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Abstract: In this work, we proposed a novel scheme based on deep architectures for offline signature verification. The proposed method 

introduces the notion of writer-dependent deep architectures for offline signature verification. Compared to the current signature 

verification techniques that use the same architecture for all writers, the proposed model based on applying deep architecture which may 

vary from a writer to writer. In this work, writer-dependency has been exploited at two stages: In the first stage, writer-dependent deep 

architectures are selected for each writer. In the second stage, writer-dependent deep architectures are used as feature extractors, and 

then the dimensionality of a feature vector is reduced through the application of linear dimensionality reduction technique. Finally, writer-

dependent classifiers are fixed for each writer. At the verification stage, to establish the authenticity of the test signature, features are 

extracted from the writer-dependent architecture and fed into the writer-dependent classifier of the claimed writer. Extensive experiments 

are carried out on two benchmark offline signature datasets:  CEDAR and MCYT, to validate the performance of the proposed model. 

The obtained results clearly indicate the efficacy of the proposed methodology. 
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1. Introduction 
 

As technology advances, secure and reliable authentication 

systems are becoming increasingly essential. In biometric-

based authentication, individuals are identified based on their 

physiological characteristics, such as the face, iris, hand 

geometry, and fingerprint, or behavioral characteristics, 

including signature, voice, and gait [27]. Among these, 

handwritten signatures are one of the most widely used 

behavioral biometric traits, playing a crucial role in sectors 

such as banking, finance, legal document verification, 

forensic analysis, security systems, and various industries. 

 

With the growing adoption of digital signatures, automatic 

signature verification has become a vital aspect of biometric 

security. The primary objective of an automatic signature 

verification system is to authenticate an individual by 

determining whether a given signature is genuine or forged 

[15]. 

 

In biometric-based authentication systems, signatures can be 

collected in either online or offline modes. In offline mode, 

signature images are captured using optical scanners or 

cameras. In contrast, online mode utilizes specialized 

hardware devices such as digitizing tablets, electronic pens, 

and personal digital assistants, which record various dynamic 

features during the signing process. These features include 

velocity, starting point, number of strokes, acceleration, 

writing speed, and pressure, all of which are stable and 

distinctive for each individual [27].  

 

However, offline signature verification remains challenging 

due to high intrapersonal variability. Factors such as available 

signing space, pen and ink type, and the signer’s mental and 

physical state contribute to variations in signatures. 

Additionally, compared to online signature verification, 

offline verification is more complex because it lacks dynamic 

information and typically has a limited number of training 

samples [15]. 

 

A deep convolutional neural network (DCNN) is a machine 

learning tool inspired by the structure and function of the 

human brain's neural networks. In this work, we highlight the 

significance of writer-dependent characteristics for offline 

signature verification using DCNNs. We propose a novel 

approach that leverages writer-dependent deep architectures 

to enhance verification accuracy. By incorporating writer 

dependency at both the deep architecture and classifier levels, 

we achieve a significant improvement in verification 

performance. 

 

To represent signature samples, we utilize deep features. 

Instead of relying on a single pre-trained deep architecture, 

we employ AlexNet, Inception-V2, Inception-V3, ResNet50, 

SqueezeNet, VGG-16, and VGG-19 to extract features for 

each writer. Additionally, writer-dependent classifiers are 

determined by feeding these deep features into various 

conventional classifiers, including Support Vector Machine 

(SVM) with different kernel functions (linear, radial basis 

function, sigmoid, and polynomial), K-Nearest Neighbor 

(KNN), Decision Tree, Random Forest, and Naïve Bayes 

algorithms.  

 

To assess the robustness of the proposed method, we conduct 

extensive experiments on two standard benchmark offline 

signature datasets: CEDAR and MCYT. The results 

demonstrate that our approach is not only highly effective but 

also simple and efficient. 
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2. Related work 
 

Over the past four decades, extensive research has been 

conducted on offline signature verification. In the literature, 

signature verification approaches are broadly categorized into 

writer-independent and writer-dependent methods [15]. In the 

writer-independent approach, a single model is trained using 

the same parameters and matching algorithms for all writers. 

The primary advantage of this method is its efficiency, 

training the system requires less time, and adding or removing 

writers from the database does not affect overall performance. 

In contrast, the writer-dependent approach requires training a 

separate model for each writer with specific parameters and 

matching techniques. This method closely resembles manual 

verification performed by human experts. As a result, writer-

dependent models generally achieve higher verification 

accuracy compared to writer-independent models. 

 

Researchers have proposed numerous writer-independent 

models for offline signature verification [12], [30], [41], [44], 

[48], [49], [52], [59]. Offline signature verification involves 

analyzing the features of a handwritten signature image to 

determine its authenticity. 

 

In the context of offline signatures, various types of features 

are used to represent signatures. These features are broadly 

classified into three categories: local features, which capture 

fine-grained details of specific signature regions [3], [4], [11], 

[19], [28]; global features, which represent the overall 

structure and shape of the signature [1], [11], [31], [35], [45], 

[52], [63]; and deep features, which are extracted using deep 

learning models to capture complex patterns and 

representations [5], [14], [16], [21], [23], [44], [51], [60]. 

 

The authenticity of a signature is determined during the 

verification step using various pattern recognition algorithms, 

such as simple distance measures [2], [9], [14], [28]; neural 

networks [9], [22], [40], [55]; support vector machines 

(SVMs) [7], [19], [38], [52], [64]; hidden Markov models 

(HMMs) [10], [32], [57]; naïve Bayes [47], [50]; and fuzzy 

functions [3], [17], [24].  

