
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Deep Feature-Based Writer-Dependent Classifiers

for Offline Signature Verification

D S Guru1, H Annapurna1, K S Manjunatha2

1Department of Studies in Computer Science, University of Mysore, Mysuru – 570 006, Karnataka, India

Email: dsg[at]compsci.uni-mysore.ac.in

1Yuvaraja’s College, A Constituent Autonomous College of the University of Mysore, Mysuru – 570 005, Karnataka, India

Email: annapurna_h[at]ycm.uni-mysore.ac.in

2Maharani’s Science College for Women, Mysuru-570001, Karnataka, India

Email: kowshik.manjunath[at]gmail.com

Abstract: In this work, we proposed a novel scheme based on deep architectures for offline signature verification. The proposed method

introduces the notion of writer-dependent deep architectures for offline signature verification. Compared to the current signature

verification techniques that use the same architecture for all writers, the proposed model based on applying deep architecture which may

vary from a writer to writer. In this work, writer-dependency has been exploited at two stages: In the first stage, writer-dependent deep

architectures are selected for each writer. In the second stage, writer-dependent deep architectures are used as feature extractors, and

then the dimensionality of a feature vector is reduced through the application of linear dimensionality reduction technique. Finally, writer-

dependent classifiers are fixed for each writer. At the verification stage, to establish the authenticity of the test signature, features are

extracted from the writer-dependent architecture and fed into the writer-dependent classifier of the claimed writer. Extensive experiments

are carried out on two benchmark offline signature datasets: CEDAR and MCYT, to validate the performance of the proposed model.

The obtained results clearly indicate the efficacy of the proposed methodology.

Keywords: Offline signature verification, Deep features, Writer-dependent deep architecture, Writer-dependent classifiers

1. Introduction

As technology advances, secure and reliable authentication

systems are becoming increasingly essential. In biometric-

based authentication, individuals are identified based on their

physiological characteristics, such as the face, iris, hand

geometry, and fingerprint, or behavioral characteristics,

including signature, voice, and gait [27]. Among these,

handwritten signatures are one of the most widely used

behavioral biometric traits, playing a crucial role in sectors

such as banking, finance, legal document verification,

forensic analysis, security systems, and various industries.

With the growing adoption of digital signatures, automatic

signature verification has become a vital aspect of biometric

security. The primary objective of an automatic signature

verification system is to authenticate an individual by

determining whether a given signature is genuine or forged

[15].

In biometric-based authentication systems, signatures can be

collected in either online or offline modes. In offline mode,

signature images are captured using optical scanners or

cameras. In contrast, online mode utilizes specialized

hardware devices such as digitizing tablets, electronic pens,

and personal digital assistants, which record various dynamic

features during the signing process. These features include

velocity, starting point, number of strokes, acceleration,

writing speed, and pressure, all of which are stable and

distinctive for each individual [27].

However, offline signature verification remains challenging

due to high intrapersonal variability. Factors such as available

signing space, pen and ink type, and the signer’s mental and

physical state contribute to variations in signatures.

Additionally, compared to online signature verification,

offline verification is more complex because it lacks dynamic

information and typically has a limited number of training

samples [15].

A deep convolutional neural network (DCNN) is a machine

learning tool inspired by the structure and function of the

human brain's neural networks. In this work, we highlight the

significance of writer-dependent characteristics for offline

signature verification using DCNNs. We propose a novel

approach that leverages writer-dependent deep architectures

to enhance verification accuracy. By incorporating writer

dependency at both the deep architecture and classifier levels,

we achieve a significant improvement in verification

performance.

To represent signature samples, we utilize deep features.

Instead of relying on a single pre-trained deep architecture,

we employ AlexNet, Inception-V2, Inception-V3, ResNet50,

SqueezeNet, VGG-16, and VGG-19 to extract features for

each writer. Additionally, writer-dependent classifiers are

determined by feeding these deep features into various

conventional classifiers, including Support Vector Machine

(SVM) with different kernel functions (linear, radial basis

function, sigmoid, and polynomial), K-Nearest Neighbor

(KNN), Decision Tree, Random Forest, and Naïve Bayes

algorithms.

To assess the robustness of the proposed method, we conduct

extensive experiments on two standard benchmark offline

signature datasets: CEDAR and MCYT. The results

demonstrate that our approach is not only highly effective but

also simple and efficient.

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 877

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

2. Related work

Over the past four decades, extensive research has been

conducted on offline signature verification. In the literature,

signature verification approaches are broadly categorized into

writer-independent and writer-dependent methods [15]. In the

writer-independent approach, a single model is trained using

the same parameters and matching algorithms for all writers.

The primary advantage of this method is its efficiency,

training the system requires less time, and adding or removing

writers from the database does not affect overall performance.

In contrast, the writer-dependent approach requires training a

separate model for each writer with specific parameters and

matching techniques. This method closely resembles manual

verification performed by human experts. As a result, writer-

dependent models generally achieve higher verification

accuracy compared to writer-independent models.

Researchers have proposed numerous writer-independent

models for offline signature verification [12], [30], [41], [44],

[48], [49], [52], [59]. Offline signature verification involves

analyzing the features of a handwritten signature image to

determine its authenticity.

In the context of offline signatures, various types of features

are used to represent signatures. These features are broadly

classified into three categories: local features, which capture

fine-grained details of specific signature regions [3], [4], [11],

[19], [28]; global features, which represent the overall

structure and shape of the signature [1], [11], [31], [35], [45],

[52], [63]; and deep features, which are extracted using deep

learning models to capture complex patterns and

representations [5], [14], [16], [21], [23], [44], [51], [60].

The authenticity of a signature is determined during the

verification step using various pattern recognition algorithms,

such as simple distance measures [2], [9], [14], [28]; neural

networks [9], [22], [40], [55]; support vector machines

(SVMs) [7], [19], [38], [52], [64]; hidden Markov models

(HMMs) [10], [32], [57]; naïve Bayes [47], [50]; and fuzzy

functions [3], [17], [24].

Pre-trained deep convolutional neural networks have been

used for offline signature verification in recent years,

including shallow convolutional neural networks (sCNNs)

[31]; VGG-16 [5]; Signet [14], [23]; deep convolutional

generative adversarial networks (DCGANs) [61]; hierarchical

one-class convolutional neural networks [51]; recurrent

neural networks (RNNs) [18]; and Siamese neural networks

[58]. Although deep architectures improve model accuracy,

they require significant time and spatial complexity.

In the aforementioned works, the models are trained using a

common feature set and classifier for all writers. However,

only a few researchers have proposed writer-dependent

models for offline signature verification. In these models,

writer dependency is exploited at various levels, such as the

classifier level [8], [12], [13], [49], feature level [36], and

threshold level [20].

2.1 Findings

However, due to high intra-class variations, a handwritten

signature is considered a complex biometric trait [15]. When

a human expert manually verifies an individual's signatures,

they use different features and matching criteria for each

writer. Therefore, using the same set of features and

classifiers for all writers may not be effective [37]. In the

literature, no attempts have been made to utilize writer-

dependent deep architectures and writer-dependent classifiers

for offline signature verification. These challenges motivated

us to design an effective writer-dependent automatic

signature verification model based on deep convolutional

neural networks (DCNNs).

The main contributions of this work are as follows:

• A novel deep convolutional neural network-based writer-

dependent approach for offline signature verification.

• Exploration of pre-trained deep convolutional neural

network architectures for writer-dependent offline

signature verification.

• Investigation of deep architectures and adaptation of

writer-dependent classifiers.

