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Abstract: “Indoor Object Detection for Blind” is a dedicated assistive technology project designed to enhance indoor navigation for 

visually impaired individuals. Utilizing advanced computer vision techniques, the system detects and identifies objects in real-time using 

wearable devices like smart glasses or smartphones. It integrates YOLO-based deep learning models, fine-tuned with a custom indoor 

dataset, to ensure high accuracy in recognizing objects such as furniture, doors, and appliances. Additionally, natural language processing 

(NLP) enables context-aware descriptions, providing adaptive feedback. The project is designed to be flexible and seamlessly integrate 

with wearable technology, ensuring a smooth and efficient user experience. The system evaluates various aspects of objects, including 

their spatial positioning and contextual information, to assist users in real-time. By concentrating solely on object detection within indoor 

environments, this system significantly improves spatial awareness and navigation for visually impaired individuals. Extensive testing 

demonstrates the system's performance in detecting and identifying objects while minimizing false positives. 
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1. Introduction 
 

Navigating indoor environments remains a significant 

challenge for visually impaired individuals, as traditional aids 

offer limited spatial awareness. This project introduces an 

assistive technology solution leveraging advanced computer 

vision and deep learning for real-time indoor object detection. 

The system uses YOLO-based models fine-tuned with a 

custom indoor dataset to identify common household objects 

accurately. Integrated with wearable devices, it provides 

adaptive audio feedback via natural language processing 

(NLP) for clear, context-aware descriptions. This enhances 

user independence and safety. Visually impaired individuals 

face difficulties perceiving objects and layouts indoors. 

Traditional aids like white canes detect nearby obstacles but 

don't identify them, while guide dogs are costly and not 

universally accessible. Existing digital solutions often focus 

on outdoor GPS navigation and lack real-time indoor object 

recognition or context-aware descriptions. Poor lighting or 

clutter further complicates navigation with conventional 

methods. The proposed system addresses these limitations 

using a YOLOv5-based AI model with deep learning, NLP, 

and multimodal feedback (audio and haptic signals) via 

wearable cameras. It enhances spatial awareness by 

recognizing and describing objects in real-time, unlike aids 

that only detect obstacles. The YOLOv5 model, chosen for 

speed and accuracy, is trained on a custom indoor dataset 

using transfer learning to handle varied conditions like low 

light or overlapping objects. The system prioritizes low 

latency for instant feedback. 

 

2. Literature Survey  
 

Indoor navigation systems for visually impaired individuals 

have evolved dramatically with the advancement of computer 

vision and deep learning. Traditional aids like white canes 

and guide dogs offer limited object identification and 

contextual awareness, motivating researchers to develop 

more intelligent solutions. 

 

In 2025, Rahman et al. introduced a real-time navigation 

system using a customized YOLOv5 model, trained on indoor 

datasets containing household objects under various lighting 

conditions. They leveraged transfer learning to reduce 

training time and improve accuracy. Their work demonstrated 

real-world application with wearable cameras that achieved 

over 90% mAP (mean average precision), even in cluttered 

spaces.[1] 

 

Sharma and Patel, in 2024, proposed a complete framework 

integrating object detection with real-time audio feedback for 

visually impaired individuals. Using a CNN-based classifier 

trained on rooms like kitchens and bedrooms, the system was 

embedded into smart glasses and headphones, translating 

visual detections into clear speech output. Their usability tests 

showed increased confidence among participants navigating 

unknown environments.[2] 

 

Liang et al. in 2023 explored the integration of NLP with 

visual systems, focusing on generating context-aware 

descriptions instead of mere object labels. Their model not 

only identified objects but also described their relative 

positions, e.g., “a chair beside the table.” The result was a 

more intuitive navigation experience for users with visual 

impairments.[3] 

 

In 2022, Kim and Suh introduced a multimodal navigation 

system combining audio, haptic, and visual feedback 

delivered through a smart belt and glasses. Their system 

dynamically chose the best modality based on environmental 

complexity—vibrations for fast alerts, audio for detailed 

guidance—reducing cognitive overload in users.[4] 

 

Ahmed and Chong addressed the common challenge of object 

detection under poor lighting. They benchmarked YOLOv5, 

SSD, and Faster R-CNN using a low-light indoor dataset and 

found YOLOv5 most effective due to its balance of speed and 

detection accuracy. They implemented auto-contrast 

enhancement as a preprocessing step to further improve 

performance.[5] 

 

Muller et al. in 2020 developed a hybrid system using LiDAR 

and CNNs for spatial awareness and obstacle avoidance. 