 

Pre-trained deep convolutional neural networks have been 

used for offline signature verification in recent years, 

including shallow convolutional neural networks (sCNNs) 

[31]; VGG-16 [5]; Signet [14], [23]; deep convolutional 

generative adversarial networks (DCGANs) [61]; hierarchical 

one-class convolutional neural networks [51]; recurrent 

neural networks (RNNs) [18]; and Siamese neural networks 

[58]. Although deep architectures improve model accuracy, 

they require significant time and spatial complexity. 

 

In the aforementioned works, the models are trained using a 

common feature set and classifier for all writers. However, 

only a few researchers have proposed writer-dependent 

models for offline signature verification. In these models, 

writer dependency is exploited at various levels, such as the 

classifier level [8], [12], [13], [49], feature level [36], and 

threshold level [20]. 

 

2.1 Findings 

 

However, due to high intra-class variations, a handwritten 

signature is considered a complex biometric trait [15]. When 

a human expert manually verifies an individual's signatures, 

they use different features and matching criteria for each 

writer. Therefore, using the same set of features and 

classifiers for all writers may not be effective [37]. In the 

literature, no attempts have been made to utilize writer-

dependent deep architectures and writer-dependent classifiers 

for offline signature verification. These challenges motivated 

us to design an effective writer-dependent automatic 

signature verification model based on deep convolutional 

neural networks (DCNNs). 

 

The main contributions of this work are as follows: 

• A novel deep convolutional neural network-based writer-

dependent approach for offline signature verification. 

• Exploration of pre-trained deep convolutional neural 

network architectures for writer-dependent offline 

signature verification. 

• Investigation of deep architectures and adaptation of 

writer-dependent classifiers. 

• Extensive experiments conducted on two standard offline 

signature databases. 

• Achievement of high accuracy through the use of writer-

dependent characteristics. 

 

The structure of this paper is as follows: Section 1 provides 

an introduction, a brief literature review. Section 2 includes a 

brief literature survey, and the contributions of this work. 

Section 3 describes the proposed methodology. Section 4 

presents the experimental setup and the obtained results. 

Section 5 offers a comparative analysis, and Section 6 

concludes the paper. 

 

3. Proposed Model  
 

The proposed model consists of six steps: pre-processing, 

feature extraction, writer-dependent deep architecture 

selection, dimensionality reduction, writer-dependent 

classifier selection, and verification. The block diagram 

illustrating the proposed model based on deep architecture is 

presented in Figure 1. 

 

3.1 Pre-processing  

 

The preprocessing of signature images is an essential step 

performed before feature extraction. Initially, the input 

signature image is converted into a binary image to reduce 

computational complexity [43]. After binarization, a median 

filter is applied to remove noise [56]. Once the filtered image 

is obtained, morphological operations such as closing and 

thinning are applied, followed by cropping the signature 

image area. 
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Figure 1: The block diagram of the proposed model 

 

3.2 Extraction of Features   

 

Once the image has been pre-processed, we utilize pre-trained 

deep convolutional neural networks (DCNNs) to extract deep 

features from signature images. A pre-trained model has 

already been trained on a dataset, with weights and biases that 

capture essential features from the original dataset. These 

learned features are often transferable to different datasets, 

making pre-trained models efficient for feature extraction 

while reducing computational time. 

 

In this work, we employ various pre-trained deep architectures 

for feature extraction, including AlexNet [34], Inception-V2 

[54], Inception-V3 [54], ResNet50 [25], SqueezeNet-1.0 [26], 

VGG-16 [53], and VGG-19 [53]. Further details on these pre-

trained architectures can be found in their respective studies. 

The AlexNet architecture [34] consists of eight layers with 

approximately 60 million learnable parameters. It comprises 

five convolutional layers with a 7×7 convolution kernel size 

and three fully connected layers. The first, second, and fifth 

convolutional layers include max-pooling layers to enhance 

feature extraction. 

 

The pre-processed input signature image, with a size of 

227×227×3, is fed into the first convolutional layer, which 

contains 96 filters of 11×11 with a stride of 4, producing an 

output feature map of 55×55×96. This is followed by a max-

pooling layer of 3×3 with a stride of 2, reducing the feature 

map size to 27×27×96. 

The second convolutional layer applies 256 filters of 5×5 with 

a stride of 1 and padding of 2, generating an output of 

27×27×256. Another max-pooling layer (3×3, stride 2) 

follows, reducing the feature map size to 13×13×256. The 

third convolutional layer consists of 384 filters of 3×3 with a 

stride of 1 and padding of 1, resulting in a feature map of 

13×13×384. The fourth convolutional layer also has 384 

filters of 3×3 with the same stride and padding, maintaining 

the output size of 13×13×384. The fifth convolutional layer 

applies 256 filters of 3×3, with the same stride and padding, 

producing an output of 13×13×256. 

 

A third max-pooling layer of 3×3 with a stride of 2 is applied, 

reducing the feature map to 6×6×256. This is followed by a 

dropout layer with a dropout rate of 0.5. The first fully 

connected layer outputs 4,096 neurons, followed by another 

dropout layer. The second fully connected layer also consists 

of 4,096 neurons. Finally, the third fully connected layer 

extracts 1,000 features for each input signature image. 

 

Inception-V2 [54] is the second generation of the Inception 

convolutional neural network (CNN) architecture, comprising 

42 layers. It is built using repeated components called 

Inception modules, each containing multiple filters of varying 

sizes at the same level. Unlike conventional CNNs, where 

deeper layers are used to capture hierarchical features, 

Inception-V2 utilizes parallel layers, making the model wider 

rather than deeper. Additionally, it incorporates 1×1 

convolutional filters, which do not capture spatial patterns but 

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 879 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 4, April 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

effectively learn patterns across the depth (cross-channel 

correlations) of the input image. To enhance network stability 

and performance, Inception-V2 employs batch normalization 

layers after each convolutional layer, reducing internal 

covariate shifts and improving training efficiency. The 

obtained output consists of 1000 features for each signature 

sample input. 