• Extensive experiments conducted on two standard offline

signature databases.

• Achievement of high accuracy through the use of writer-

dependent characteristics.

The structure of this paper is as follows: Section 1 provides

an introduction, a brief literature review. Section 2 includes a

brief literature survey, and the contributions of this work.

Section 3 describes the proposed methodology. Section 4

presents the experimental setup and the obtained results.

Section 5 offers a comparative analysis, and Section 6

concludes the paper.

3. Proposed Model

The proposed model consists of six steps: pre-processing,

feature extraction, writer-dependent deep architecture

selection, dimensionality reduction, writer-dependent

classifier selection, and verification. The block diagram

illustrating the proposed model based on deep architecture is

presented in Figure 1.

3.1 Pre-processing

The preprocessing of signature images is an essential step

performed before feature extraction. Initially, the input

signature image is converted into a binary image to reduce

computational complexity [43]. After binarization, a median

filter is applied to remove noise [56]. Once the filtered image

is obtained, morphological operations such as closing and

thinning are applied, followed by cropping the signature

image area.

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 878

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 1: The block diagram of the proposed model

3.2 Extraction of Features

Once the image has been pre-processed, we utilize pre-trained

deep convolutional neural networks (DCNNs) to extract deep

features from signature images. A pre-trained model has

already been trained on a dataset, with weights and biases that

capture essential features from the original dataset. These

learned features are often transferable to different datasets,

making pre-trained models efficient for feature extraction

while reducing computational time.

In this work, we employ various pre-trained deep architectures

for feature extraction, including AlexNet [34], Inception-V2

[54], Inception-V3 [54], ResNet50 [25], SqueezeNet-1.0 [26],

VGG-16 [53], and VGG-19 [53]. Further details on these pre-

trained architectures can be found in their respective studies.

The AlexNet architecture [34] consists of eight layers with

approximately 60 million learnable parameters. It comprises

five convolutional layers with a 7×7 convolution kernel size

and three fully connected layers. The first, second, and fifth

convolutional layers include max-pooling layers to enhance

feature extraction.

The pre-processed input signature image, with a size of

227×227×3, is fed into the first convolutional layer, which

contains 96 filters of 11×11 with a stride of 4, producing an

output feature map of 55×55×96. This is followed by a max-

pooling layer of 3×3 with a stride of 2, reducing the feature

map size to 27×27×96.

The second convolutional layer applies 256 filters of 5×5 with

a stride of 1 and padding of 2, generating an output of

27×27×256. Another max-pooling layer (3×3, stride 2)

follows, reducing the feature map size to 13×13×256. The

third convolutional layer consists of 384 filters of 3×3 with a

stride of 1 and padding of 1, resulting in a feature map of

13×13×384. The fourth convolutional layer also has 384

filters of 3×3 with the same stride and padding, maintaining

the output size of 13×13×384. The fifth convolutional layer

applies 256 filters of 3×3, with the same stride and padding,

producing an output of 13×13×256.

A third max-pooling layer of 3×3 with a stride of 2 is applied,

reducing the feature map to 6×6×256. This is followed by a

dropout layer with a dropout rate of 0.5. The first fully

connected layer outputs 4,096 neurons, followed by another

dropout layer. The second fully connected layer also consists

of 4,096 neurons. Finally, the third fully connected layer

extracts 1,000 features for each input signature image.

Inception-V2 [54] is the second generation of the Inception

convolutional neural network (CNN) architecture, comprising

42 layers. It is built using repeated components called

Inception modules, each containing multiple filters of varying

sizes at the same level. Unlike conventional CNNs, where

deeper layers are used to capture hierarchical features,

Inception-V2 utilizes parallel layers, making the model wider

rather than deeper. Additionally, it incorporates 1×1

convolutional filters, which do not capture spatial patterns but

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 879

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

effectively learn patterns across the depth (cross-channel

correlations) of the input image. To enhance network stability

and performance, Inception-V2 employs batch normalization

layers after each convolutional layer, reducing internal

covariate shifts and improving training efficiency. The

obtained output consists of 1000 features for each signature

sample input.

Inception-V3 [54] is the third iteration of the Inception

network architecture, building upon its predecessors with

enhanced efficiency and performance. Like previous versions,

Inception-V3 employs a modular design, consisting of

multiple Inception modules that utilize filters of varying sizes

to capture diverse feature representations. A key feature of

Inception-V3 is the incorporation of batch normalization

layers after each convolutional layer, which improves network

stability, accelerates training, and enhances overall

performance. Compared to other deep CNN architectures,

Inception-V3 is designed to train faster and more efficiently,

making it well-suited for complex computer vision tasks. It

has been widely used in image classification, object detection,

and face recognition applications. This gives 1000 features for

each input signature image.

ResNet-50 [25], short for Residual Network, is a deep

convolutional neural network (CNN) designed to address the

vanishing gradient problem in deep networks through residual

learning. It consists of 50 layers, including 48 convolutional

layers, one max-pooling layer, and one average-pooling layer.

ResNet-50 is built using residual blocks, which enable deeper

network architectures without degradation in performance.

The first convolutional layer applies 64 distinct kernels of size

7×7 with a stride of 2, followed by max pooling with a stride

of 2.

Subsequent convolutional layers are structured as follows:

Three repeated blocks containing 64 filters of size 1×1, 256

filters of size 3×3, and 256 filters of size 1×1, totaling 9 layers.

Four repeated blocks containing 128 filters of size 1×1, 128

filters of size 3×3, and 512 filters of size 1×1, totaling 12

layers.

Six repeated blocks containing 256 filters of size 1×1, 256

filters of size 3×3, and 1024 filters of size 1×1, totaling 18

layers. Three repeated blocks containing 512 filters of size

1×1, 512 filters of size 3×3, and 2048 filters of size 1×1,

totaling 9 layers. After the convolutional layers, an average

pooling layer is applied, followed by a fully connected layer

with 1,000 nodes and a softmax function, producing an output

of 1,000 features for each input signature sample.

SqueezeNet_1.0 [26] is a lightweight convolutional neural

network (CNN) designed to minimize model size while

maintaining high performance, making it ideal for embedded

systems and resource-constrained applications. It achieves

this efficiency through Fire modules, which consist of a

squeeze layer that reduces input channels using 1×1

convolutions, acting as a bottleneck, and an expand layer that

increases channels using a combination of 1×1 and 3×3

convolutions, ensuring the feature map size remains

unchanged. The architecture begins with an initial

convolutional layer (conv1), followed by eight Fire modules

(fire2–fire9) and concludes with a final convolutional layer

(conv10). To downsample feature maps, max pooling with a

stride of 2 is applied after conv1, fire4, fire8, and conv10, and

a 50% dropout is introduced after fire9 to prevent overfitting.

Finally, 1000 features are extracted for each input signature

image. Unlike traditional deep CNNs, SqueezeNet eliminates

fully connected layers, significantly reducing memory and

computational costs while preserving classification accuracy.

VGG-16 [53] is a 16-layer convolutional neural network

(CNN) developed by the Visual Geometry Group (VGG),

consisting of 13 convolutional layers and three fully

connected layers. It follows a structured design with five

convolutional blocks, each followed by a max-pooling layer.