While LiDAR ensured accurate distance measurement, deep 

learning added semantic recognition to differentiate between 

objects like “chair” and “dustbin.” Their research paved the 
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way for combining geometric and semantic mapping.[6] 

Wang et al., through a 2019 user study, examined the 

influence of adaptive audio feedback. They tested flat vs. 

contextual voice prompts and found that feedback aligned 

with the user’s walking speed and preferences improved 

navigation efficiency and reduced anxiety. This study 

influenced how personalization is viewed in assistive 

systems.[7] 

 

Nakamura and Saito (2018) developed an early wearable 

vision system with basic shape recognition. Though limited 

by hardware, their research introduced the idea of hands-free 

navigation assistance and demonstrated the viability of 

integrating computer vision into wearables.[8] 

 

Deshmukh and Rao focused on developing an NLP interface 

that allowed users to ask navigation-related queries like 

“where’s the door?” or “how far is the chair?” Their system 

interpreted voice commands and combined them with visual 

data, enabling interactive exploration of space.[9] 

 

Fernandez and Liu, in 2016, explored edge computing for 

faster object detection. Their lightweight system ran real-time 

image processing on embedded chips within wearables. 

Though YOLOv5 wasn’t available then, their modular 

architecture allowed seamless future integration of deep 

learning models.[10] 

 

Banerjee et al. designed a miniature NLP module for speech 

generation that tailored object descriptions based on user 

context. Instead of “cup,” the system would say, “there is a 

cup on the table, one meter ahead.” This approach added 

human-like communication, enhancing user comfort and 

understanding.[11] 

 

Zafar and Malik proposed the use of infrared cameras in 2015 

to support object detection in dimly lit environments. Though 

expensive and bulky at the time, their work contributed to 

sensor fusion research where multiple sensing technologies 

improve navigation.[12] 

 

Lee and Zhou in 2014 developed a haptic belt system that 

translated obstacle proximity into vibration patterns. While 

lacking semantic recognition, their system demonstrated how 

tactile cues could aid quick reflex-based decisions in close-

quarter navigation.[13] 

 

O’Connor et al. built a basic visual detection prototype using 

OpenCV’s contour and color analysis to recognize doors and 

objects. Though not deep-learning based, it served as a 

precursor to region-based detection systems like YOLO.[14] 

Thomas and Ibrahim, in 2012, investigated hybrid systems 

where traditional aids like white canes were augmented with 

ultrasonic sensors and basic object labels. Their focus on 

improving—not replacing—existing methods encouraged 

inclusive design strategies, influencing future research in 

assistive tech. [15] 

 

3. Methodology  
 

This assistive navigation system is developed to support 

visually impaired individuals in navigating indoor spaces 

with increased autonomy. It integrates deep learning, 

computer vision, and natural language processing (NLP) into 

a wearable form to provide real-time object detection and 

descriptive feedback. The system workflow begins with a 

wearable device, such as smart glasses or a body-mounted 

camera, that continuously captures video input from the user's 

surroundings. This live visual feed serves as the basis for 

subsequent processing and analysis. 

 

To ensure clarity and robustness, especially in challenging 

indoor environments with low lighting or clutter, the raw 

image data undergoes preprocessing. This step involves 

adjusting brightness and contrast, reducing noise, and 

enhancing sharpness. These operations improve the quality of 

the input before it reaches the detection stage. The refined 

image is then analyzed by a YOLOv5 object detection model, 

which has been retrained using transfer learning on a 

specialized dataset comprising labeled indoor objects like 

furniture and appliances. YOLOv5 was selected for its proven 

balance between accuracy and processing speed, making it 

highly suitable for real-time use in compact devices. 

 

After detecting and locating objects within the frame, the 

system interprets the spatial layout and sends this information 

to an NLP engine. Unlike conventional models that simply 

label objects, this system goes a step further by generating 

context-sensitive descriptions. For example, instead of saying 

“chair,” it might inform the user, “There is a chair on your left 

near the window.” This contextual language enables users to 

visualize the layout more effectively and understand how 

objects relate to one another in real time. 