 

Inception-V3 [54] is the third iteration of the Inception 

network architecture, building upon its predecessors with 

enhanced efficiency and performance. Like previous versions, 

Inception-V3 employs a modular design, consisting of 

multiple Inception modules that utilize filters of varying sizes 

to capture diverse feature representations.  A key feature of 

Inception-V3 is the incorporation of batch normalization 

layers after each convolutional layer, which improves network 

stability, accelerates training, and enhances overall 

performance. Compared to other deep CNN architectures, 

Inception-V3 is designed to train faster and more efficiently, 

making it well-suited for complex computer vision tasks. It 

has been widely used in image classification, object detection, 

and face recognition applications. This gives 1000 features for 

each input signature image. 

 

ResNet-50 [25], short for Residual Network, is a deep 

convolutional neural network (CNN) designed to address the 

vanishing gradient problem in deep networks through residual 

learning. It consists of 50 layers, including 48 convolutional 

layers, one max-pooling layer, and one average-pooling layer. 

ResNet-50 is built using residual blocks, which enable deeper 

network architectures without degradation in performance. 

The first convolutional layer applies 64 distinct kernels of size 

7×7 with a stride of 2, followed by max pooling with a stride 

of 2. 

 

Subsequent convolutional layers are structured as follows: 

Three repeated blocks containing 64 filters of size 1×1, 256 

filters of size 3×3, and 256 filters of size 1×1, totaling 9 layers. 

Four repeated blocks containing 128 filters of size 1×1, 128 

filters of size 3×3, and 512 filters of size 1×1, totaling 12 

layers. 

 

Six repeated blocks containing 256 filters of size 1×1, 256 

filters of size 3×3, and 1024 filters of size 1×1, totaling 18 

layers. Three repeated blocks containing 512 filters of size 

1×1, 512 filters of size 3×3, and 2048 filters of size 1×1, 

totaling 9 layers. After the convolutional layers, an average 

pooling layer is applied, followed by a fully connected layer 

with 1,000 nodes and a softmax function, producing an output 

of 1,000 features for each input signature sample. 

 

SqueezeNet_1.0 [26] is a lightweight convolutional neural 

network (CNN) designed to minimize model size while 

maintaining high performance, making it ideal for embedded 

systems and resource-constrained applications. It achieves 

this efficiency through Fire modules, which consist of a 

squeeze layer that reduces input channels using 1×1 

convolutions, acting as a bottleneck, and an expand layer that 

increases channels using a combination of 1×1 and 3×3 

convolutions, ensuring the feature map size remains 

unchanged. The architecture begins with an initial 

convolutional layer (conv1), followed by eight Fire modules 

(fire2–fire9) and concludes with a final convolutional layer 

(conv10). To downsample feature maps, max pooling with a 

stride of 2 is applied after conv1, fire4, fire8, and conv10, and 

a 50% dropout is introduced after fire9 to prevent overfitting. 

Finally, 1000 features are extracted for each input signature 

image. Unlike traditional deep CNNs, SqueezeNet eliminates 

fully connected layers, significantly reducing memory and 

computational costs while preserving classification accuracy. 

 

VGG-16 [53] is a 16-layer convolutional neural network 

(CNN) developed by the Visual Geometry Group (VGG), 

consisting of 13 convolutional layers and three fully 

connected layers. It follows a structured design with five 

convolutional blocks, each followed by a max-pooling layer. 

The input signature images (224×224×3) are processed 

through stacked convolutional layers, where all hidden layers 

use ReLU activation for non-linearity. The first block contains 

two 3×3 convolutional layers with 64 filters, producing a 

224×224×64 feature map, followed by a 2×2 max-pooling 

layer (stride 2) that reduces it to 112×112×64. The second 

block follows the same pattern but with 128 filters, reducing 

the size to 56×56×128. The third block consists of three 3×3 

convolutional layers with 256 filters, followed by max-

pooling, yielding a 28×28×256 feature map. The fourth and 

fifth blocks each contain three 3×3 convolutional layers with 

512 filters, and after max-pooling, the feature map size is 

reduced to 7×7×512. This final feature map is flattened and 

passed through two fully connected layers with 4,096 neurons 

each, followed by a final fully connected layer with 1,000 

neurons using a softmax activation function, extracting 1,000 

features per input signature image. The use of small 3×3 

filters, progressive max-pooling, and fully connected layers 

makes VGG-16 an effective model for image classification, 

object recognition, and feature extraction. 

 

VGG19 is an extension of VGG16, sharing the same overall 

architecture, particularly in its final three fully connected 

layers. The key difference lies in the number of convolutional 

layers, VGG19 consists of 19 layers, including 16 

convolutional layers and 3 fully connected layers, whereas 

VGG16 has 13 convolutional layers. This means that VGG19 

incorporates three additional convolutional layers compared 

to VGG16, potentially allowing for a more detailed feature 

extraction process while maintaining the same fully connected 

structure. 

 

Let 𝑆𝑘
𝑖  be the kth signature sample of a writer 𝑊𝑖 , (1 ≤ 𝑘 ≤ 𝑛) 

where 𝑛 is the number of samples available for training 

purposes of a writer Wi(i = 1,2,3, … , N). Here  𝑁 indicates 

the total number of writers in a database. From each signature 

sample, 𝑃 number of deep features are extracted. This results 

in a feature matrix for each writer of dimension 𝑛 × 𝑃. The 

feature matrix of size  𝑁 × 𝑛 × 𝑃  will be generated for the 

whole dataset. 