The input signature images (224×224×3) are processed

through stacked convolutional layers, where all hidden layers

use ReLU activation for non-linearity. The first block contains

two 3×3 convolutional layers with 64 filters, producing a

224×224×64 feature map, followed by a 2×2 max-pooling

layer (stride 2) that reduces it to 112×112×64. The second

block follows the same pattern but with 128 filters, reducing

the size to 56×56×128. The third block consists of three 3×3

convolutional layers with 256 filters, followed by max-

pooling, yielding a 28×28×256 feature map. The fourth and

fifth blocks each contain three 3×3 convolutional layers with

512 filters, and after max-pooling, the feature map size is

reduced to 7×7×512. This final feature map is flattened and

passed through two fully connected layers with 4,096 neurons

each, followed by a final fully connected layer with 1,000

neurons using a softmax activation function, extracting 1,000

features per input signature image. The use of small 3×3

filters, progressive max-pooling, and fully connected layers

makes VGG-16 an effective model for image classification,

object recognition, and feature extraction.

VGG19 is an extension of VGG16, sharing the same overall

architecture, particularly in its final three fully connected

layers. The key difference lies in the number of convolutional

layers, VGG19 consists of 19 layers, including 16

convolutional layers and 3 fully connected layers, whereas

VGG16 has 13 convolutional layers. This means that VGG19

incorporates three additional convolutional layers compared

to VGG16, potentially allowing for a more detailed feature

extraction process while maintaining the same fully connected

structure.

Let 𝑆𝑘
𝑖 be the kth signature sample of a writer 𝑊𝑖 , (1 ≤ 𝑘 ≤ 𝑛)

where 𝑛 is the number of samples available for training

purposes of a writer Wi(i = 1,2,3, … , N). Here 𝑁 indicates

the total number of writers in a database. From each signature

sample, 𝑃 number of deep features are extracted. This results

in a feature matrix for each writer of dimension 𝑛 × 𝑃. The

feature matrix of size 𝑁 × 𝑛 × 𝑃 will be generated for the

whole dataset.

3.3 Writer-dependent deep architecture selection

The proposed model utilizes a writer-dependent architecture,

meaning the chosen deep architecture varies for each writer.

After extracting deep features from signature images, the most

suitable deep architecture is selected for each writer to

optimize verification accuracy. The selection process is based

on an evaluation of how well different deep architectures

capture the unique characteristics of a writer's signature. This

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 880

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

adaptive approach ensures that the model tailors its feature

extraction and classification process to the specific variations

and intricacies of each writer’s signature, enhancing overall

verification performance.

Let ng and nf are the number of genuine and forgery signature

samples of each writer available for training purposes, i.e.,

n = ng + nf . Hence, for each writer, we have feature matrices

of size 𝑛𝑔 × 𝑃 and 𝑛𝑓 × 𝑃, extracted from the genuine and

forgery signature samples, respectively. Let there be 𝐷

number of pre-trained deep architectures. Using 𝑛𝑔 × 𝑃 and

𝑛𝑓 × 𝑃, verification accuracy (𝐴𝑐) is estimated for each writer

to select the suitable deep architecture. That is for the writer

𝑊𝑖 we have,

𝐴𝑐 = {𝐴𝑐1
𝑖 , 𝐴𝑐2

𝑖 , 𝐴𝑐3
𝑖 , , 𝐴𝑐𝐷

𝑖 }

Where 𝐴𝑐𝑥
𝑖 refers to accuracy obtained from 𝑥𝑡ℎ deep

architecture for writer 𝑊𝑖, (1 ≤ 𝑥 ≤ 𝐷).

In this approach, the deep architecture that achieves the

highest verification accuracy for a particular writer is

identified as the most suitable architecture for that writer. The

corresponding deep features extracted from this architecture

are then designated as the appropriate features for that writer.

This process establishes the first writer-dependent parameter,

the selection of a deep architecture based on verification

accuracy.

3.4 Dimensionality reduction

The deep features are selected for each writer using the writer-

dependent DCNN, we apply a linear dimensionality reduction

technique to minimize computational complexity. Since

DCNN-extracted feature vectors tend to be high-dimensional,

directly processing them can be computationally expensive.

To address this, we use Principal Component Analysis (PCA)

to transform the feature vectors into a lower-dimensional

space while retaining the most significant information. This

reduction helps improve efficiency without significantly

affecting the discriminative power of the features. As a result,

each signature sample is represented using P key features in

the transformed space, optimizing both performance and

computational cost.

For instance, the features extracted from the signature sample

𝑆𝑘
𝑖 of a writer 𝑊𝑖

 is denoted as

𝐹𝑘
𝑖 = {𝑓𝑘1

𝑖 , 𝑓𝑘2

𝑖 , 𝑓𝑘3

𝑖 , , 𝑓𝑘𝑃

𝑖 }

Here, 𝑓𝑘𝑗

𝑖 denotes the index of feature obtained from the

signature sample 𝑆𝑘
𝑖 . That is 𝑓𝑘𝑗

𝑖 represents the 𝑗𝑡ℎ feature of

𝑘𝑡ℎ sample. The dimension of the feature vector 𝐹𝑘
𝑖 will be

reduced to 𝑑 number of features after the application of PCA

and it is denoted as

𝑅𝐹𝑘
𝑖 = {𝑓𝑘1

𝑖 , 𝑓𝑘2

𝑖 , 𝑓𝑘3

𝑖 , , 𝑓𝑘𝑑

𝑖 }, 1 ≤ 𝑑 ≤ 𝑃.

3.5 Writer-dependent classifier selection

Since signature samples exhibit high intra-class variability

and do not follow a uniform distribution across all writers,

using a single classifier for all writers may not be practical. To

address this, we have explored the idea of employing a writer-

dependent classifier, where different classifiers are used for

different writers. Once the dimensionality of the feature

vectors is reduced, the selection of the most suitable classifier

is performed. In this work, we consider multiple classifiers,

including Support Vector Machine (SVM) with different

kernel functions (linear, radial basis function, sigmoid, and

polynomial), K-Nearest Neighbor (KNN), Decision Tree,

Random Forest, and Naïve Bayes algorithms. The verification

accuracy for each writer is calculated across all classifiers, and

the classifier yielding the highest accuracy is selected as the

writer-dependent classifier for that individual. In cases where

multiple classifiers achieve the same accuracy, a predefined

priority order is used to resolve the selection.

Let ∁ = {∁ 𝟏
, ∁ 𝟐

, ∁ 𝟑
, … . . , ∁ 𝜑

}

 be the list of classifiers, where

𝜑 be a number of classifiers and each writer is represented by

𝑛𝑔 × 𝑑 and 𝑛𝑓 × 𝑑, where 𝑛𝑔 × 𝑑 denotes the feature matrix

obtained from the genuine training samples and 𝑛𝑓 × 𝑑

denotes the feature matrix obtained from the forgeries of each

writer. Using 𝑛𝑔 × 𝑑 and 𝑛𝑓 × 𝑑 the verification

accuracy (𝐴𝑐) is calculated with the set of classifiers ∁ .
Finally, accuracy is obtained from each of the classifier. That

is for the writer 𝑊𝑖
 we have

𝐴𝑐
𝑖

= {𝐴𝑐𝟏 ,

𝑖 𝐴𝑐𝟐 ,
𝑖 𝐴𝑐𝟑 ,

𝑖 , , 𝐴𝑐𝜑

𝑖 }

Where 𝐴𝑐𝑐𝑙,
𝑖 refers to accuracy obtained from 𝑐𝑙𝑡ℎ classifier

for wirter 𝑊𝑖 . 1 ≤ 𝑐𝑙 ≤ 𝜑. A classifier with the highest

accuracy is identified as suitable for a specific writer. For

instance, the classifier selected for a writer 𝑊𝑖 is denoted by,

∁𝒔𝒆𝒍

𝑖 = 𝑚𝑖𝑛{ 𝐴𝑐
}.

