breast malignancies, mammography captures 

breast arterial calcifications (BAC)—linear calcium 

deposits within the arterial walls of the breast that appear as 

high-intensity, tram-track-like structures on mammogram 

images (Iribarren & Molloi, 2013). These calcifications are 

distinct from microcalcifications associated with breast 

cancer and have been increasingly recognized as a 

biomarker for cardiovascular risk. Clinical studies have 

established a robust correlation between BAC and 

cardiovascular risk factors, including coronary artery 

calcification, hypertension, diabetes, smoking, and 

hyperlipidemia (Margolies et al., 2016; Iribarren et al., 

2018). For example, Margolies et al. (2016) found that 

women with BAC on mammograms had a significantly 

higher likelihood of coronary artery disease, with BAC 

serving as an independent predictor of cardiovascular 

events. Similarly, Iribarren et al. (2018) conducted a meta-

analysis demonstrating that BAC prevalence is associated 

with a 2- to 3-fold increased risk of cardiovascular events, 

even after adjusting for traditional risk factors such as age, 

cholesterol levels, and smoking status. Polonsky and 

Greenland (2017) further emphasized the clinical 

significance of BAC, noting its potential to expand 

cardiovascular risk assessment in women, a population 

historically underrepresented in CVD research. 

 

The recognition of BAC as a non-invasive biomarker for 

CVD risk presents a transformative opportunity to 

repurpose mammography for dual-purpose screening, 

leveraging existing imaging infrastructure to identify 

women at risk of cardiovascular disease without additional 

radiation exposure, cost, or patient burden (Mostafavi et al., 

2015). This approach is particularly compelling because 

mammography is already embedded in routine healthcare 

for a large demographic, offering a scalable platform for 

CVD risk stratification. However, manual detection of 

BAC by radiologists is challenging due to its subtle and 

variable appearance, which can be confounded by 

overlapping breast tissue or imaging artifacts (Iribarren & 

Molloi, 2013). Manual assessment is also time-consuming, 

subjective, and prone to inter-observer variability, making 

it impractical for large-scale screening programs (Dromain 

et al., 2013). 

 

Artificial intelligence (AI), particularly deep learning, has 

revolutionized medical imaging by enabling automated, 

accurate, and reproducible analysis of complex patterns 

(Litjens et al., 2017). Convolutional neural networks 

(CNNs), a class of deep learning models, are particularly 

adept at image-based tasks due to their ability to learn 

hierarchical feature representations directly from raw pixel 

data, eliminating the need for labor-intensive hand-crafted 
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features (LeCun et al., 2015). CNNs have achieved state-

of-the-art performance in various medical imaging 

applications, including breast cancer detection in 

mammograms (Esteva et al., 2017), lung nodule 

classification in CT scans (Shen et al., 2019), and diabetic 

retinopathy diagnosis in retinal fundus photography 

(Gulshan et al., 2016). Recent studies have also explored 

deep learning for detecting vascular calcifications in other 

imaging modalities, such as chest X-rays, with promising 

results (Cheng et al., 2020). However, the application of 

deep learning to BAC detection in mammograms for CVD 

risk assessment remains an underexplored area, 

representing a critical research gap. 

 

This paper aims to address this gap by developing and 

evaluating a deep learning model to detect BAC in 

mammograms and stratify associated CVD risk. We 

hypothesize that a CNN, trained on a diverse dataset of 

annotated mammograms, can accurately identify BAC and 

classify CVD risk levels, offering a scalable, automated 

solution that complements existing mammography 

workflows. The proposed model is based on the ResNet-50 

architecture, fine-tuned for BAC detection, and trained on a 

large dataset of mammograms annotated by expert 

radiologists (He et al., 2016). By integrating deep learning 

into routine mammography, this approach has the potential 

to enhance early CVD detection, prioritize at-risk 

individuals for further diagnostic evaluation, and reduce the 

global burden of cardiovascular disease. The study also 

compares the model’s performance to traditional machine 

learning methods and human experts, while exploring its 

practical implications for clinical deployment and 

scalability, clinical research. 

 

2. Related Work 
 

The association between BAC and CVD has been 

substantiated by numerous clinical studies. Margolies et al. 

(2016) demonstrated that women with BAC on 

mammograms were significantly more likely to have 

coronary artery disease, with BAC serving as an 

independent predictor of cardiovascular events. Iribarren et 

al. (2018) reported a positive correlation between BAC 

prevalence and traditional CVD risk factors, such as age, 

smoking, and hyperlipidemia, in a comprehensive meta-

analysis. Polonsky and Greenland (2017) further 

highlighted BAC’s role as a marker for subclinical 

atherosclerosis, advocating for its integration into 

cardiovascular risk assessment protocols. Mostafavi et al. 