 

3.3 Writer-dependent deep architecture selection    

 

The proposed model utilizes a writer-dependent architecture, 

meaning the chosen deep architecture varies for each writer. 

After extracting deep features from signature images, the most 

suitable deep architecture is selected for each writer to 

optimize verification accuracy. The selection process is based 

on an evaluation of how well different deep architectures 

capture the unique characteristics of a writer's signature. This 
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adaptive approach ensures that the model tailors its feature 

extraction and classification process to the specific variations 

and intricacies of each writer’s signature, enhancing overall 

verification performance. 

 

Let ng and nf are the number of genuine and forgery signature 

samples of each writer available for training purposes, i.e., 

n = ng + nf . Hence, for each writer, we have feature matrices 

of size 𝑛𝑔 × 𝑃 and 𝑛𝑓 × 𝑃, extracted from the genuine and 

forgery signature samples, respectively. Let there be 𝐷  

number of pre-trained deep architectures. Using 𝑛𝑔 × 𝑃  and  

𝑛𝑓 × 𝑃, verification accuracy (𝐴𝑐) is estimated for each writer 

to select the suitable deep architecture. That is for the writer 

𝑊𝑖 we have, 

 

𝐴𝑐 = {𝐴𝑐1
𝑖 , 𝐴𝑐2

𝑖 , 𝐴𝑐3
𝑖 , . . . . . , 𝐴𝑐𝐷

𝑖 } 

 

Where 𝐴𝑐𝑥
𝑖  refers to accuracy obtained from 𝑥𝑡ℎ deep 

architecture for writer 𝑊𝑖, (1 ≤ 𝑥 ≤ 𝐷). 

 

In this approach, the deep architecture that achieves the 

highest verification accuracy for a particular writer is 

identified as the most suitable architecture for that writer. The 

corresponding deep features extracted from this architecture 

are then designated as the appropriate features for that writer. 

This process establishes the first writer-dependent parameter, 

the selection of a deep architecture based on verification 

accuracy.  

 

3.4 Dimensionality reduction  

 

The deep features are selected for each writer using the writer-

dependent DCNN, we apply a linear dimensionality reduction 

technique to minimize computational complexity. Since 

DCNN-extracted feature vectors tend to be high-dimensional, 

directly processing them can be computationally expensive. 

To address this, we use Principal Component Analysis (PCA) 

to transform the feature vectors into a lower-dimensional 

space while retaining the most significant information. This 

reduction helps improve efficiency without significantly 

affecting the discriminative power of the features. As a result, 

each signature sample is represented using P key features in 

the transformed space, optimizing both performance and 

computational cost. 

 

For instance, the features extracted from the signature sample  

𝑆𝑘
𝑖   of a writer 𝑊𝑖

 is denoted as 

 

𝐹𝑘
𝑖 =  {𝑓𝑘1

𝑖 , 𝑓𝑘2

𝑖 , 𝑓𝑘3

𝑖 , . . . . . , 𝑓𝑘𝑃

𝑖 } 

 

Here, 𝑓𝑘𝑗

𝑖  denotes the index of feature obtained from the 

signature sample 𝑆𝑘
𝑖 . That is 𝑓𝑘𝑗

𝑖  represents the 𝑗𝑡ℎ feature of  

𝑘𝑡ℎ sample. The dimension of the feature vector 𝐹𝑘
𝑖  will be 

reduced to 𝑑 number of features after the application of PCA 

and it is denoted as  

 

𝑅𝐹𝑘
𝑖 =  {𝑓𝑘1

𝑖 , 𝑓𝑘2

𝑖 , 𝑓𝑘3

𝑖 , . . . . . , 𝑓𝑘𝑑

𝑖 },  1 ≤ 𝑑 ≤ 𝑃. 

 

 

 

3.5 Writer-dependent classifier selection  

 

Since signature samples exhibit high intra-class variability 

and do not follow a uniform distribution across all writers, 

using a single classifier for all writers may not be practical. To 

address this, we have explored the idea of employing a writer-

dependent classifier, where different classifiers are used for 

different writers. Once the dimensionality of the feature 

vectors is reduced, the selection of the most suitable classifier 

is performed. In this work, we consider multiple classifiers, 

including Support Vector Machine (SVM) with different 

kernel functions (linear, radial basis function, sigmoid, and 

polynomial), K-Nearest Neighbor (KNN), Decision Tree, 

Random Forest, and Naïve Bayes algorithms. The verification 

accuracy for each writer is calculated across all classifiers, and 

the classifier yielding the highest accuracy is selected as the 

writer-dependent classifier for that individual. In cases where 

multiple classifiers achieve the same accuracy, a predefined 

priority order is used to resolve the selection. 

 

Let ∁ = {∁ 𝟏
, ∁ 𝟐

, ∁ 𝟑
, … . . , ∁ 𝜑

}
 
 be the list of classifiers, where  

𝜑  be a number of classifiers and each writer is represented by 

𝑛𝑔 × 𝑑 and 𝑛𝑓 × 𝑑, where 𝑛𝑔 × 𝑑 denotes the feature matrix 

obtained from the genuine training samples and 𝑛𝑓 × 𝑑 

denotes the feature matrix obtained from the forgeries of each 

writer. Using  𝑛𝑔 × 𝑑 and 𝑛𝑓 × 𝑑 the verification 

accuracy (𝐴𝑐) is calculated with the set of classifiers ∁ . 
Finally, accuracy is obtained from each of the classifier. That 

is for the writer 𝑊𝑖
  we have 

𝐴𝑐 
𝑖

   
= {𝐴𝑐𝟏  ,

𝑖 𝐴𝑐𝟐  ,
𝑖 𝐴𝑐𝟑  ,

𝑖  , . . . . . , 𝐴𝑐𝜑  

𝑖 }
 
 

 

Where 𝐴𝑐𝑐𝑙,
𝑖  refers to accuracy obtained from 𝑐𝑙𝑡ℎ classifier 

for wirter 𝑊𝑖 . 1 ≤ 𝑐𝑙 ≤ 𝜑.  A classifier with the highest 

accuracy is identified as suitable for a specific writer. For 

instance, the classifier selected for a writer 𝑊𝑖 is denoted by,  

∁𝒔𝒆𝒍  

𝑖 = 𝑚𝑖𝑛{ 𝐴𝑐  
}. 

