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Abstract: Quantum computing has raised significant concerns regarding the security of classical cryptographic systems, particularly 

RSA, as it depends on the computational difficulty of factoring large semiprime numbers. In this study, we demonstrate the practical 

application of Shor’s algorithm by successfully factorizing a semiprime integer, up to 30 bits (857830637 = 29167 X 29411) using the 

QuantumRings simulator. Our work highlights the effectiveness of Shor’s algorithm in solving the factorization problem in polynomial 

time, which will significantly improve over the classical method for a large number. The results suggest that with advances in quantum 

hardware, such as increasing qubit counts and improving error correction, breaking larger RSA keys (e.g., RSA-2048) may soon become 

feasible. This seriously threatens current cryptographic systems, emphasizing the need to adopt post-quantum cryptography. Our findings 

aim to raise awareness among researchers, policymakers, and industry leaders of the importance of preparing for a quantum-safe future. 
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1. Introduction 
 

The rapid advancements in quantum computing have led to 

concerns about the security of modern cryptographic systems, 

particularly RSA encryption. As a fundamental component of 

secure communication, RSA depends on the computational 

difficulty of factoring large semiprime numbers, a challenge 

that classical computers find hard to solve. Traditional 

methods such as the number field sieve (NFS) require sub-

exponential time for factorization, thereby protecting RSA 

against classical attacks [1]. However, quantum computing 

brings about a paradigm shift. In 1994, Peter Shor proposed a 

quantum algorithm [2] capable of factorizing semiprimes in 

polynomial time, which presents a significant threat to RSA 

encryption. Shor's algorithm is a central topic in numerous 

studies exploring its implementation on Quantum Processing 

Units (QPUs). Most of these studies suggest an ad hoc 

quantum circuit for N=15 [3]-[8], implemented across various 

technologies like photonic systems and superconducting 

qubits.  A compiled version of Shor’s algorithm is described 

in [9]. Although large-scale quantum computers are not yet 

available, tools like QuantumRings allow researchers to 

simulate and validate algorithms, bridging the gap between 

theoretical advances and practical implementation. 

 

In this work, we focus on simulating Shor’s algorithm using 

the QuantumRings simulator [10][11] to factorize semiprimes 

ranging from 10-bit to 30-bit sizes. We aim to demonstrate 

the feasibility of quantum factorization and highlight its 

implications for breaking real-world cryptographic systems 

like RSA-2048. QuantumRings is an advanced simulator 

designed to replicate the behavior of quantum hardware. It 

provides a controlled environment for testing quantum 

algorithms while avoiding real-world challenges such as 

decoherence and error accumulation. This study aims to 

bridge the gap between the theoretical possibilities of 

quantum computing and its practical implications for 

cryptanalysis, helping scientists and policy makers recognize 

and prepare for a future where quantum technology could 

disrupt existing security systems. 

 

The paper successfully factors a 30-bit semiprime using 

Shor’s algorithm on simulated hardware illustrates the 

potential of quantum technology to compromise much larger 

RSA keys as it advances. We quantify the resources required 

to factorize cryptographically relevant semiprimes, providing 

valuable insight into when RSA may become vulnerable. This 

underscores the urgent need to adopt post-quantum 

cryptographic standards such as lattice-based algorithms 

before quantum hardware matures. 

 

The remainder of this paper is structured as follows. Section 

2 covers Shor’s algorithm and its mathematical principles. 

Section 3 explains our simulation approach using 

QuantumRings. Section 4 presents our findings and explores 

the implications for cryptography and the steps needed toward 

quantum-safe solutions. 

 

2. Theoretical Framework of Shor’s Algorithm 
 

Shor’s algorithm uses the principles of quantum mechanics to 

solve the integer factorization problem efficiently. It reduces 

integer factorization to a period-finding problem using 

modular arithmetic.  In essence, the algorithm exploits the 

periodicity of functions of the form 𝑓(𝑥) = 𝑎𝑥  𝑚𝑜𝑑 𝑁 to 

deduce the factors of 𝑁. 

 

In contrast to classical factorization algorithms like the 

General Number Field Sieve (GNFS) [12], which have sub-

exponential time complexity for large N, Shor’s algorithm 

solves the problem in polynomial time. The shift from sub-
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exponential to polynomial complexity represents a radical 

improvement in computational efficiency and fundamentally 

challenges the security assumptions underlying RSA.  