(2015) found that BAC was associated with coronary artery 

calcium scores, reinforcing its utility as a proxy for 

coronary atherosclerosis. 

 

Historically, BAC detection has relied on manual 

interpretation by radiologists, a process that is labor-

intensive, subjective, and prone to inter-observer variability 

(Dromain et al., 2013). To address these limitations, early 

machine learning approaches, such as support vector 

machines (SVMs) and random forests, were applied to 

BAC detection (Wang et al., 2016). However, these 

methods depend on hand-crafted features, such as texture, 

intensity, or shape descriptors, which may not fully capture 

the complex and subtle patterns associated with BAC 

(Hosny et al., 2018). 

 

Deep learning has transformed medical imaging by 

enabling end-to-end feature learning, bypassing the need 

for manual feature engineering (Litjens et al., 2017). CNNs 

have been successfully applied to tasks such as breast 

cancer detection in mammograms (Dhungel et al., 2015), 

lung nodule classification in CT scans (Shen et al., 2019), 

and retinal disease diagnosis in fundus photography 

(Gulshan et al., 2016). Notably, Cheng et al. (2020) 

developed a CNN model to detect vascular calcifications in 

chest X-rays, achieving high sensitivity and specificity. 

Despite these advances, few studies have explored deep 

learning for BAC detection in mammograms specifically 

for CVD risk assessment. This research aims to fill this gap 

by developing a tailored CNN model to identify BAC and 

evaluate its clinical utility in CVD screening. 

 

3. Methodology 
 

3.1 Dataset 

 

The study utilized a comprehensive dataset of 12,000 

mammogram images sourced from multiple repositories to 

ensure diversity and generalizability. The primary source 

was the Digital Database for Screening Mammography 

(DDSM), a publicly available collection of digitized film 

mammograms (Heath et al., 1997). This was supplemented 

with a private dataset provided by a collaborating tertiary 

care hospital, which included digital mammography images 

from a diverse patient population. Each mammogram was 

accompanied by metadata, including patient age, medical 

history, and radiologist annotations indicating the presence 

and extent of BAC, as well as associated CVD risk levels 

(categorized as low, medium, or high based on clinical 

guidelines). 

 

The dataset was meticulously curated to ensure balanced 

representation across age groups, ethnicities, and CVD risk 

profiles. Images were labeled by a panel of board-certified 

radiologists with expertise in mammography and 

cardiovascular imaging. To mitigate bias, each image was 

independently reviewed by at least two radiologists, with 

discrepancies resolved through consensus. The final dataset 

was partitioned into 70% for training (8,400 images), 15% 

for validation (1,800 images), and 15% for testing (1,800 

images), maintaining consistent class distributions across 

splits. The dataset distribution is summarized in Table 1. 

 

Table 1: Dataset Distribution 

Subset 
Number of 

Images 

No BAC 

(%) 

Low CVD 

Risk (%) 

High CVD 

Risk (%) 

Training 8,400 50% 30% 20% 

Validation 1,800 50% 30% 20% 

Testing 1,800 50% 30% 20% 

Total 12,000 50% 30% 20% 

 

3.2 Preprocessing 

 

To optimize model performance and ensure robust feature 

extraction, the mammogram images underwent a series of 

preprocessing steps, as outlined in Table 2:  
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Step Description Purpose 

Normalization 

Pixel intensities scaled to 

[0, 1] by dividing by 

maximum value (255) 

Standardize input data, 

reduce variability from 

imaging equipment. 

Contrast 

Enhancement 

Histogram equalization 

to enhance calcification 

visibility. 

Improve visibility of    

high-intensity 

calcifications against 

breast tissue. 

Image Resizing 

Resized to 224x224 

pixels using bicubic 

interpolation. 

Ensure compatibility 

with CNN architecture, 

preserve details. 

Data 

Augmentation 

Random rotations 

(±15°), flips, zooming 

(20%), brightness 

Adjustments (±10%). 

Increase dataset 

diversity, prevent 

overfitting.  

ROI 

Extraction 

Adaptive thresholding to 

isolate breast 

tissue from background. 

Focus model on 

relevant regions, 

reduce computational 

overhead. 