 

The details of the writer-dependent architecture, extracted 

features, and selected classifiers for each writer are stored in a 

knowledge base. This knowledge base serves as a reference 

for verifying future signature samples of the respective 

writers. By maintaining this information, the system ensures 

that each writer's verification process leverages the most 

suitable deep architecture and classifier, optimizing accuracy 

and efficiency. 

 

3.6 Verification   

 
TP FP 

FN TN 

 

Once the writer-dependent characteristics are selected for 

each writer and stored in the knowledgebase, the authenticity 

of a test signature is decided as follows. Given a test signature  

𝑆𝑡 claimed to be of writer 𝑊𝑖. Initially, the information of 

write-dependent characteristics viz., deep architecture and 

writer-dependent classifier of writer 𝑊𝑖 are retrieved from the 

knowledge base, which is stored during training. Then, the 

deep features of  𝑆𝑡 are extracted by using the writer-

dependent deep architecture of the writer 𝑊𝑖
. During 

verification, the test signature is represented as a 𝑑-
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dimensional feature vector. Then only the 𝑑 features of the test 

signature are compared with the corresponding 𝑑 features of 

reference signatures of the writer 𝑊𝑖. To compute the 

similarity between the test signature and to every other 

reference signature of the writer 𝑊𝑖, writer-dependent 

classifier of writer 𝑊𝑖 is employed. Finally, the test signature 

sample is verified whether it is genuine or forgery. 

 

4. Experimental setup and Results  
 

In this section, we present the details of the datasets used, the 

experimental setup, and the experiments conducted along with 

the results obtained. 

 

4.1 Datasets used  

 

All experiments are conducted on two benchmark offline 

signature datasets: CEDAR [33] and MCYT [42]. The 

CEDAR dataset consists of signature samples from 55 writers, 

with each writer contributing 24 genuine signatures and 24 

skilled forgeries, totaling 1,320 genuine and 1,320 forged 

signatures. The signature images in this dataset are available 

in grayscale format. The MCYT dataset comprises signatures 

from 75 writers, with each writer providing 15 genuine 

signatures and 15 skilled forgeries, resulting in a total of 2,250 

signature samples. These datasets provide a diverse and 

challenging testbed for evaluating the effectiveness of the 

proposed writer-dependent signature verification approach. 

 

4.2 Experimental setup   

 

For experimentation, the signature samples of each writer are 

divided into two sets: a training set and a testing set. Both 

genuine and forged signatures are included in the training 

process to ensure the model learns distinguishing features 

effectively. The selection of training and testing samples is 

done randomly, with the percentage of training data varying 

from 30% to 70%. This variation allows for evaluating the 

model's performance under different levels of training data 

availability, ensuring a robust assessment of its effectiveness 

in writer-dependent offline signature verification. These 

experiments helped in understanding the impact of writer 

dependency on signature verification accuracy. To assess the 

accuracy of the proposed model, we used a confusion matrix, 

as illustrated in Figure 2. Using this matrix, various 

performance measures, such as the false acceptance rate 

(FAR), false rejection rate (FRR), average error rate (AER), 

and accuracy, were calculated. 

 

 
Figure 2: The structure of confusion matrix 

 

In Figure 2, TP (True Positive) indicates that the signature 

sample is genuine and correctly predicted as genuine, while 

FP (False Positive) represents a forged signature that is 

incorrectly accepted as genuine. FN (False Negative) denotes 

a genuine signature that is mistakenly identified as a forgery. 

Finally, TN (True Negative) indicates a forged signature that 

is correctly recognized as a forgery. 

 

FAR (False Accept Rate) is the proportion of forged 

signatures that are mistakenly accepted as genuine signatures 

and is calculated as  

𝐹𝐴𝑅 =  
𝐹𝑃

(𝐹𝑁+𝑇𝑃)
                                          (1) 

 

The FRR (False Rejection Rate) is the proportion of genuine 

signature samples that are mistakenly rejected as forgeries and 

is determined as 

 

𝐹𝑅𝑅 =  
𝐹𝑁

(𝐹𝑁+𝑇𝑃)
                                   (2) 

Both FAR and FRR are used to calculate AER (Average Error 

Rate), by using 

 

𝐴𝐸𝑅 =  
(𝐹𝐴𝑅+𝐹𝑅𝑅)

2
                  (3) 

On the other hand, accuracy is a measure of correct predictions 

made by the system and is determined as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
                   (4) 

4.3 Results 

   

During experimentation, we extracted deep features using 

seven pre-trained architectures: AlexNet, Inception-V2, 

Inception-V3, ResNet50, SqueezeNet, VGG-16, and VGG-

19.  

 

To evaluate the performance of our approach, we conducted 

the following five sets of experiments: 

1) Using a common deep architecture across all writers. 

2) Using writer-dependent deep architectures. 

3) Using common deep features and a common classifier for 

all writers. 

4) Using common deep features and writer-dependent 

classifiers. 

5) Using writer-dependent deep features and writer-

dependent classifiers. 