The details of the writer-dependent architecture, extracted

features, and selected classifiers for each writer are stored in a

knowledge base. This knowledge base serves as a reference

for verifying future signature samples of the respective

writers. By maintaining this information, the system ensures

that each writer's verification process leverages the most

suitable deep architecture and classifier, optimizing accuracy

and efficiency.

3.6 Verification

TP FP

FN TN

Once the writer-dependent characteristics are selected for

each writer and stored in the knowledgebase, the authenticity

of a test signature is decided as follows. Given a test signature

𝑆𝑡 claimed to be of writer 𝑊𝑖. Initially, the information of

write-dependent characteristics viz., deep architecture and

writer-dependent classifier of writer 𝑊𝑖 are retrieved from the

knowledge base, which is stored during training. Then, the

deep features of 𝑆𝑡 are extracted by using the writer-

dependent deep architecture of the writer 𝑊𝑖
. During

verification, the test signature is represented as a 𝑑-

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 881

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

dimensional feature vector. Then only the 𝑑 features of the test

signature are compared with the corresponding 𝑑 features of

reference signatures of the writer 𝑊𝑖. To compute the

similarity between the test signature and to every other

reference signature of the writer 𝑊𝑖, writer-dependent

classifier of writer 𝑊𝑖 is employed. Finally, the test signature

sample is verified whether it is genuine or forgery.

4. Experimental setup and Results

In this section, we present the details of the datasets used, the

experimental setup, and the experiments conducted along with

the results obtained.

4.1 Datasets used

All experiments are conducted on two benchmark offline

signature datasets: CEDAR [33] and MCYT [42]. The

CEDAR dataset consists of signature samples from 55 writers,

with each writer contributing 24 genuine signatures and 24

skilled forgeries, totaling 1,320 genuine and 1,320 forged

signatures. The signature images in this dataset are available

in grayscale format. The MCYT dataset comprises signatures

from 75 writers, with each writer providing 15 genuine

signatures and 15 skilled forgeries, resulting in a total of 2,250

signature samples. These datasets provide a diverse and

challenging testbed for evaluating the effectiveness of the

proposed writer-dependent signature verification approach.

4.2 Experimental setup

For experimentation, the signature samples of each writer are

divided into two sets: a training set and a testing set. Both

genuine and forged signatures are included in the training

process to ensure the model learns distinguishing features

effectively. The selection of training and testing samples is

done randomly, with the percentage of training data varying

from 30% to 70%. This variation allows for evaluating the

model's performance under different levels of training data

availability, ensuring a robust assessment of its effectiveness

in writer-dependent offline signature verification. These

experiments helped in understanding the impact of writer

dependency on signature verification accuracy. To assess the

accuracy of the proposed model, we used a confusion matrix,

as illustrated in Figure 2. Using this matrix, various

performance measures, such as the false acceptance rate

(FAR), false rejection rate (FRR), average error rate (AER),

and accuracy, were calculated.

Figure 2: The structure of confusion matrix

In Figure 2, TP (True Positive) indicates that the signature

sample is genuine and correctly predicted as genuine, while

FP (False Positive) represents a forged signature that is

incorrectly accepted as genuine. FN (False Negative) denotes

a genuine signature that is mistakenly identified as a forgery.

Finally, TN (True Negative) indicates a forged signature that

is correctly recognized as a forgery.

FAR (False Accept Rate) is the proportion of forged

signatures that are mistakenly accepted as genuine signatures

and is calculated as

𝐹𝐴𝑅 =
𝐹𝑃

(𝐹𝑁+𝑇𝑃)
 (1)

The FRR (False Rejection Rate) is the proportion of genuine

signature samples that are mistakenly rejected as forgeries and

is determined as

𝐹𝑅𝑅 =
𝐹𝑁

(𝐹𝑁+𝑇𝑃)
 (2)

Both FAR and FRR are used to calculate AER (Average Error

Rate), by using

𝐴𝐸𝑅 =
(𝐹𝐴𝑅+𝐹𝑅𝑅)

2
 (3)

On the other hand, accuracy is a measure of correct predictions

made by the system and is determined as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
 (4)

4.3 Results

During experimentation, we extracted deep features using

seven pre-trained architectures: AlexNet, Inception-V2,

Inception-V3, ResNet50, SqueezeNet, VGG-16, and VGG-

19.

To evaluate the performance of our approach, we conducted

the following five sets of experiments:

1) Using a common deep architecture across all writers.

2) Using writer-dependent deep architectures.

3) Using common deep features and a common classifier for

all writers.

4) Using common deep features and writer-dependent

classifiers.

5) Using writer-dependent deep features and writer-

dependent classifiers.

4.3.1 Experimentation - 1

In this set of experiments, we utilized deep architectures for

both feature extraction and classification. Initially, 1000

features were extracted from each pre-trained architecture for

every writer. These extracted features were then passed

through the dense layers of the respective deep architectures

for classification. The results obtained from the CEDAR and

MCYT datasets are presented in Table 1 and Table 2,

respectively.

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 882

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Table 1: Accuracy obtained using common pre-trained deep

architectures on the CEDAR dataset

Pre-trained Deep

Architecture

Percentage of Training Samples

30% 40% 50% 60% 70%

Alexnet 99.50 99.57 99.59 99.63 99.58

Inception-V2 99.58 99.67 99.68 99.74 99.69

Inception-V3 99.70 99.76 99.79 99.82 99.82

Resnet50 99.62 99.66 99.72 99.78 99.76

Squeezenet 99.20 99.24 99.33 99.31 99.27

VGG-16 99.50 99.69 99.60 99.65 99.62

VGG-19 99.51 99.44 99.56 99.61 99.61

Table 2: Accuracy obtained using common pre-trained deep

architectures on the MCYT dataset

Pre-trained Deep

Architecture

Percentage of Training Samples

30% 40% 50% 60% 70%

Alexnet 99.53 99.63 99.61 99.60 99.64

Inception-V2 99.50 99.63 99.61 99.68 99.64

Inception-V3 99.60 99.68 99.69 99.71 99.75

Resnet50 99.56 99.64 99.67 99.66 99.67

Squeezenet 99.35 99.33 99.40 99.29 99.38

VGG-16 99.53 99.61 99.59 99.65 99.64

VGG-19 99.51 99.58 99.64 99.66 99.65

4.3.2 Experimentation – 2

This set of experiments is based on writer-dependent deep

architecture, where deep architectures are used for both

feature extraction and verification. Initially, features are

extracted for each writer using all available deep architectures.

For each writer, n × 1000 features are obtained, where n

denotes the number of training samples for that writer. The

verification accuracy is then calculated for each deep

architecture per writer. The deep architecture that yields the

highest accuracy is selected as the writer-dependent deep

architecture for that writer. The corresponding features

extracted from this architecture are considered the writer-

dependent features.

To verify the authenticity of a signature, the writer-dependent

deep features of the test signature are compared with the

reference features. This comparison is performed by passing

the deep features through the dense layers of the

corresponding writer-dependent deep architecture. The results

obtained from the CEDAR and MCYT datasets using this

approach are presented in Table 3. As indicated in Table 3, the

CEDAR dataset achieves higher accuracy compared to the

MCYT dataset.