 

To maximize accessibility, the system includes an adaptive 

feedback module that selects the appropriate communication 

method based on the surrounding environment and user 

needs. In quieter settings, spoken descriptions are delivered 

through earphones. In noisier or silent areas, tactile cues are 

provided through a haptic belt or wearable band. Vibrations 

can vary in frequency and intensity to indicate direction and 

proximity to detected objects, allowing the user to react 

accordingly. 

 

The entire pipeline—from image capture to feedback 

delivery—operates continuously, ensuring that users receive 

immediate updates as they move through their environment. 

YOLOv5’s efficient architecture makes this possible without 

significant delays, which is essential for a smooth and 

responsive navigation experience. 

 

Furthermore, the system is designed to be modular and 

upgradable. This means its detection model can be retrained 

as new datasets become available, and its NLP component 

can evolve to produce even more intuitive feedback over 

time. Overall, this methodology merges real-time computer 

vision with intelligent feedback to create a powerful and 

practical navigation tool tailored for the visually impaired in 

indoor settings. 
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Figure 3.1: Working 

 

3.1 Algorithms  

 

The foundation of the proposed assistive indoor navigation 

system lies in the YOLOv5 (You Only Look Once version 5) 

object detection algorithm, which is utilized for its 

remarkable balance between speed and accuracy in real-time 

environments. YOLOv5 is a single-stage, convolutional 

neural network-based object detector that frames object 

detection as a regression problem rather than a classification 

task with region proposals. Unlike two-stage detectors like 

Faster R-CNN, YOLOv5 processes the entire image in one 

forward pass, directly predicting bounding box coordinates, 

objectness scores, and class probabilities. 

 

YOLOv5 Architecture 

1) Backbone (Feature Extraction): 

• CSPDarknet53 (Cross-Stage Partial Darknet) is used to 

extract features from the input image. This network is 

designed for better efficiency and accuracy by splitting the 

feature map into partial stages and allowing for better 

gradient flow. 

• A Focus Layer reduces image resolution while preserving 

critical details for effective feature extraction. 

• SPP (Spatial Pyramid Pooling) increases the receptive 

field, helping to detect objects at various scales by pooling 

features from different spatial resolutions. 

 

2) Neck (Feature Fusion for Multi-Scale Detection): 

• The Feature Pyramid Network (FPN) and PANet (Path 

Aggregation Network) are used to fuse features from 

multiple scales, helping YOLOv5 detect objects of 

different sizes (small, medium, and large). 

• These networks enhance the detection capability by 

aggregating features from various levels of the backbone, 

ensuring that objects across scales are accurately detected. 

 

3) Head (Object Detection & Prediction): 

• This block is responsible for predicting the bounding 

boxes, class labels, and confidence scores for each 

detected object. 

• YOLOv5 uses an anchor-based detection system to 

improve accuracy by predefining potential bounding box 

shapes, which helps in making precise object predictions. 

The core output of the model consists of predictions in the 

form of: 

• Bounding Boxes (x, y, w, h) indicating the location of the 

object in the image. 

• Object Confidence Score (Pobject), which indicates the 

likelihood that the predicted bounding box contains an 

object. 

• Class Probabilities (Pclass), which represent the likelihood 

that the object belongs to a specific class. 

 

The final detection score for an object of class i is computed 

as: 

 P(classi∣object) ⋅Pobject=Confidence 

 

Where: 

• Pobject indicates the confidence that an object is present in 

the bounding box. 

• P(classi ∣object) represents the probability that the object 

belongs to class iii. 

 

YOLOv5 divides the image into an S×SS \times SS×S grid 

and predicts bounding boxes for each cell, making it highly 

efficient for real-time applications. For this system, YOLOv5 

is fine-tuned using transfer learning, leveraging pretrained 

weights on the COCO dataset and retraining the model on a 

custom dataset of labeled indoor objects like doors, chairs, 

tables, and appliances. This enhances detection performance 

in specific indoor environments like homes or offices. 

 

Integration with NLP and Multimodal Feedback 

To convert detected visual information into meaningful 

guidance, the system incorporates a Natural Language 

Processing (NLP) module. This module takes the detection 

output and translates it into grammatically correct, context-

aware sentences. For example, the system generates 

descriptions like “A chair is on your left” or “The table is one 

meter ahead.” This is achieved through rule-based sentence 

generation, driven by object labels, positions (calculated 

relative to the center of the frame), and distance 

approximations. 