 

4.3.1 Experimentation - 1  

In this set of experiments, we utilized deep architectures for 

both feature extraction and classification. Initially, 1000 

features were extracted from each pre-trained architecture for 

every writer. These extracted features were then passed 

through the dense layers of the respective deep architectures 

for classification. The results obtained from the CEDAR and 

MCYT datasets are presented in Table 1 and Table 2, 

respectively. 

 

 

 

 

 

 

 

 

 

Paper ID: SR25409182125 DOI: https://dx.doi.org/10.21275/SR25409182125 882 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 4, April 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Table 1: Accuracy obtained using common pre-trained deep 

architectures on the CEDAR dataset 

Pre-trained Deep 

Architecture 

Percentage of Training Samples 

30% 40% 50% 60% 70% 

Alexnet 99.50 99.57 99.59 99.63 99.58 

Inception-V2 99.58 99.67 99.68 99.74 99.69 

Inception-V3 99.70 99.76 99.79 99.82 99.82 

Resnet50 99.62 99.66 99.72 99.78 99.76 

Squeezenet 99.20 99.24 99.33 99.31 99.27 

VGG-16 99.50 99.69 99.60 99.65 99.62 

VGG-19 99.51 99.44 99.56 99.61 99.61 

 

Table 2: Accuracy obtained using common pre-trained deep 

architectures on the MCYT dataset 

Pre-trained Deep 

Architecture 

Percentage of Training Samples 

30% 40% 50% 60% 70% 

Alexnet 99.53 99.63 99.61 99.60 99.64 

Inception-V2 99.50 99.63 99.61 99.68 99.64 

Inception-V3 99.60 99.68 99.69 99.71 99.75 

Resnet50 99.56 99.64 99.67 99.66 99.67 

Squeezenet 99.35 99.33 99.40 99.29 99.38 

VGG-16 99.53 99.61 99.59 99.65 99.64 

VGG-19 99.51 99.58 99.64 99.66 99.65 

 

4.3.2 Experimentation – 2 

 

This set of experiments is based on writer-dependent deep 

architecture, where deep architectures are used for both 

feature extraction and verification. Initially, features are 

extracted for each writer using all available deep architectures. 

For each writer, n × 1000 features are obtained, where n 

denotes the number of training samples for that writer. The 

verification accuracy is then calculated for each deep 

architecture per writer. The deep architecture that yields the 

highest accuracy is selected as the writer-dependent deep 

architecture for that writer. The corresponding features 

extracted from this architecture are considered the writer-

dependent features. 

 

To verify the authenticity of a signature, the writer-dependent 

deep features of the test signature are compared with the 

reference features. This comparison is performed by passing 

the deep features through the dense layers of the 

corresponding writer-dependent deep architecture. The results 

obtained from the CEDAR and MCYT datasets using this 

approach are presented in Table 3. As indicated in Table 3, the 

CEDAR dataset achieves higher accuracy compared to the 

MCYT dataset. 

Table 3: Accuracy obtained using writer-dependent deep 

architectures on the CEDAR, and MCYT datasets 

Percentage of Training 

Samples 

Dataset 

CEDAR MCYT 

30% 99.79 99.68 

40% 99.87 99.81 

50% 99.88 99.83 

60% 99.92 99.86 

70% 99.93 99.87 

 

4.3.3 Experimentation – 3 

This set of experiments is conducted using common deep 

features and a common classifier across all writers. A single 

pre-trained deep architecture is employed for feature 

extraction across all writers. For classification, various 

conventional classifiers such as Support Vector Machine 

(SVM), Naive Bayes (NB), K-Nearest Neighbor (K-NN), 

Random Forest (RF), and Decision Tree (DT) are considered. 

The features extracted from each pre-trained deep architecture 

are individually fed into each of these classifiers. The results 

obtained from the CEDAR and MCYT datasets are presented 

in Table 4 and Table 5, respectively. 

 

4.3.4 Experimentation – 4 

In this stage, we conducted experiments using common deep 

features for all writers along with writer-dependent classifiers. 

PCA was applied to the deep features to reduce their 

dimensionality, as explained in Subsection 3.4. Through PCA, 

each feature vector was reduced from 1000 to 100 dimensions. 

These reduced feature vectors for each writer were then fed 

into various classifiers. For each writer, accuracy was 

computed using each classifier, and the classifier that achieved 

the highest accuracy was selected as the writer-dependent 

classifier, as described in Section 3.5. 

 

During verification, deep features were extracted from the 

chosen deep architecture for each test signature sample, and 

matching was performed using the writer-dependent classifier 

corresponding to the claimed writer. The results obtained 

using common deep features and writer-dependent classifiers 

on the CEDAR and MCYT datasets are presented in Table 6 

and Table 7, respectively. 

 

Table 4: The accuracy obtained using common deep features and a common classifier on the CEDAR dataset 

Pre-trained Deep 

Architecture 

% of 

training 

samples 

Support vector machines with different kernel functions 
K- nearest 

neighbor 

Decision 

Tree 

Random 

Forest 

Naive 

Bayesian Linear Polynomial 
Radial Basis Function  

(RBF) 
Sigmoid 

Alexnet 

30 99.62 99.22 99.34 99.04 99.58 98.62 99.11 99.55 

40 99.67 99.24 99.47 98.99 99.61 98.67 99.13 99.64 

50 99.7 99.27 99.53 98.94 99.64 98.61 99.14 99.69 

60 99.71 99.27 99.54 98.88 99.71 98.84 99.15 99.74 

70 99.73 99.31 99.6 98.83 99.67 98.83 99.18 99.68 

Inception-V2 

30 99.66 99.24 99.29 99.02 99.56 98.55 98.11 99.38 

40 99.71 99.29 99.43 98.96 99.63 98.59 99.12 99.49 

50 99.75 99.31 99.47 98.93 99.59 98.64 99.13 99.49 

60 99.76 99.33 99.52 98.9 99.66 98.74 99.15 99.41 

70 99.76 99.35 99.57 98.89 99.67 98.79 99.18 99.42 

Inception-V3 

30 99.71 99.21 99.37 99.04 99.65 98.65 98.1 99.45 

40 99.77 99.24 99.56 98.99 99.72 98.6 99.11 99.66 

50 99.76 99.27 99.61 98.62 99.74 98.76 99.12 99.68 
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60 99.8 99.26 99.69 98.88 99.75 98.77 99.12 99.74 