Table 3: Accuracy obtained using writer-dependent deep

architectures on the CEDAR, and MCYT datasets

Percentage of Training

Samples

Dataset

CEDAR MCYT

30% 99.79 99.68

40% 99.87 99.81

50% 99.88 99.83

60% 99.92 99.86

70% 99.93 99.87

4.3.3 Experimentation – 3

This set of experiments is conducted using common deep

features and a common classifier across all writers. A single

pre-trained deep architecture is employed for feature

extraction across all writers. For classification, various

conventional classifiers such as Support Vector Machine

(SVM), Naive Bayes (NB), K-Nearest Neighbor (K-NN),

Random Forest (RF), and Decision Tree (DT) are considered.

The features extracted from each pre-trained deep architecture

are individually fed into each of these classifiers. The results

obtained from the CEDAR and MCYT datasets are presented

in Table 4 and Table 5, respectively.

4.3.4 Experimentation – 4

In this stage, we conducted experiments using common deep

features for all writers along with writer-dependent classifiers.

PCA was applied to the deep features to reduce their

dimensionality, as explained in Subsection 3.4. Through PCA,

each feature vector was reduced from 1000 to 100 dimensions.

These reduced feature vectors for each writer were then fed

into various classifiers. For each writer, accuracy was

computed using each classifier, and the classifier that achieved

the highest accuracy was selected as the writer-dependent

classifier, as described in Section 3.5.

During verification, deep features were extracted from the

chosen deep architecture for each test signature sample, and

matching was performed using the writer-dependent classifier

corresponding to the claimed writer. The results obtained

using common deep features and writer-dependent classifiers

on the CEDAR and MCYT datasets are presented in Table 6

and Table 7, respectively.

Table 4: The accuracy obtained using common deep features and a common classifier on the CEDAR dataset

Pre-trained Deep

Architecture

% of

training

samples

Support vector machines with different kernel functions
K- nearest

neighbor

Decision

Tree

Random

Forest

Naive

Bayesian Linear Polynomial
Radial Basis Function

(RBF)
Sigmoid

Alexnet

30 99.62 99.22 99.34 99.04 99.58 98.62 99.11 99.55

40 99.67 99.24 99.47 98.99 99.61 98.67 99.13 99.64

50 99.7 99.27 99.53 98.94 99.64 98.61 99.14 99.69

60 99.71 99.27 99.54 98.88 99.71 98.84 99.15 99.74

70 99.73 99.31 99.6 98.83 99.67 98.83 99.18 99.68

Inception-V2

30 99.66 99.24 99.29 99.02 99.56 98.55 98.11 99.38

40 99.71 99.29 99.43 98.96 99.63 98.59 99.12 99.49

50 99.75 99.31 99.47 98.93 99.59 98.64 99.13 99.49

60 99.76 99.33 99.52 98.9 99.66 98.74 99.15 99.41

70 99.76 99.35 99.57 98.89 99.67 98.79 99.18 99.42

Inception-V3

30 99.71 99.21 99.37 99.04 99.65 98.65 98.1 99.45

40 99.77 99.24 99.56 98.99 99.72 98.6 99.11 99.66

50 99.76 99.27 99.61 98.62 99.74 98.76 99.12 99.68

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 883

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

60 99.8 99.26 99.69 98.88 99.75 98.77 99.12 99.74

70 99.84 99.34 99.74 98.81 99.76 98.74 99.16 99.76

Resnet50

30 99.67 99.19 99.32 99.03 99.6 98.45 99.1 99.44

40 99.74 99.22 99.4 98.94 99.69 98.54 99.11 99.63

50 99.75 99.25 99.57 98.94 99.71 98.58 99.11 99.69

60 99.77 99.25 99.62 98.92 99.71 98.69 99.11 99.7

70 99.79 99.29 99.7 98.83 98.76 98.71 99.14 99.72

Squeezenet

30 99.69 99.12 99.28 99.05 99.61 98.56 99.09 99.52

40 99.7 99.13 99.45 98.99 99.65 98.56 99.1 99.64

50 99.78 99.21 99.51 98.99 99.68 98.68 99.11 99.68

60 99.76 99.17 99.56 98.97 99.69 98.71 99.11 99.74

70 99.8 99.19 99.63 98.91 99.74 98.76 99.12 99.77

VGG-16

30 99.6 99.19 99.29 99.04 99.54 98.35 99.1 99.42

40 99.69 99.21 99.4 98.98 99.61 98.34 98.11 99.61

50 99.71 99.23 99.46 98.96 99.64 98.57 99.11 99.67

60 99.71 99.26 99.5 98.93 99.61 98.48 98.12 99.69

70 99.72 99.28 99.57 98.86 99.69 98.56 99.12 99.69

VGG-19

30 99.56 99.14 99.3 99.04 99.53 98.23 99.1 99.39

40 99.62 99.2 99.4 99.01 99.56 98.41 99.11 99.6

50 99.63 99.2 99.46 98.94 99.59 98.52 99.11 99.66

60 99.68 99.22 99.48 98.87 99.65 98.44 99.11 99.69

70 99.7 99.24 99.57 98.89 99.63 98.61 99.12 99.71

Table 5: The accuracy obtained using common deep features and a common classifier on the MCYT dataset

Pre-trained

Deep

Architecture

% of

Training

Samples

Support vector machines with different kernel

functions k nearest

neighbor

Decision

Tree

Random

Forest

Naive

Bayesian
Linear Polynomial

Radial Basis

Function (RBF)
Sigmoid

Alexnet

30 99.61 99.36 99.37 99.33 99.59 98.76 99.33 99.38

40 99.69 99.39 99.43 99.31 99.65 98.78 99.34 99.56

50 99.70 99.39 99.50 99.28 99.65 98.94 99.34 99.64

60 99.74 99.41 99.52 99.27 99.71 98.85 99.35 99.71

70 99.74 99.43 99.56 99.26 99.73 98.98 99.35 99.80

Inception-V2

30 99.56 99.37 99.35 99.33 99.49 98.58 99.33 99.36

40 99.64 99.38 99.37 99.31 99.56 98.69 99.34 99.50

50 99.69 99.41 99.43 99.28 99.60 98.83 99.34 99.59

60 99.71 99.42 99.44 99.27 99.63 98.81 99.34 99.58

70 99.74 99.38 99.48 99.25 99.56 98.81 99.34 99.61

Inception-V3

30 99.65 99.36 99.35 99.33 99.62 98.76 99.33 99.36

40 99.68 99.38 99.41 99.30 99.66 98.80 99.34 99.47

50 99.75 99.39 99.48 99.30 99.69 98.79 99.34 99.61

60 99.72 99.38 99.52 99.28 99.71 98.84 99.34 99.65

70 99.75 99.38 99.55 99.27 99.75 98.97 99.34 99.71

Resnet50

30 99.61 99.36 99.36 99.33 99.58 98.52 99.33 99.36

40 99.69 99.40 99.42 99.32 99.64 98.52 99.34 99.49

50 99.73 99.41 99.48 99.28 99.71 98.71 99.34 99.61

60 99.74 99.41 99.53 99.27 99.72 98.65 99.34 99.68

70 99.75 99.40 99.57 99.26 99.74 98.75 99.34 99.73

Squeezenet

30 99.66 99.24 99.38 99.33 99.58 98.76 99.34 99.36

40 99.68 99.24 99.41 99.31 99.62 98.72 99.34 99.50

50 99.74 99.24 99.46 99.28 99.68 98.86 99.34 99.65

60 99.75 99.32 99.48 99.27 99.69 98.91 99.35 99.67

70 99.79 99.22 99.52 99.27 99.71 98.93 99.35 99.71

VGG-16

30 99.56 99.35 99.34 99.32 99.53 98.30 99.33 99.34

40 99.61 99.38 99.38 99.30 99.59 98.53 99.33 99.45

50 99.64 99.39 99.44 99.29 99.61 98.67 99.33 99.61

60 99.65 99.39 99.47 99.25 99.65 98.69 99.34 99.63

70 99.68 99.40 99.49 99.26 99.63 98.78 99.34 99.67

VGG-19

30 99.56 99.36 99.36 99.32 99.52 98.65 99.33 99.35

40 99.61 99.37 99.38 99.31 99.57 98.57 99.34 99.45

50 99.64 99.37 99.43 99.27 99.59 98.74 99.33 99.56

60 99.67 99.41 99.45 99.27 99.62 98.70 99.34 99.62

70 99.70 99.39 99.47 99.23 99.62 98.66 99.34 99.68

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 884

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Table 6: Accuracy obtained using common deep features