 

This theoretical framework explains the quantum advantage 

and lays the groundwork for understanding practical 

implementation challenges. Factors such as noise, 

decoherence, and the need for error correction in real quantum 

systems must be addressed. Although this demonstration was 

conducted on a simulator, the principles remain valid for 

quantum hardware. Given the trajectory of quantum 

technology development, these theoretical constructs are 

poised to translate into real-world cryptanalytic capabilities in 

the near future. 

 

The mathematical backbone of Shor’s algorithm is rooted in 

number theory and quantum mechanics. The key steps are as 

follows: 

 

2.1 Classical Reduction to Period-Finding 

 

Factorizing a semiprime 𝑁 involves finding a nontrivial 

divisor, which is one of its two prime factors. Shor's algorithm 

begins classically by selecting a random integer 𝑎 (1 < 𝑎 <

𝑁 )  such that gcd(a, N) =1. The goal is to find the smallest 

positive integer r, known as the period, such that: 

 

𝑎𝑟 ≡ 1 𝑚𝑜𝑑 𝑁 

 

Once the period 𝑟 is determined, the potential factors of 𝑁 are 

given by gcd (𝑎
𝑟

2
 ± 1, 𝑁),  provided that 𝑟 is even and  𝑎

𝑟

2 ≠
−1 𝑚𝑜𝑑 𝑁. If these conditions are not met, a different value 

of a is selected [2]. 

 

2.2 Quantum Period-Finding 

 

The quantum circuit (Figure1) uses two registers:   

• Register 1 (top): Stores 𝑥  in superposition for  

𝑥 = 0,1, … , 2𝑄 − 1, where 𝑄  is a power of 2 close to  

𝑁2.   

• Register 2 (bottom): Stores 𝑓(𝑥) =  𝑎𝑥  𝑚𝑜𝑑 𝑁.   

 

After initializing Register 1 in an equal superposition 
1

√𝑄
 ∑ |𝑥⟩𝑄−1

𝑥=0  ), the function 𝑓(𝑥) is computed in Register 2. 

Measuring Register 2 collapses Register 1 into a 

superposition of states separated by the period 𝑟. 

 

 

 
Figure 1: Quantum circuit for Shors algorithm. Register 1 undergoes QFT, while Register 2 computes 𝑎𝑥  𝑚𝑜𝑑 𝑁. Controlled 

modular multipliers (blue) dominate the circuit. 

 

2.3  Quantum Fourier Transform (QFT) 

 

A central element in the algorithm is the QFT, which maps the 

periodic state to a superposition of frequencies, allowing 

measurement to extract the period 𝑟. The efficiency of the 

QFT is a key factor in enabling the polynomial-time 

complexity of Shor's algorithm.               

 

The QFT maps the periodic state in Register 1 to the frequency 

domain, where the period 𝑟 can be extracted. It transforms a 

state |𝑥⟩into:   

𝑄𝐹𝑇|𝑥⟩ =  
1

√𝑄
∑ 𝑒2𝜋𝑖𝑥𝑘/𝑄|𝑘⟩

2𝑄−1

𝑘=0

 

  

Applying QFT to Register 1 produces peaks at multiples of 

𝑄/𝑟, where 𝑟 is the period. The measurement of the output 

yields 𝑦 ≈
𝜆𝑄

𝑟
, where 𝜆 is some integer. Using continued 

fractions, the period 𝑟 can be derived from the value 𝑦/𝑄 [13].   

 

2.4  Entanglement and Superposition  

 

The algorithm exploits the fundamental quantum phenomena 

of superposition and entanglement, allowing for the parallel 

computation of many values and ensuring that the periodic 

information is preserved during measurement. The quantum 

system simultaneously computes many values of 𝑓(𝑥) by 

preparing qubits in a superposition of all possible inputs 𝑥.  

The entanglement between qubits ensures the measurement 
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result in a collapsed state in a manner that preserves the 

periodic information. 

 

3. Methodology: Simulating Shor’s Algorithm 
 

This section describes the implementation of Shor's algorithm 

in the QuantumRings simulator, including semiprime 

selection, quantum circuit design, and optimizations for 

handling large integers. Our experimental setup was based on 

the QuantumRings simulator [10][11], which is designed to 

emulate the behaviour of quantum hardware with high 

fidelity. The simulation environment allowed us to bypass 

some classical limitations while still adhering to the principles 

of quantum mechanics.  