70 99.84 99.34 99.74 98.81 99.76 98.74 99.16 99.76 

Resnet50 

30 99.67 99.19 99.32 99.03 99.6 98.45 99.1 99.44 

40 99.74 99.22 99.4 98.94 99.69 98.54 99.11 99.63 

50 99.75 99.25 99.57 98.94 99.71 98.58 99.11 99.69 

60 99.77 99.25 99.62 98.92 99.71 98.69 99.11 99.7 

70 99.79 99.29 99.7 98.83 98.76 98.71 99.14 99.72 

Squeezenet 

30 99.69 99.12 99.28 99.05 99.61 98.56 99.09 99.52 

40 99.7 99.13 99.45 98.99 99.65 98.56 99.1 99.64 

50 99.78 99.21 99.51 98.99 99.68 98.68 99.11 99.68 

60 99.76 99.17 99.56 98.97 99.69 98.71 99.11 99.74 

70 99.8 99.19 99.63 98.91 99.74 98.76 99.12 99.77 

VGG-16 

30 99.6 99.19 99.29 99.04 99.54 98.35 99.1 99.42 

40 99.69 99.21 99.4 98.98 99.61 98.34 98.11 99.61 

50 99.71 99.23 99.46 98.96 99.64 98.57 99.11 99.67 

60 99.71 99.26 99.5 98.93 99.61 98.48 98.12 99.69 

70 99.72 99.28 99.57 98.86 99.69 98.56 99.12 99.69 

VGG-19 

30 99.56 99.14 99.3 99.04 99.53 98.23 99.1 99.39 

40 99.62 99.2 99.4 99.01 99.56 98.41 99.11 99.6 

50 99.63 99.2 99.46 98.94 99.59 98.52 99.11 99.66 

60 99.68 99.22 99.48 98.87 99.65 98.44 99.11 99.69 

70 99.7 99.24 99.57 98.89 99.63 98.61 99.12 99.71 

 

Table 5: The accuracy obtained using common deep features and a common classifier on the MCYT dataset 

Pre-trained 

Deep 

Architecture 

% of 

Training 

Samples 

Support vector machines with different kernel 

functions k nearest 

neighbor 

Decision 

Tree 

Random 

Forest 

Naive 

Bayesian 
Linear Polynomial 

Radial Basis 

Function  (RBF) 
Sigmoid 

Alexnet 

30 99.61 99.36 99.37 99.33 99.59 98.76 99.33 99.38 

40 99.69 99.39 99.43 99.31 99.65 98.78 99.34 99.56 

50 99.70 99.39 99.50 99.28 99.65 98.94 99.34 99.64 

60 99.74 99.41 99.52 99.27 99.71 98.85 99.35 99.71 

70 99.74 99.43 99.56 99.26 99.73 98.98 99.35 99.80 

Inception-V2 

30 99.56 99.37 99.35 99.33 99.49 98.58 99.33 99.36 

40 99.64 99.38 99.37 99.31 99.56 98.69 99.34 99.50 

50 99.69 99.41 99.43 99.28 99.60 98.83 99.34 99.59 

60 99.71 99.42 99.44 99.27 99.63 98.81 99.34 99.58 

70 99.74 99.38 99.48 99.25 99.56 98.81 99.34 99.61 

Inception-V3 

30 99.65 99.36 99.35 99.33 99.62 98.76 99.33 99.36 

40 99.68 99.38 99.41 99.30 99.66 98.80 99.34 99.47 

50 99.75 99.39 99.48 99.30 99.69 98.79 99.34 99.61 

60 99.72 99.38 99.52 99.28 99.71 98.84 99.34 99.65 

70 99.75 99.38 99.55 99.27 99.75 98.97 99.34 99.71 

Resnet50 

30 99.61 99.36 99.36 99.33 99.58 98.52 99.33 99.36 

40 99.69 99.40 99.42 99.32 99.64 98.52 99.34 99.49 

50 99.73 99.41 99.48 99.28 99.71 98.71 99.34 99.61 

60 99.74 99.41 99.53 99.27 99.72 98.65 99.34 99.68 

70 99.75 99.40 99.57 99.26 99.74 98.75 99.34 99.73 

Squeezenet 

30 99.66 99.24 99.38 99.33 99.58 98.76 99.34 99.36 

40 99.68 99.24 99.41 99.31 99.62 98.72 99.34 99.50 

50 99.74 99.24 99.46 99.28 99.68 98.86 99.34 99.65 

60 99.75 99.32 99.48 99.27 99.69 98.91 99.35 99.67 

70 99.79 99.22 99.52 99.27 99.71 98.93 99.35 99.71 

VGG-16 

30 99.56 99.35 99.34 99.32 99.53 98.30 99.33 99.34 

40 99.61 99.38 99.38 99.30 99.59 98.53 99.33 99.45 

50 99.64 99.39 99.44 99.29 99.61 98.67 99.33 99.61 

60 99.65 99.39 99.47 99.25 99.65 98.69 99.34 99.63 

70 99.68 99.40 99.49 99.26 99.63 98.78 99.34 99.67 

VGG-19 

30 99.56 99.36 99.36 99.32 99.52 98.65 99.33 99.35 

40 99.61 99.37 99.38 99.31 99.57 98.57 99.34 99.45 

50 99.64 99.37 99.43 99.27 99.59 98.74 99.33 99.56 

60 99.67 99.41 99.45 99.27 99.62 98.70 99.34 99.62 

70 99.70 99.39 99.47 99.23 99.62 98.66 99.34 99.68 
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Table 6: Accuracy obtained using common deep features 