 

These steps were implemented using Python libraries such 

as OpenCV and scikit-image, ensuring reproducibility and 

compatibility with deep learning frameworks (Litjens et al., 

2017; Dhungel et al., 2015; Ronneberger et al., 2015). 

 

3.3 Model Architecture 

 

The proposed model was built upon the ResNet-50 

architecture, a deep CNN known for its effectiveness in 

image classification tasks due to its residual learning 

framework (He et al., 2016). ResNet-50 was chosen for its 

ability to mitigate the vanishing gradient problem through 

skip connections, enabling the training of deep networks 

without performance degradation. The architecture was 

customized for BAC detection, as detailed in Table 3: 

 

Table 3: Model Architecture Overview 
Layer Type Description Parameters 

Input Layer 

Accepts 224x224 grayscale 

images, initial convolution with 

64 filters. 

3.2M 

parameters 

Convolutional 

Blocks 

50 layers in 4 stages, residual 

blocks with 1x1, 3x3, 1x1 

kernels, ReLU. 

23.5M 

parameters 

Global Average 

Pooling 

Reduces spatial dimensions 

(7x7x2048 to 1x1x2048) 

No 

parameters 

Fully Connected 

Layer 
512 units, ReLU activation 

1M 

parameters 

Output Layer 
Softmax with 3 units (no BAC, 

low risk, high risk). 

1.5K 

parameters 

 

The model was implemented using TensorFlow 2.8 and 

Keras, with pre-trained weights from ImageNet used for 

transfer learning to accelerate convergence (Deng et al., 

2009). Training and inference were performed on a high-

performance computing cluster equipped with four 

NVIDIA A100 GPUs, each with 40 GB of memory. 

 

3.4 Training 

 

The model was trained for 50 epochs with the following 

configuration: 

 

• Optimizer: Adam optimizer with an initial learning 

rate of 0.001, beta1=0.9, and beta2=0.999. The 

learning rate was reduced by a factor of 0.1 if 

validation loss plateaued for five epochs (Kingma & 

Ba, 2015). 

• Loss Function: Categorical cross-entropy to measure 

discrepancy in multi-class classification. 

• Batch Size: 32 to balance computational efficiency 

and gradient stability. 

• Regularization: Dropout (rate=0.5) in the fully 

connected layer and L2 regularization (weight 

decay=0.0001) in convolutional layers to prevent 

overfitting (Srivastava et al., 2014). 

• Early Stopping: Training halted if validation loss did 

not improve for 10 epochs, with the best model 

checkpointed. 

• Learning Rate Scheduling: Cosine annealing to 

gradually reduce the learning rate (Loshchilov & 

Hutter, 2017). 

 

Class weighting was applied to address mild class 

imbalance, with weights inversely proportional to class 

frequencies. 

 

3.5 Evaluation Metrics 

 

The model’s performance was evaluated using the 

following metrics: 

 

• Accuracy: Proportion of correctly classified images. 

• Precision: True positives / (True positives + False 

positives). 

• Recall: True positives / (True positives + False 

negatives). 

• F1-Score: Harmonic mean of precision and recall. 

• AUC-ROC: Area under the ROC curve to evaluate 

discrimination ability (Fawcett, 2006). 

• Confusion Matrix: Tabular summary of true vs. 

predicted labels. 

 

Metrics were computed using scikit-learn and visualized 

using matplotlib and seaborn (Pedregosa et al., 2011). 

 

4. Results 
 

The proposed CNN model achieved exceptional 

performance on the test set, demonstrating its efficacy in 

detecting BAC and stratifying CVD risk. The key results 

are summarized in Table 4: 

 

Table 4: Model Performance Metrics 
Class Precision Recall F1-Score Support 

No BAC 0.92 0.94 0.93 900 

BAC with Low 

CVD Risk 
0.9 0.89 0.9 540 

BAC with High 

CVD Risk 
0.95 0.93 0.94 360 

Overall (Weighted 

Avg.) 
0.92 0.92 0.92 1,800 

 

• Accuracy: 93.1% 

• AUC-ROC: 0.96 

• Inference Time: 0.02 seconds per image (NVIDIA 

A100 GPU) 

 

Paper ID: MR25502223551 DOI: https://dx.doi.org/10.21275/MR25502223551 240 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 5, May 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 
Figure 1: Precision, Recall, and F1-Score by Class 

 

Note: Bar plot showing precision, recall, and F1-score for 

each class (No BAC, Low CVD Risk, High CVD Risk). 

 

Figure 1 visualizes the precision, recall, and F1-score for 

each class, highlighting the model’s balanced performance 

across categories. 