and writer-dependent classifiers on the CEDAR dataset

Pre-trained Deep

Architecture

Percentage of Training Samples

30% 40% 50% 60% 70%

Alexnet 99.69 99.76 99.77 99.81 99.81

Inception-V2 99.70 99.77 99.79 99.81 99.81

Inception-V3 99.74 99.82 99.83 99.87 99.9

Resnet50 99.71 99.79 99.81 99.83 99.88

Squeezenet 99.74 99.79 99.82 99.82 99.88

VGG-16 99.64 99.76 99.78 99.79 99.83

VGG-19 99.62 99.7 99.75 99.77 99.83

Table 7: Accuracy obtained using common deep features

and writer-dependent classifiers on the MCYT dataset

Pre-trained Deep

Architecture

Percentage of Training Samples

30% 40% 50% 60% 70%

Alexnet 99.66 99.74 99.66 99.81 99.81

Inception-V2 99.60 99.68 99.74 99.76 99.78

Inception-V3 99.69 99.73 99.80 99.79 99.81

Resnet50 99.67 99.74 99.80 99.81 99.82

Squeezenet 99.69 99.71 99.79 99.80 99.83

VGG-16 99.63 99.68 99.73 99.74 99.75

VGG-19 99.62 99.68 99.70 99.74 99.76

4.3.5 Experimentation - 5

First, we identify the writer-dependent architecture for all the

writers in the system, as discussed in Section 3.3. After

selecting a writer-dependent deep architecture for each writer,

deep features are extracted. These features are then reduced

from 1000 to 100 using PCA, as described in Subsection 3.4.

The procedure explained in Section 3.5 is used to determine

the writer-dependent classifier. Finally, verification is

performed using the writer-dependent features and writer-

dependent classifiers. The results are presented in Table. 8.

Table 8: Results obtained using writer-dependent deep

features and writer-dependent classifiers on the CEDAR,

and MCYT datasets
Percentage of

Training Samples

Dataset

CEDAR MCYT

30% 99.79 99.74

40% 99.87 99.84

50% 99.88 99.86

60% 99.92 99.89

70% 99.93 99.90

The accuracy achieved using writer-dependent deep features

and writer-dependent classifiers outperforms that of other

approaches. This underscores the importance of incorporating

writer dependency at both the architectural and classifier

levels to achieve optimal verification performance. The best

results obtained from Experimentation-1 to Experimentation-

5 on the CEDAR, and MCYT datasets are given in Table 9.

Table 9: The best results obtained from Experimentation-1 to Experimentation-5 on the CEDAR, and MCYT datasets

Experimentation Details
Datasets

CEDAR MCYT

With a common deep architecture across all writers 99.82 99.75

With writer dependent deep architectures 99.93 99.87

With a common deep architecture and a common classifier for all writers 99.84 99.75

With a common deep architecture and writer dependent classifiers 99.90 99.83

With writer dependent deep architectures and writer dependent classifiers 99.93 99.89

5. Comparative Analysis

In this section, we compare the verification performance of

the proposed approach with state-of-the-art methods in terms

of accuracy. Table 10 presents the accuracy of the proposed

model based on writer-dependent deep architecture and

writer-dependent classifiers on the CEDAR dataset, alongside

other existing models.

Table 10: Performance Comparison of Offline Signature

Verification Approaches on the CEDAR Dataset
Model Accuracy (%)

 [46] 93.25

 [35] 94.10

 [12] 94.50

 [51] 95.06

 [18] 95.31

 [52] 95.33

 [23] 95.37

 [49] 96.46

 [62] 97.24

Proposed (With writer-dependent deep

architecture and writer-dependent classifier)
 99.93

Table 11 presents the results obtained on the MCYT dataset

using the proposed writer-dependent deep architecture and

writer-dependent classifier, along with a comparison to

existing approaches.

Table 11: Comparison of the performance of various offline

signature verification approaches on the MCYT dataset
Model Accuracy (%)

[20] 87.56

[29] 88.49

[12] 90.74

[52] 94.04

[39] 94.15

[51] 94.54

[59] 97.42

[30] 98.93

[18] 99.66

Proposed (With writer-dependent deep

architecture and writer-dependent classifier)
99.90

Tables 10 and 11 demonstrate that the proposed model, which

incorporates writer-dependent characteristics, achieves

higher accuracy compared to other existing models.

6. Conclusion

This work highlights the importance of writer-dependent

characteristics in offline signature verification using deep

learning approaches. It introduces the concept of writer-

dependent deep architectures. The proposed method follows

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 885

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

a two-stage approach: (i) selecting a writer-specific deep

architecture and (ii) selecting a writer-dependent classifier for

verifying the claimed signature. Experiments are conducted

on two offline signature datasets: CEDAR, and MCYT. The

results demonstrate a significant improvement in verification

accuracy by incorporating writer dependency at both the deep

feature and classifier levels.

7. Future Work

In future, we can dynamically exploit the writer-dependent

characteristics by applying deep learning.

Declaration of interests

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

[1] Abdelrahaman, A. A. A., & Abdallah, M. E. A. (2013).

K-nearest neighbor classifier for signature verification

system. 2013 International Conference on Computing,

Electrical and Electronic Engineering (ICCEEE), 58–

62.

[2] Al-Maqaleh, B. M., & Musleh, A. M. Q. (2015). An

efficient offline signature verification system using

local features. International Journal of Computer

Applications, 131(10).

[3] Alaei, A., Pal, S., Pal, U., & Blumenstein, M. (2017).

An Efficient Signature Verification Method Based on an

Interval Symbolic Representation and a Fuzzy

Similarity Measure. IEEE Transactions on Information

Forensics and Security, 12(10), 2360–2372.

[4] Alsuhimat, F. M., & Mohamad, F. S. (2023). Offline

signature verification using long short-term memory

and histogram orientation gradient. Bulletin of

Electrical Engineering and Informatics, 12(1), 283–292.

[5] Alvarez, G., & Bryant, M. (2016). Offline Signature

Verification with Convolutional Neural Networks. 8.

[6] Alvarez, G., Bryant, M., Sheffer, B., & Bryant, M.

(2016). Offline signature verification with

convolutional neural networks. Technical Report,

Stanford University, 8.

[7] Arab, N., Nemmour, H., & Chibani, Y. (2023). A new

synthetic feature generation scheme based on artificial

immune systems for robust offline signature

verification. Expert Systems with Applications, 213,

119306.

[8] Avola, D., Bigdello, M. J., Cinque, L., Fagioli, A., &

Marini, M. R. (2021). R-SigNet: Reduced space writer-

independent feature learning for offline writer-

dependent signature verification. Pattern Recognition

Letters, 150, 189–196.