and writer-dependent classifiers on the CEDAR dataset 

Pre-trained Deep 

Architecture 

Percentage of Training Samples 

30% 40% 50% 60% 70% 

Alexnet 99.69 99.76 99.77 99.81 99.81 

Inception-V2 99.70 99.77 99.79 99.81 99.81 

Inception-V3 99.74 99.82 99.83 99.87 99.9 

Resnet50 99.71 99.79 99.81 99.83 99.88 

Squeezenet 99.74 99.79 99.82 99.82 99.88 

VGG-16 99.64 99.76 99.78 99.79 99.83 

VGG-19 99.62 99.7 99.75 99.77 99.83 

 

Table 7: Accuracy obtained using common deep features 

and writer-dependent classifiers on the MCYT dataset 

Pre-trained Deep 

Architecture 

Percentage of Training Samples 

30% 40% 50% 60% 70% 

Alexnet 99.66 99.74 99.66 99.81 99.81 

Inception-V2 99.60 99.68 99.74 99.76 99.78 

Inception-V3 99.69 99.73 99.80 99.79 99.81 

Resnet50 99.67 99.74 99.80 99.81 99.82 

Squeezenet 99.69 99.71 99.79 99.80 99.83 

VGG-16 99.63 99.68 99.73 99.74 99.75 

VGG-19 99.62 99.68 99.70 99.74 99.76 

 

4.3.5 Experimentation - 5 

First, we identify the writer-dependent architecture for all the 

writers in the system, as discussed in Section 3.3. After 

selecting a writer-dependent deep architecture for each writer, 

deep features are extracted. These features are then reduced 

from 1000 to 100 using PCA, as described in Subsection 3.4. 

The procedure explained in Section 3.5 is used to determine 

the writer-dependent classifier. Finally, verification is 

performed using the writer-dependent features and writer-

dependent classifiers. The results are presented in Table. 8. 

 

Table 8: Results obtained using writer-dependent deep 

features and writer-dependent classifiers on the CEDAR, 

and MCYT datasets 
Percentage of 

Training Samples 

Dataset 

CEDAR MCYT 

30% 99.79 99.74 

40% 99.87 99.84 

50% 99.88 99.86 

60% 99.92 99.89 

70% 99.93 99.90 

 

The accuracy achieved using writer-dependent deep features 

and writer-dependent classifiers outperforms that of other 

approaches. This underscores the importance of incorporating 

writer dependency at both the architectural and classifier 

levels to achieve optimal verification performance. The best 

results obtained from Experimentation-1 to Experimentation-

5 on the CEDAR, and MCYT datasets are given in Table 9. 

 

Table 9: The best results obtained from Experimentation-1 to Experimentation-5 on the CEDAR, and MCYT datasets 

Experimentation Details 
Datasets 

CEDAR MCYT 

With a common deep architecture across all writers 99.82 99.75 

With writer dependent deep architectures 99.93 99.87 

With a common deep architecture and a common classifier for all writers 99.84 99.75 

With a common deep architecture and writer dependent classifiers 99.90 99.83 

With writer dependent deep architectures and writer dependent classifiers 99.93 99.89 

 

5. Comparative Analysis  

  
In this section, we compare the verification performance of 

the proposed approach with state-of-the-art methods in terms 

of accuracy. Table 10 presents the accuracy of the proposed 

model based on writer-dependent deep architecture and 

writer-dependent classifiers on the CEDAR dataset, alongside 

other existing models. 

 

Table 10: Performance Comparison of Offline Signature 

Verification Approaches on the CEDAR Dataset 
Model  Accuracy (%) 

 [46] 93.25 

 [35] 94.10 

 [12] 94.50 

 [51] 95.06 

 [18] 95.31 

 [52] 95.33 

 [23] 95.37 

 [49] 96.46 

 [62] 97.24 

Proposed (With writer-dependent deep 

architecture and writer-dependent classifier) 
 99.93 

 

Table 11 presents the results obtained on the MCYT dataset 

using the proposed writer-dependent deep architecture and 

writer-dependent classifier, along with a comparison to 

existing approaches. 

 

Table 11: Comparison of the performance of various offline 

signature verification approaches on the MCYT dataset 
Model Accuracy (%) 

[20] 87.56 

[29] 88.49 

[12] 90.74 

[52] 94.04 

[39] 94.15 

[51] 94.54 

[59] 97.42 

[30] 98.93 

[18] 99.66 

Proposed (With writer-dependent deep 

architecture and writer-dependent classifier) 
99.90 

 

Tables 10 and 11 demonstrate that the proposed model, which 

incorporates writer-dependent characteristics, achieves 

higher accuracy compared to other existing models. 

 

6. Conclusion 
 

This work highlights the importance of writer-dependent 

characteristics in offline signature verification using deep 

learning approaches. It introduces the concept of writer-

dependent deep architectures. The proposed method follows 
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a two-stage approach: (i) selecting a writer-specific deep 

architecture and (ii) selecting a writer-dependent classifier for 

verifying the claimed signature. Experiments are conducted 

on two offline signature datasets: CEDAR, and MCYT. The 

results demonstrate a significant improvement in verification 

accuracy by incorporating writer dependency at both the deep 

feature and classifier levels. 
 

7. Future Work 
 

In future, we can dynamically exploit the writer-dependent 

characteristics by applying deep learning. 
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