 

In noisy environments or situations where verbal output may 

not be ideal, the system supports multimodal feedback. This 

includes: 

• Audio Output: Spoken feedback through earphones. 

• Haptic Feedback: Vibration alerts through wearable 

devices, where the intensity of vibration is dynamically 

adjusted based on the estimated proximity to the detected 

object. 

 

YOLOv5 Training Process 

The YOLOv5 training process employs a loss function that 

combines: 

• Bounding Box Regression Loss (Lbox) 

• Objectness Loss (Lobjectness) 

• Classification Loss (Lclass) 

 

The total loss used during backpropagation is expressed as: 

Ltotal=λbox⋅Lbox+λobj⋅Lobjectness+λcls⋅Lclass 

 

Where: 

• λbox, λobj, λcls sare balancing coefficients to adjust the 
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relative importance of each loss component. 

 

This multi-part loss ensures accurate localization and 

classification of objects in a single pass, which is crucial for 

low-latency systems like wearable navigation aids. 

 

By combining the high-speed, high-accuracy detection 

capabilities of YOLOv5 with contextual sentence generation 

through NLP and real-time feedback mechanisms, this 

algorithmic pipeline provides a robust solution for visually 

impaired individuals navigating indoor spaces. The system's 

ability to process and communicate object information almost 

instantaneously enhances safety, independence, and user 

confidence in real-world applications. 

 

 
Figure 3.2: Architecture 

 

3.2 Dataset Used 

 

The COCO (Common Objects in Context) dataset is a large-

scale and richly annotated image dataset widely used in the 

field of computer vision, particularly for object detection, 

image segmentation, key point detection, and image 

captioning. Developed by Microsoft, it contains over 330,000 

images, with more than 200,000 images labeled and over 1.5 

million object instances. The dataset includes annotations for 

80 object categories ranging from people, animals, and 

vehicles to household items, making it ideal for training 

models to recognize a variety of real-world scenes. Each 

image comes with detailed annotations, including bounding 

boxes, segmentation masks, key points for human pose 

estimation, and descriptive captions. COCO's complexity and 

diversity help machine learning models learn to detect and 

understand multiple objects in cluttered scenes with context, 

making it a valuable resource for researchers and developers 

building deep learning-based visual recognition systems. It is 

widely used to benchmark and train state-of-the-art models 

like YOLO, Faster R-CNN, and Mask R-CNN. 

 

Key Concepts 

 

Object Detection 

COCO provides labeled bounding boxes for objects within an 

image, enabling the training and evaluation of object 

detection models like YOLO, SSD, and Faster R-CNN. 

 

Instance Segmentation 

Unlike simple object detection, COCO includes pixel-level 

segmentation masks for individual object instances, 

supporting more precise object localization. 

 

Keypoint Detection 

COCO contains annotations for human body keypoints (e.g., 

elbows, knees, shoulders), which are used for pose estimation 

tasks. 

 

Image Captioning 

Each image in COCO comes with multiple human-generated 

captions, allowing the dataset to be used for training image-

to-text models that generate descriptions. 

 

Multiclass and Multi-object Scenes 

COCO features images with multiple objects from different 

categories, providing rich contextual data for robust learning 

and generalization. 

 

80 Object Categories 

The dataset includes 80 common object categories (e.g., 

person, bicycle, dog, cup, sofa) frequently encountered in 

real-life scenarios. 

 

Contextual Understanding 

COCO emphasizes objects in real-world settings, where 

objects appear in natural positions and lighting, improving 

models' context-based decision-making. 

 

Benchmark for CV Models 

It is a standard benchmark for comparing the performance of 

computer vision algorithms and is extensively used in 

academic research and competitions. 

 

4. Result and Discussion 
 

The implementation of the YOLOv5 algorithm for indoor 

object detection in the assistive navigation system yielded 

promising results. The trained model achieved an overall 

accuracy of 93.56%, showcasing its capability to correctly 

detect and classify indoor objects in real-time environments. 

The precision and recall scores across different object 

categories were reasonably balanced, reflecting the model's 

effectiveness in accurately detecting and identifying objects 

such as chairs, tables, and doors. 

 

The ROC curve further supports this by demonstrating a 

reasonable trade-off between true positive and false positive 

rates, confirming that the model outperforms random 

guessing and shows strong overall performance in 

distinguishing between object classes. 

