
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Coding Bugs Leading to Security Vulnerabilities in

Windows Drivers

Pankaj Bhandula

Senior Principal Engineer, Oracle Cloud

Email: pkbhandulla[at]gmail.com

Abstract: Windows device drivers operate at the core of the operating system with high privileges, making any security flaws in their

code potentially devastating. This article provides an academic overview of how common coding bugs in Windows drivers can lead to

serious security vulnerabilities. We explain the architecture and role of Windows drivers – particularly their kernel - level privileges – and

examine typical programming errors such as buffer overflows, use of uninitialized memory, improper input validation, race conditions,

and access control mistakes. Through two real - world case studies, we illustrate how these bugs have been exploited in practice. We then

discuss tools and techniques for identifying driver vulnerabilities, including fuzz testing, symbolic execution, static analysis, and

Microsoft’s specialized driver verification tools. Finally, we recommend secure development practices for driver developers to mitigate

these issues. Annotated code snippets are provided to demonstrate insecure vs. secure coding practices, and an architectural diagram

illustrates the potential impact of a malicious driver running with kernel - mode access.

Keywords: Windows Kernel, Device Drivers, Security Vulnerabilities, Buffer Overflow, Privilege Escalation, Fuzzing, Static Driver

Verifier, BYOVD Attacks

1. Introduction

Modern operating systems rely on device drivers to interface

between hardware and software. In Microsoft Windows,

drivers can run either in user mode or kernel mode, but most

hardware drivers execute in kernel mode – the highest

privilege level. Kernel - mode drivers have unrestricted

access to system memory and hardware, and are not isolated

from the core OS. This means that a bug in a driver can

corrupt critical kernel data or crash the entire system. From a

security perspective, a vulnerability in a kernel driver can be

catastrophic: an attacker who exploits such a bug may gain

the ability to execute arbitrary code with kernel privileges,

effectively gaining complete control over the system.

Unfortunately, writing secure driver code is challenging.

Drivers are typically written in low - level languages (C/C++)

for performance and must handle interactions with hardware

and user applications, which introduces complexity and room

for error. Common programming mistakes that might merely

crash a user - space application can have far more severe

consequences in a driver due to the elevated privileges. A

simple oversight in memory handling or input validation can

open the door to full system compromise.

This paper explores how these seemingly minor coding

mistakes can lead to significant vulnerabilities. It outlines the

architecture of Windows drivers and why their privileged

position demands rigorous security. We cover the most

common types of bugs encountered in driver development,

share insights into two real - world vulnerabilities that led to

kernel exploitation, and discuss methods to uncover and

prevent such flaws using modern tools. Our aim is to arm

developers and security professionals with practical

knowledge and strategies to ensure safe and resilient driver

code.

2. Windows Driver Architecture and Privilege

Levels

Windows follows a layered architecture that distinguishes

between user mode and kernel mode execution. Device

drivers, which form part of the Windows kernel, have access

to the system's internals including memory, hardware ports,

and the processor's control registers. This level of access is

necessary for performance and functionality, but it also

introduces a significant attack surface.

Drivers interact with the Windows I/O Manager via defined

interfaces and respond to I/O Request Packets (IRPs).

Traditional drivers use the Windows Driver Model (WDM),

which offers flexibility but places the burden of managing

synchronization, IRQLs, and memory pools directly on the

developer. In contrast, the Kernel - Mode Driver Framework

(KMDF) abstracts much of this complexity and provides built

- in mechanisms for resource management and error handling.

Due to their elevated privilege, Windows requires drivers to

be signed by trusted publishers. However, attackers can

bypass this requirement using stolen certificates or by

exploiting the functionality of already trusted but vulnerable

drivers. Thus, while code signing mitigates unauthorized

driver loading, it does not eliminate the risk posed by insecure

code in legitimate drivers.

3. Common Coding Bugs Leading to Driver

Security Issues

Each of the following bug types can introduce critical

vulnerabilities in kernel - mode drivers. Here are simple code

examples demonstrating how each bug might occur in

practice.

Buffer Overflow

A buffer overflow occurs when data is written beyond the

bounds of an allocated buffer. In kernel mode, this can

Paper ID: SR25407125626 DOI: https://dx.doi.org/10.21275/SR25407125626 792

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

overwrite critical memory structures, leading to code

execution, crashes, or elevation of privilege.

Best Practice: Always validate input sizes before performing

memory operations. Use safe versions of copy functions and

prefer framework - provided buffer handling APIs when using

KMDF.

Example:

char buf [16];

RtlCopyMemory (buf, input, 32); // Overflows buffer if input

> 16 bytes

Use - After - Free and Uninitialized Memory

Improper management of dynamic memory, such as

accessing memory after it has been freed or using memory

before initializing it, can result in undefined behavior,

memory corruption, or leakage of sensitive kernel

information. These issues are particularly dangerous in

drivers that handle sensitive operations or data, such as

cryptographic processing, system calls, or hardware

interactions, where unintended behavior could have system -

wide consequences.

Best Practice: Implement strict memory management with

clear ownership, reference counting, and memory zeroing.

Always initialize structures before use and set freed pointers

to NULL.

Use - After - Free Example:

PVOID p = ExAllocatePool (NonPagedPool, 128);

ExFreePool (p);

RtlFillMemory (p, 128, 0xAA); // Using freed memory

Uninitialized Memory Example:

typedef struct _MY_STRUCT {

 int a;

 int b;

} MY_STRUCT, *PMY_STRUCT;

PMY_STRUCT p = (PMY_STRUCT) ExAllocatePool

(NonPagedPool, sizeof (MY_STRUCT));

DbgPrint ("Value: %d", p - >b); // b is uninitialized

Improper Input Validation

Drivers frequently handle inputs from user mode through

IOCTL interfaces. If input data or pointers are not thoroughly

validated, the driver may be coerced into accessing invalid or

maliciously crafted memory regions.