 

3.1 Semiprime Selection and Validation 

 

For our experiment, a 30-bit semiprime number was chosen. 

The selection criteria included the following. 

• Uniform Bit Distribution: Ensuring that both prime 

factors have approximately equal bit lengths to maximize 

computational challenge. 

• Difficulty Level: The chosen semiprime represents a non-

trivial case, but manageable within the simulator’s 

capabilities. 

 

This semiprime can be represented as 𝑁 = 𝑝 × 𝑞, where 𝑝 and 

𝑞 are prime numbers of approximately 15 bits each. 

Semiprimes were generated for bit lengths ranging from 10 to 

30 using the GNU Multiple Precision Arithmetic Library 

(GMP) [14]. The primes 𝑝 and 𝑞 were selected to satisfy: 

 

|𝑝 − 𝑞| >  2
𝑏𝑖𝑡−𝑙𝑒𝑛𝑔𝑡ℎ

2
−5

. 

 

To ensure resistance against Fermat’s factorization method. 

Each 𝑁 was validated using the Miller-Rabin primality test 

[15].   

 

3.2 Quantum Circuit Design 

 

A quantum circuit was designed and implemented to perform 

the modular exponentiation necessary for the period-finding 

subroutine. The design focused on optimizing the number of 

qubits and gates to enhance computational efficiency. The 

quantum circuit for Shor’s algorithm (Figure 1) was 

implemented in three stages:   

1) Modular Exponentiation: A sequence of controlled 
𝑈

𝑎2𝑘 gates computes 𝑓(𝑥) =  𝑎𝑥  𝑚𝑜𝑑 𝑁.  

2) Quantum Fourier Transform (QFT): The QFT was 

applied to the superposition state produced by the circuit. 

This step was essential for identifying the periodicity of 

the modular exponentiation function.   

3) Measurement and post-processing: The x-register was 

measured to obtain y, and the period r was extracted using 

the continued fraction algorithm.  

 

 
Figure 2: Quantum circuit for factorizing a 4-bit semiprime number 15 with base 11. 
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An example of the Quantum circuit for factorizing a 4-bit 

semiprime number 15 with base 11 is given in Figure 2. 

Optimization techniques were employed to reduce circuit 

depth and minimize resource usage. The simulator provided 

detailed reports on the usage of the qubits.  

 

4. Results and Analysis 
 

Detailed logs from QuantumRings indicated efficient use of 

qubits are given in the Table 1. These results indicate that 

Shor’s algorithm scales well within the simulated 

environment.   

 

Table 1: Quantum factorization results and resource usage for factorizing semiprimes up to 30 bits 
Bit Length Semiprime (N) Base (a) Factor 1 Factor 2 Number of Qubits 

8 143 60 11 13 25 

10 899 428 31 29 31 

12 3127 251 59 53 37 

14 11009 1735 109 101 43 

16 47053 261 223 211 49 

18 167659 78957 431 389 55 

20 744647 12371 907 821 61 

22 3036893 1285503 1709 1777 67 

24 11426971 1873261 3191 3581 73 

26 58949987 1194295 8039 7333 79 

28 208241207 100906083 15727 13241 85 

30 857830637 317637464 29167 29411 91 

 

We successfully factorized semiprime integers ranging from 

10-bit to 30-bit using Shor’s algorithm on the QuantumRings 

simulator. Our results indicate that the algorithm, when 

implemented in a high-fidelity simulator, can reliably 

factorize numbers that are intractable for classical methods 

within polynomial-time complexity. 

 

4.1 Limitations and Challenges 

 

Despite the success of the simulation, several challenges 

remain: 

• Scaling to Larger Qubits: Achieving practical 

implementation on hardware with more than 1,000 qubits 

remains a major challenge due to current limitations in 

qubit coherence and interconnectivity.  

• Error Rates in Physical Systems: The simulated 

environment can only approximate idealized error 

correction, whereas real quantum devices require 

substantial advances in error mitigation. 

 

These challenges underscore that, while the simulation shows 

promise, transitioning from simulation to real quantum 

hardware will require overcoming significant technical 

obstacles. 

 

Extrapolating from our results, factorizing RSA-2048 would 

require 6,145 logical qubits and tens of millions of quantum 

gates.  

