
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

DynamoDB-Real Time Ingestion & Real Time

Analytics

Khilawar Verma

Designation: Software Engineering Manager, SRE, Coinbase Inc, Santa Clara CA, USA

Abstract: This article offers a refreshing departure from traditional, cumbersome data ingestion practices by introducing a lean and

real-time DynamoDB-based framework tailored to address long-standing operational bottlenecks in data pipelines. It is evident that

existing ingestion models, often reliant on Change Data Capture (CDC) and file-based merges, have proven fragile, time-consuming, and

riddled with maintenance challenges. This new framework, however, leverages AWS-native tools such as DynamoDB streams and

Lambda functions to create a low-latency, highly resilient pipeline that simplifies cross-account data replication. What stands out is the

dynamic schema evaluation, which means that developers no longer need to halt progress due to schema shifts-a common stumbling

block in older systems. The framework’s ability to maintain near-perfect data parity while providing robust monitoring and error recovery

reflects a meaningful shift towards operational agility. This suggests that not only is data made available in near real-time, but it also

empowers data engineers and analysts to move beyond verification and firefighting, focusing instead on deriving timely insights. Taken

together, these innovations point to a practical yet powerful evolution in data ingestion, offering an almost plug-and-play solution that

can be deployed swiftly without the typical overhead of complex ETL processes.

Keywords: DynamoDB, AWS Public Cloud, Data Ingestion, BigData, Analytics, Data Pipelines

1. Overview

Today it takes a long time to move the data from the source

database to the lake. Most of the current pipelines are batch

oriented, complex processes and go through multiple

frameworks and processing before the data is consumed. Data

Analytics is T-1 day (In some scenarios, it could take up-to a

week)

Patterns & Frameworks for Data Ingestion

CDC (Change Data Capture) + File Based Merge

Capture table-level inserts, updates, deletes (using OGG trail

files), and apply these change events to a materialized hive

view on a per event basis. KPIs/aggregates can be generated

on the materialized view for reporting. The pattern is similar

to capture table change events and merge into a materialized

view. CDC + Merge is non-trivial to get right in production.

Data as Events (v4++)

Business events published on the Kafka bus consumed by

platform microservices as well as reporting/analytics.

Replication-based

Companies such as AirBnB use database log shipping for

ingestion into the Data Lake (specifically mysql binlog

shipping to HBase). In AWS, DMS as a managed replication

engine uses Replication model but DMS doesn't support

DynamoDB based replication ingestion hence we have built

our own DMS like solution to support DynamoDB ingestion

framework which we are going to talk about here.

Some existing current Ingestion Patterns and it's

Limitations

• Most of the ingestion patterns implement CDC + Merge

pattern which is time consuming and batch oriented

complex process with operational overhead and

maintenance

• Challenges during mergers in S3

• There are many incidents and issues in these data ingestion

pipelines. The existing pattern of database CDC (Change

Data Capture) + file-based merge to create a materialized

view is fragile and error-prone. Below pie chart depicts

drill down of Data Incidents (per IOC Classification)

impacting availability, accuracy or consumability of data.

Analysts and Scientists Pain-points

• Spend hours verifying dashboard results every week.

• The ETL logic has become layers and layers of band-aids.

• T-1 (24 hours) delayed insights and sometimes T-2 is not

acceptable.

• Making a small fix or change in the pipeline can take

weeks.

Data Engineer Pain-points

• Ingestion is fragile, changes in schema and increased load

breaks the ingestion.

• Debugging is an unbounded nightmare along with

Organizational Complexity

• Not possible to track analysts who wrote the existing ETL

logic-- it's so complex, no one can explain.

• Ensuring timeliness working across cross BU teams is

extremely complex with lots of to-&-fro.

• Extensibility of existing pipelines is extremely difficult.

• Need to build monitoring on entry and exit and keep on

refining it.