[9] Baltzakis, H., & Papamarkos, N. (2001). New signature

verification technique based on a two-stage neural

network classifier. Engineering Applications of

Artificial Intelligence, 14(1), 95–103.

[10] Batista, L., Granger, E., & Sabourin, R. (2012).

Dynamic selection of generative-discriminative

ensembles for off-line signature verification. Pattern

Recognition, 45(4), 1326–1340.

[11] Batool, F. E., Attique, M., Sharif, M., Javed, K., Nazir,

M., Abbasi, A. A., Iqbal, Z., & Riaz, N. (2020). Offline

signature verification system: a novel technique of

fusion of GLCM and geometric features using SVM.

Multimedia Tools and Applications, 1–20.

[12] Bhunia, A. K., Alaei, A., & Roy, P. P. (2019). Signature

verification approach using fusion of hybrid texture

features. Neural Computing and Applications, 31(12),

8737–8748.

[13] Bouamra, W., Djeddi, C., Nini, B., Diaz, M., & Siddiqi,

I. (2018). Towards the design of an offline signature

verifier based on a small number of genuine samples for

training. Expert Systems with Applications, 107, 182–

195. https://doi.org/10.1016/j.eswa.2018.04.035

[14] Dey, S., Dutta, A., Toledo, J. I., Ghosh, S. K., Llados,

J., & Pal, U. (2017). SigNet: Convolutional Siamese

Network for Writer Independent Offline Signature

Verification. 1, 1–7. http://arxiv.org/abs/1707.02131

[15] Diaz, M., Ferrer, M. A., Impedovo, D., Malik, M. I.,

Pirlo, G., & Plamondon, R. (2019). A perspective

analysis of handwritten signature technology. ACM

Computing Surveys, 51(6).

[16] Engin, D., Kantarci, A., Arslan, S., & Ekenel, H. K.

(2020). Offline signature verification on real-world

documents. Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition

Workshops, 808–809.

[17] Ferrer, M. A., Alonso, J. B., & Travieso, C. M. (2005).

Offline geometric parameters for automatic signature

verification using fixed-point arithmetic. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 27(6), 993–997.

[18] Ghosh, R. (2021). A Recurrent Neural Network based

deep learning model for offline signature verification

and recognition system. Expert Systems with

Applications, 168, 114249.

[19] Goon, L. W., & Eng, S. K. (2021). Offline Signature

Verification System Using SVM Classifier with Image

Pre-processing Steps and SURF Algorithm. Journal of

Physics: Conference Series, 2107(1), 12069.

[20] Hafemann, L. G., Oliveira, L. S., & Sabourin, R. (2018).

Fixed-sized representation learning from offline

handwritten signatures of different sizes. International

Journal on Document Analysis and Recognition, 21(3),

219–232. https://doi.org/10.1007/s10032-018-0301-6

[21] Hafemann, L. G., Sabourin, R., & Oliveira, L. S.

(2016a). Analyzing features learned for Offline

Signature Verification using Deep CNNs. Proceedings -

International Conference on Pattern Recognition, 0,

2989–2994.

https://doi.org/10.1109/ICPR.2016.7900092

[22] Hafemann, L. G., Sabourin, R., & Oliveira, L. S.

(2016b). Writer-independent feature learning for

Offline Signature Verification using Deep

Convolutional Neural Networks. Proceedings of the

International Joint Conference on Neural Networks,

2016-Octob, 2576–2583.

https://doi.org/10.1109/IJCNN.2016.7727521

[23] Hafemann, L. G., Sabourin, R., & Oliveira, L. S. (2017).

Learning features for offline handwritten signature

verification using deep convolutional neural networks.

Pattern Recognition, 70, 163–176.

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 886

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[24] Hanmandlu, M., Yusof, M. H. M., & Madasu, V. K.

(2005). Off-line signature verification and forgery

detection using fuzzy modeling. Pattern Recognition,

38(3), 341–356.

https://doi.org/10.1016/j.patcog.2004.05.015

[25] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep

residual learning for image recognition. Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 770–778.

[26] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,

Dally, W. J., & Keutzer, K. (2016). SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters

and< 0.5 MB model size. ArXiv Preprint

ArXiv:1602.07360.

[27] Impedovo, D., & Pirlo, G. (2008). Automatic signature

verification: The state of the art. IEEE Transactions on

Systems, Man and Cybernetics Part C: Applications and

Reviews, 38(5), 609–635.

https://doi.org/10.1109/TSMCC.2008.923866

[28] Jadhav, T. (2019). Handwritten signature verification

using local binary pattern features and KNN. Int. Res. J.

Eng. Technol.(IRJET), 6(4), 579–586.

[29] Jagtap, A. B., Sawat, D. D., Hegadi, R. S., & Hegadi, R.

S. (2020). Verification of genuine and forged offline

signatures using Siamese Neural Network (SNN).

Multimedia Tools and Applications, 79(47–48), 35109–

35123.

[30] Jain, A., Singh, S. K., & Singh, K. P. (2020).

Handwritten signature verification using shallow

convolutional neural network. Multimedia Tools and

Applications, 79(27–28), 19993–20018. https:

[31] Jain, A., Singh, S. K., & Singh, K. P. (2021). Signature

verification using geometrical features and artificial

neural network classifier. Neural Computing and

Applications, 33(12), 6999–7010.

https://doi.org/10.1007/s00521-020-05473-7

[32] Justino, E. J. R., Bortolozzi, F., & Sabourin, R. (2001).

Off-line signature verification using HMM for Random,

simple and skilled forgeries. Proceedings of the

International Conference on Document Analysis and

Recognition, ICDAR, 2001-Janua(c), 1031–1034.

[33] Kalera, M. K., Srihari, S., & Xu, A. (2004). Offline

Signature Verification and Identification. International

Journal of Pattern Recognition and Artificial

Intelligence, 18(7), 1339–1360.

[34] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017).

Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6), 84–90.

[35] Maergner, P., Pondenkandath, V., Alberti, M., Liwicki,

M., Riesen, K., Ingold, R., & Fischer, A. (2019).

Combining graph edit distance and triplet networks for

offline signature verification. Pattern Recognition

Letters, 125, 527–533.

https://doi.org/10.1016/j.patrec.2019.06.024

[36] Manjunatha, K. S., Annapurna, H., & Guru, D. S.

(2019). Offline signature verification: An approach

based on user-dependent features and classifiers. In

Lecture Notes in Networks and Systems (Vol. 43).

Springer Singapore. https://doi.org/10.1007/978-981-

13-2514-4_20

[37] Manjunatha, K. S., Manjunath, S., Guru, D. S., &

Somashekara, M. T. (2016). Online signature

verification based on writer dependent features and

classifiers. Pattern Recognition Letters, 80, 129–136.

https://doi.org/10.1016/j.patrec.2016.06.016

[38] Manna, S., Chattopadhyay, S., Bhattacharya, S., & Pal,

U. (2022). SWIS: Self-Supervised Representation

Learning for Writer Independent Offline Signature

Verification. 1, 1411–1415.

https://doi.org/10.1109/icip46576.2022.9897562

[39] Masoudnia, S., Mersa, O., Araabi, B. N., Vahabie, A.

H., Sadeghi, M. A., & Ahmadabadi, M. N. (2019).

Multi-representational learning for Offline Signature

Verification using Multi-Loss Snapshot Ensemble of

CNNs. Expert Systems with Applications, 133, 317–

330. https://doi.org/10.1016/j.eswa.2019.03.040

[40] Odeh, S. M., & Khalil, M. (2011). Off-line signature

verification and recognition: Neural network approach.