 

4.2 Implications for RSA and Post-Quantum 

Cryptography 

 

Our results demonstrate that Shor’s algorithm, when scaled to 

a sufficient number of qubits, can efficiently break RSA 

encryption. Factorizing a 30-bit semiprime on the 

QuantumRings simulator required 91 qubits. Extrapolating 

this to RSA-2048 (a 2048-bit modulus), we estimate that 

approximately 6,145 logical qubits and tens of millions of 

quantum gates would be required. Assuming a 10% annual 

improvement in qubit quality [16] since current quantum 

hardware is constrained by decoherence and noise, rapid 

advancements in error correction (e.g., surface codes [17]), 

breaking RSA-2048 could become computationally feasible 

within the next 5–10 years.  

 

The successful demonstration of Shor’s algorithm on a 30-bit 

semiprime highlights the potential risks to RSA-based 

cryptography. Our findings suggest that further advancements 

in quantum computing could eventually make breaking RSA-

2048 feasible. Such a breakthrough would have serious 

implications for financial systems, government 

communications, and data privacy. 

 

Our simulation shows that factoring larger keys will require 

not just more qubits but also major improvements in error 

correction and qubit accuracy. Projections indicate that with 

advancements in quantum hardware over the next few years, 

quantum computers could reach the capability needed to break 

RSA-2048. This highlights the urgent need for research and 

development in post-quantum cryptography. 

 

Efforts to standardize quantum-resistant algorithms are well 

underway, primarily led by the National Institute of Standards 

and Technology (NIST) in the United States. As part of its 

Post-Quantum Cryptography (PQC) standardization project, 

NIST has evaluated numerous candidates and has selected 

several algorithms for standardization. Notably, lattice-based 

cryptography has emerged as a leading approach due to its 

strong security foundations and efficient implementation 

potential. Algorithms such as CRYSTALS-Kyber (for key 

encapsulation) and CRYSTALS-Dilithium (for digital 

signatures) were formally selected by NIST in 2022 for 

standardization [18], [19]. Other approaches, including hash-

based, multivariate, and code-based schemes, are also being 

considered as viable alternatives to classical cryptographic 

systems like RSA and elliptic-curve cryptography (ECC), 

which are vulnerable to attacks from quantum computers. 

 

Despite these advancements, the global adoption of PQC 

remains sluggish. This lag is primarily due to challenges such 

as compatibility with legacy systems, lack of standardization 

across industries, limited awareness and technical expertise 

among small and medium-sized enterprises (SMEs), and 

underinvestment in PQC research and infrastructure, 
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particularly in developing countries [20][21]. Additionally, 

there is uncertainty around how soon large-scale quantum 

computers capable of breaking current cryptographic 

standards will become operational, which can lead to 

complacency in the transition process. 

 

Governments and industries must prioritize the transition to 

post-quantum cryptography (PQC), invest in quantum-safe 

infrastructure, and establish strict compliance deadlines. 

Delaying this shift could result in severe security breaches as 

quantum technology continues to advance. 

 

5. Conclusion and Call to Action 
 

         In this study, we successfully factorized semiprimes up 

to 30 bits using Shor’s algorithm on the QuantumRings 

simulator, demonstrating its feasibility with near-term 

quantum resources. Our results underscore the significant 

computational advantage that quantum algorithms have over 

classical methods, posing a growing threat to current 

cryptographic standards, particularly RSA. 

 

The implications of this work are profound. As quantum 

computing technology matures, the likelihood of breaching 

RSA-2048 and similar cryptographic schemes becomes 

increasingly plausible. Therefore, researchers, industry 

leaders, and policymakers must expedite their efforts to 

develop and implement post-quantum cryptographic 

algorithms. 

 

Future work should focus on scaling quantum simulations to 

larger qubit counts, improving error correction techniques, 

and bridging the gap between theoretical algorithms and 

practical, deployable quantum systems. We urge the scientific 

community to heed these warnings and prepare for a quantum-

safe future. 

  

Accelerating the shift to PQC is not just a technical imperative 

but also a policy and educational one. Governments, academic 

institutions, and industry leaders must collaborate to increase 

funding for PQC research, create tools for easier migration, 

and raise awareness about the quantum threat. The proactive 

adoption of PQC is the only defence against this existential 

risk. 
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