 

When compared to previous studies, such as those by 

Agarwal et al. (2020), who applied traditional object 

detection techniques like Faster R-CNN, the YOLOv5 model 

in our project demonstrated superior speed and accuracy, 

making it highly suitable for real-time indoor object detection 

tasks. While those studies focused primarily on model 

accuracy and object classification, our model also leveraged 

real-time feedback mechanisms such as haptic feedback and 

audio guidance, which enhanced the system’s usability for 

visually impaired users, thereby adding an additional layer of 

practical functionality to the detection system. 

 

Moreover, unlike earlier object detection approaches that 

lacked continuous adaptation, the YOLOv5 model is highly 

scalable and retrainable. As it is exposed to new indoor 

environments and objects, the model can improve its 

performance over time. Despite challenges such as data 
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imbalance (with some object categories underrepresented in 

the training set) and the variation in object sizes, the results 

indicate that the YOLOv5 model, combined with real-time 

feedback, offers a robust and efficient solution for assistive 

indoor navigation systems. 

 

Table 4.1: Classification Report 
Object Class Precision Recall F1-Score Accuracy 

Doors 0.950 0.930 0.940 0.940 

Furniture 0.920 0.910 0.910 0.930 

Signs 0.890 0.880 0.880 0.910 

Stairs 0.960 0.940 0.950 0.950 

Average 0.930 0.920 0.920 0.930 

 
Figure 4.2: Roc curve 

 

The Receiver Operating Characteristic (ROC) curve is a 

crucial evaluation tool used to assess the effectiveness of 

classification models, especially in binary classification tasks. 

It plots the True Positive Rate (TPR) against the False 

Positive Rate (FPR) at various decision thresholds. The True 

Positive Rate, also known as sensitivity or recall, measures 

the proportion of actual positives that are correctly identified. 

Conversely, the False Positive Rate indicates the proportion 

of actual negatives that are incorrectly classified as positives. 

 

In this project, the ROC curve helps in understanding how 

well the model distinguishes between the two target classes. 

The closer the ROC curve approaches the top-left corner of 

the graph, the better the model's performance, as this reflects 

a high TPR and a low FPR. 

 

The Area Under the Curve (AUC) serves as a single scalar 

value to summarize the model’s performance. An AUC value 

closer to 1.0 represents a highly effective model, whereas a 

value around 0.5 suggests performance comparable to 

random guessing. The ROC curve generated in this study 

demonstrates that the model achieves a reasonable trade-off 

between sensitivity and specificity, validating its 

effectiveness for automating support ticket classification. 

 

5. Conclusion 
 

The Indoor Object Detection System developed in this project 

has demonstrated a highly effective and efficient approach for 

identifying and classifying various objects in indoor 

environments. Leveraging YOLOv5 for real-time object 

detection, combined with a custom-trained model using 

transfer learning, the system achieved impressive 

performance in detecting a range of objects such as doors, 

furniture, signs, and stairs. The system's ability to rapidly and 

accurately process visual data ensures it can be applied 

effectively in assistive technologies for visually impaired 

individuals, providing real-time feedback through natural 

language processing and multimodal outputs. 

 

The evaluation metrics, including precision, recall, F1-score, 

and AUC, showcased the robustness and reliability of the 

model. The system achieved high accuracy for most object 

categories, particularly excelling in identifying doors and 

stairs. These results reflect the model’s potential to be used in 

practical, real-world applications such as navigation aids for 

the visually impaired, smart home environments, and indoor 

mapping systems. 

 

Despite the overall strong performance, some challenges 

remain. The detection accuracy varies slightly across 

different object classes, with some objects being better 

recognized than others. This indicates that the model's 

performance could be further improved by increasing the 

diversity of training data, particularly for underrepresented or 

complex object categories. 

 

Additionally, the integration of Natural Language Processing 

(NLP) for converting detection outputs into grammatically 

correct, context-aware sentences adds a layer of accessibility, 

enhancing the user experience for visually impaired 

individuals. The multimodal feedback system, such as haptic 

vibration patterns, further ensures that users receive feedback 

even in noisy or non-verbal environments. 

 

In terms of scalability, the system shows promise as it can be 

retrained with new data and adapted to different indoor 

settings, ensuring continuous improvement. The model’s 

adaptability and real-time processing capabilities make it an 

excellent candidate for future smart city solutions and 

assistive technologies, paving the way for more inclusive and 

user-friendly indoor navigation systems. 
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