INISTA 2011 - 2011 International Symposium on

INnovations in Intelligent SysTems and Applications,

34–38. https://doi.org/10.1109/INISTA.2011.5946065

[41] Okawa, M. (2018). From BoVW to VLAD with KAZE

features: Offline signature verification considering

cognitive processes of forensic experts. Pattern

Recognition Letters, 113, 75–82.

https://doi.org/10.1016/j.patrec.2018.05.019

[42] Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D.,

Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue,

A., Hernaez, I., Igarza, J.-J., & Vivaracho, C. (2003).

MCYT baseline corpus: a bimodal biometric database.

IEE Proceedings-Vision, Image and Signal Processing,

150(6), 395–401.

[43] Otsu, N. (1979). A threshold selection method from

gray-level histograms. IEEE Transactions on Systems,

Man, and Cybernetics, 9(1), 62–66.

[44] Parcham, E., Ilbeygi, M., & Amini, M. (2021).

CBCapsNet: A novel writer-independent offline

signature verification model using a CNN-based

architecture and capsule neural networks. Expert

Systems with Applications, 185(July), 115649.

https://doi.org/10.1016/j.eswa.2021.115649

[45] Parziale, A., Diaz, M., Ferrer, M. A., & Marcelli, A.

(2019). SM-DTW: Stability Modulated Dynamic Time

Warping for signature verification. Pattern Recognition

Letters, 121, 113–122.

https://doi.org/10.1016/j.patrec.2018.07.029

[46] Ren, J.-X., Xiong, Y.-J., Zhan, H., & Huang, B. (2023).

2C2S: A two-channel and two-stream transformer based

framework for offline signature verification.

Engineering Applications of Artificial Intelligence, 118,

105639.

[47] Ruiz-Del-Solar, J., Devia, C., Loncomilla, P., &

Concha, F. (2008). Offline signature verification using

local interest points and descriptors. Lecture Notes in

Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in

Bioinformatics), 5197 LNCS, 22–29.

[48] Ruiz, V., Linares, I., Sanchez, A., & Velez, J. F. (2020).

Off-line handwritten signature verification using

compositional synthetic generation of signatures and

Siamese Neural Networks. Neurocomputing,

374(xxxx), 30–41.

https://doi.org/10.1016/j.neucom.2019.09.041

[49] Serdouk, Y., Nemmour, H., & Chibani, Y. (2016). New

off-line Handwritten Signature Verification method

based on Artificial Immune Recognition System. Expert

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 887

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Systems with Applications, 51, 186–194.

https://doi.org/10.1016/j.eswa.2016.01.001

[50] Shah, A. S., Khan, M. N. A., Subhan, F., Fayaz, M., &

Shah, A. (2016). An Offline Signature Verification

Technique Using Pixels Intensity Levels. International

Journal of Signal Processing, Image Processing and

Pattern Recognition, 9(8), 205–222.

[51] Shariatmadari, S., Emadi, S., & Akbari, Y. (2019).

Patch-based offline signature verification using one-

class hierarchical deep learning. International Journal

on Document Analysis and Recognition, 22(4), 375–

385. https://doi.org/10.1007/s10032-019-00331-2

[52] Sharif, M., Khan, M. A., Faisal, M., Yasmin, M., &

Fernandes, S. L. (2020). A framework for offline

signature verification system: Best features selection

approach. Pattern Recognition Letters, 139(February),

50–59. https://doi.org/10.1016/j.patrec.2018.01.021

[53] Simonyan, K., & Zisserman, A. (2015). Very deep

convolutional networks for large-scale image

recognition. 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track

Proceedings, 1–14.

[54] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., &

Wojna, Z. (2016). Rethinking the inception architecture

for computer vision. Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, 2818–2826.

[55] Tahir, N. M. T., Ausat, A. N., Bature, U. I., Abubakar,

K. A., & Gambo, I. (2021). Off-line Handwritten

Signature Verification System: Artificial Neural

Network Approach. International Journal of Intelligent

Systems and Applications, 13(1), 45–57.

[56] Wang, Z., & Zhang, D. (1999). Progressive switching

median filter for the removal of impulse noise from

highly corrupted images. IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing,

46(1), 78–80.

[57] Wen, J., Fang, B., Tang, Y. Y., & Zhang, T. P. (2009).

Model-based signature verification with rotation

invariant features. Pattern Recognition, 42(7), 1458–

1466.

[58] Xing, Z.-J., Yin, F., Wu, Y.-C., & Liu, C.-L. (2018).

Offline signature verification using convolution

Siamese network. Proc.SPIE, 10615, 106151I.

https://doi.org/10.1117/12.2303380

[59] Yapıcı, M. M., Tekerek, A., & Topaloğlu, N. (2021).

Deep learning-based data augmentation method and

signature verification system for offline handwritten

signature. Pattern Analysis and Applications, 24(1),

165–179. https://doi.org/10.1007/s10044-020-00912-6

[60] Zhang, Z., Liu, X., & Cui, Y. (2016a). Multi-phase

offline signature verification system using deep

convolutional generative adversarial networks. 2016 9th

International Symposium on Computational

Intelligence and Design (ISCID), 2, 103–107.

[61] Zhang, Z., Liu, X., & Cui, Y. (2016b). Multi-phase

offline signature verification system using deep

convolutional generative adversarial networks.

Proceedings - 2016 9th International Symposium on

Computational Intelligence and Design, ISCID 2016, 2,

103–107.

[62] Zheng, Y., Iwana, B. K., Malik, M. I., Ahmed, S.,

Ohyama, W., & Uchida, S. (2021). Learning the micro

deformations by max-pooling for offline signature

verification. Pattern Recognition, 118, 108008.

https://doi.org/10.1016/j.patcog.2021.108008

[63] Zois, E. N., Alexandridis, A., & Economou, G. (2019).

Writer independent offline signature verification based

on asymmetric pixel relations and unrelated training-

testing datasets. Expert Systems with Applications, 125,

14–32.

[64] Zois, E. N., Zervas, E., Tsourounis, D., & Economou,

G. (2020). Sequential motif profiles and topological

plots for offline signature verification. Proceedings of

the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 13245–13255.

Author Profile

D. S. Guru received his B.Sc., M.Sc., and Ph.D. degrees in

Computer Science and Technology from the University of Mysore,

Mysuru, India, in 1991, 1993, and 2000, respectively. He is currently

a Senior Professor in the Department of Studies in Computer Science

at the University of Mysore, India. He was a BOYSCAST Fellow

and a visiting research scientist at Michigan State University. He has

authored over 80 journal articles and more than 270 peer-reviewed

conference papers at both international and national levels. His

research interests include image retrieval, object recognition, shape

analysis, sign language recognition, biometrics, and symbolic data

analysis.

H. Annapurna received her B.Sc., MCA, and Ph.D. degrees in

Computer Science from the University of Mysore, Mysuru, India, in

1996, 2000, and 2024, respectively. She is currently an Associate

Professor in the Department of Computer Science at Yuvaraja’s

College, University of Mysore, Mysuru, Karnataka, India. Her

research interests include image processing, pattern recognition, and

biometrics.

K. S. Manjunatha received his B.Sc., M.Sc., and Ph.D. degrees in

Computer Science from the University of Mysore, Mysuru, India, in

1991, 1993, and 2016, respectively. He is currently a Professor in the

Department of Computer Science at Maharani’s Science College for

Women, Mysuru, Karnataka, India. His research interests include

biometrics and symbolic data analysis.

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 888

http://www.ijsr.net/