Details/Benefits of the new pattern

As part of this framework we are using DynamoDB first. We

are going to use AWS native DynamoDB replication

technique

copy all source DynamoDB from various AWS accounts to

one common Lake AWS account DynamoDB.

Pre-requisites

Below prerequisites are needed to set up the above

framework.

Paper ID: SR25427061609 DOI: https://dx.doi.org/10.21275/SR25427061609 2377

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

1) Either Source account access, or not then source account

lead willing to set up.

2) Destination DynamoDB table needed.

3) New or existing EC2 is needed in the Source account if

"Failure recovery option" is required.

4) Needs to enable DynamoDB stream in source account

DynamoDB table.

5) needs to set up a lambda function in the source account.

6) Setup alerts in cloudwatch in the source account.

7) Lambda/cloudwatch role needs to be created in Source

account.

Benefits

This technique has the following benefits.

1) It is the first ingestion framework for DynamoDB in

Intuit.

2) It is real time framework (few micro seconds lag) vs t-1

to t-2 currently.

3) Dynamic Schema evaluation is incorporated in this

framework, hence no Changes to ingestion pipeline in

case of schema changes from dev side.

4) 0.0001% row parity difference between source and

destination/lake tables (even though 1% row parity is

acceptable)

5) Proper monitoring and alerting systems in place in case

of any errors in ingestion pipeline.

6) Proper documentation and procedure created for Dev

teams to create their own ingestion pipeline in self serve

mode.

7) AWS supported replication techniques via DynamoDB

stream.

8) AWS native tool lambda to run the replication logic

9) Failure recovery options available in case parity reaches

more than 1%.

10) Very lightweight and takes only 15 min to set up the

whole ingestion framework.

Architecture of the new Pattern

Below is the architecture diagram and flow chart that explains

the flow of new ingestion framework.

DynamoDb_Ingestion_Flow:

Paper ID: SR25427061609 DOI: https://dx.doi.org/10.21275/SR25427061609 2378

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Cross account access pattern

Below is the architecture diagram which shows how cross account DynamoDB ingestion will work.

How to Analyze the data

1) Through EMR hive

We can access ingested data directly from Hive as it's

connector supports DynamoDB access.

2) Through other tools like Alation/Tableau etc.

DynamoDB Limitations

There are some limitations in the DynamoDB as shown below

• We have only 10000 read or write units. We can increase

them as well with special requests to AWS. We are

currently using only 100 RSUs/WSUs in the destination

Table.

• DynamoDB table names are unique hence we have to

make sure that if we have similar names in some scenario,

we will need to create tables with different names.

• You can have only 256 tables per region per account.

Paper ID: SR25427061609 DOI: https://dx.doi.org/10.21275/SR25427061609 2379

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

References

[1] Stonebraker, M., Çetintemel, U., & Zdonik, S. (2005).

The 8 Requirements of Real-Time Stream Processing.

ACM SIGMOD Record, 34 (4), 42–47.

[2] Gulisano, V., Jiménez-Peris, R., Patino-Martinez, M.,

Soriente, C., & Valduriez, P. (2012). StreamCloud: An

Elastic and Scalable Data Streaming System. IEEE

Transactions on Parallel and Distributed Systems, 23

(12), 2351–2365.

[3] Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: A

Distributed Messaging System for Log Processing.

Proceedings of the NetDB Workshop, 1–7.

[4] Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M.,

Convey, C., Lee, S., & Stonebraker, M. (2003). Aurora:

A New Model and Architecture for Data Stream

Management. The VLDB Journal, 12 (2), 120–139.

[5] Hirzel, M., Schneider, S., Gedik, B., & Grimm, R.

(2014). Partition and Compose: Parallel Complex Event

Processing. Proceedings of the 8th ACM International

Conference on Distributed Event-Based Systems

(DEBS), 125–136.

Paper ID: SR25427061609 DOI: https://dx.doi.org/10.21275/SR25427061609 2380

http://www.ijsr.net/