 

The confusion matrix (Figure 2) illustrates the distribution 

of true vs. predicted labels, revealing that most 

misclassifications occurred between “no BAC” and “low 

risk” categories, likely due to subtle calcification patterns. 

High-risk cases were identified with high reliability. 

 

 
Figure 2: Confusion Matrix 

 

Note: Heatmap showing true labels (rows) vs. predicted 

labels (columns) for the test set. Diagonal values represent 

correct predictions. 

 

 
Figure 3: ROC Curves 

 

The ROC curves for each class (Figure 3) demonstrate the 

model’s strong discriminative ability, with AUC values of 

0.97 (no BAC), 0.94 (low risk), and 0.96 (high risk). 

 

 
Figure 4: Histogram of Confidence Scores 

Note: ROC curves for each class, with AUC values 

indicating discriminative performance. 

 

Figure 4 shows a histogram of the model’s confidence 

scores (softmax probabilities) for the predicted classes in 

the test set, providing insight into the model’s prediction 

certainty. 
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Figure 5 visualizes the accuracy comparison across 

methods. 

 

 
Figure 5: Accuracy Comparison 

Note: Bar plot comparing accuracy of the proposed CNN, 

baseline SVM, and radiologist panel. 

 

Note: Histogram showing the distribution of softmax 

probabilities for predicted classes, indicating model 

confidence. 

 

For comparison, a baseline SVM model with hand-crafted 

features achieved an accuracy of 86.4% and an AUC-ROC 

of 0.89, significantly underperforming the CNN (Wang et 

al., 2016). A panel of three radiologists achieved an 

average accuracy of 94.2% on a subset of the test set, 

suggesting the model approaches human expert 

performance (Dromain et al., 2013). Comparative results 

are shown in Table 5: 

 

Table 5: Performance Comparison 

Method Accuracy 
AUC- 

ROC 

Inference 

Time (s) 

Proposed    CNN 93.10% 0.96 0.02 

(ResNet-50)       

Baseline SVM 86.40% 0.89 0.05 

Radiologist Panel 94.20% - - 

 

5. Discussion 
 

The results underscore the potential of deep learning to 

transform CVD screening by leveraging mammograms for 

BAC detection. The model’s high accuracy (93.1%), 

precision, and recall, as shown in Table 4 and Figure 1, 

demonstrate its ability to reliably identify calcifications and 

stratify CVD risk, offering a non-invasive alternative to 

traditional methods (Greenland et al., 2018). The AUC-

ROC of 0.96 (Figure 3) and precision-recall curves (Figure 

6) indicate robust discrimination, particularly for high-risk 

cases, which are critical for clinical intervention. The 

histogram of confidence scores (Figure 4) suggests that the 

model is generally confident in its predictions, with most 

probabilities clustered near 0 or 1, though some uncertainty 

exists for misclassified cases. The inference speed of 0.02 

seconds supports real-time integration into mammography 

workflows (U.S. Preventive Services Task Force, 2016). 

 

Compared to prior work, the model outperforms traditional 

machine learning approaches and earlier deep learning 

studies on related tasks (Cheng et al., 2020; Wang et al., 

2016). The use of ResNet-50 with transfer learning and 

data augmentation contributed to its success (Shorten & 

Khoshgoftaar, 2019). 

 

Limitations include potential dataset bias toward certain 

demographics, the indirect nature of BAC as a CVD 

marker, and reliance on high-quality mammograms (Roth 

et al., 2020; Iribarren & Molloi, 2013). Future work should 

focus on: 

 

• Dataset Expansion: Include diverse populations to 

enhance generalizability. 

• Multimodal Integration: Combine imaging with 

clinical data (Arnett et al., 2019). 

• Explainability: Use Grad-CAM to visualize decisions 

(Selvaraju et al., 2017). 

• Clinical Validation: Conduct prospective studies to 

assess real-world impact. 

 

Ethical considerations, such as equitable access and patient 

privacy, must also be addressed (Hosny et al., 2018). 

 

6. Conclusion 
 

This study demonstrates the feasibility of using deep 

learning to detect CVD risk from mammograms via BAC 

identification. The proposed CNN model achieves an 

accuracy of 93.1% and an AUC-ROC of 0.96, approaching 

expert radiologist performance while offering automation 

and scalability. By leveraging routine mammography, this 

approach provides a cost-effective method for early CVD 

detection, with potential to reduce global cardiovascular 

mortality. Future efforts to validate the model in clinical 

settings and expand its applicability will be critical to 

realizing its impact. 
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