Best Practice: Use ProbeForRead, ProbeForWrite, and

framework helper functions like

WdfRequestRetrieveInputBuffer. Validate all lengths,

addresses, and structures received from user mode.

Example:

RtlCopyMemory (kernelBuffer, userPointer, size); // No

validation on userPointer or size

Race Conditions

Concurrency issues such as TOCTTOU bugs occur when a

check is made on a resource followed by a use, without

guaranteeing atomicity. In multithreaded environments,

another thread could change the state in between, leading to

inconsistencies or vulnerabilities.

Best Practice: Use proper synchronization primitives like

spinlocks or mutexes when accessing shared resources. Copy

user - mode data into kernel buffers once and avoid accessing

user memory multiple times.

Example:

if (*userPointer < MAX_VALUE) {

result = *userPointer + 1; // Another thread might change

*userPointer between check and use

}

Access Control and Permission Issues

Improperly configured access control on device interfaces can

allow unprivileged users to perform sensitive operations.

Ensuring that only authorized users can communicate with the

driver is crucial.

Best Practice: Always use IoCreateDeviceSecure with

proper SDDL strings to enforce strict permissions. Only

expose interfaces to authorized users and validate process

context where appropriate.

Example:

IoCreateDevice (. . .); // Without using

IoCreateDeviceSecure, opens device to all users

access control on device interfaces can allow unprivileged

users to perform sensitive operations.

Code Snippet: Vulnerable vs. Secure Implementation

#define MAX_BUFFER 256

// Vulnerable implementation

NTSTATUS HandleIoctl (IN PVOID userBuffer, IN

ULONG userLength) {

 CHAR kernelBuffer [MAX_BUFFER];

 RtlCopyMemory (kernelBuffer, userBuffer, userLength); //

No length check

 return STATUS_SUCCESS;

}

// Secure implementation

NTSTATUS HandleIoctlSecure (IN PVOID userBuffer, IN

ULONG userLength) {

 CHAR kernelBuffer [MAX_BUFFER];

 if (userLength > MAX_BUFFER) return

STATUS_INVALID_BUFFER_SIZE;

 if (!ProbeForRead (userBuffer, userLength, sizeof

(UCHAR))) return STATUS_INVALID_PARAMETER;

 RtlCopyMemory (kernelBuffer, userBuffer, userLength);

 return STATUS_SUCCESS;

}

4. Case Studies: Real - World Driver

Vulnerabilities and Exploits

Real - world case studies help illustrate how driver bugs

translate into exploitable security issues. These examples

reflect the risks associated with coding mistakes in kernel -

mode drivers and show how attackers leverage them for

privilege escalation, persistence, or disabling security

features.

Paper ID: SR25407125626 DOI: https://dx.doi.org/10.21275/SR25407125626 793

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Case Study 1: MSI Afterburner’s RTCore64. sys (CVE -

2019 - 16098)

MSI Afterburner’s RTCore64. sys driver provided IOCTLs to

user - mode applications that allowed direct access to kernel

memory and hardware registers, including I/O ports and

Model - Specific Registers (MSRs). Critically, these

operations could be invoked without validating user

privileges or input structure integrity.

Security researchers found that this driver allowed arbitrary

physical memory reads/writes, enabling attackers to bypass

driver signature enforcement by writing shellcode into kernel

memory and executing it with SYSTEM privileges. This

vulnerability exemplifies the "bring your own vulnerable

driver" (BYOVD) technique, where attackers load a signed

but flawed driver to bypass Windows kernel protections. As

the driver was digitally signed, it could be loaded even with

Driver Signature Enforcement enabled.

The issue was widely exploited in malware campaigns

targeting endpoint security bypass. MSI released updated

drivers to remove or restrict the affected IOCTL calls.

Case Study 2: Dell dbutil_2_3. sys (CVE - 2021 - 21551)

The Dell dbutil_2_3. sys driver was distributed on millions of

systems to support firmware updates. It contained multiple

high - severity flaws including memory corruption, improper

input validation, and uninitialized kernel pointers exposed

through its IOCTL interface.

Attackers could exploit these flaws to write arbitrary values

to kernel memory, thereby achieving privilege escalation or

disabling security tools. Notably, the driver lacked

appropriate checks on user - supplied buffers and didn't

enforce security context restrictions for sensitive operations.

The vulnerability persisted in production systems for over a

decade before being disclosed by researchers. Dell responded

by issuing patches and publishing a dedicated tool to remove

the vulnerable driver. This incident underscores the risks of

legacy drivers, especially those operating with high privileges

and wide distribution. Dell’s firmware update driver

contained multiple vulnerabilities, including buffer overflows

and insufficient permission checks. These flaws enabled local

attackers to escalate privileges by exploiting the driver's

kernel - level access. The issue persisted in millions of

systems before being publicly disclosed and patched.

5. Tools and Techniques for Identifying Driver

Vulnerabilities

Identifying security vulnerabilities in driver code requires a

multi - layered strategy combining automated and manual

methods. Tools and techniques include fuzzing, symbolic

execution, static and dynamic analysis, and patch diffing to

uncover flaws at different stages of development and

deployment.

Fuzzing

Fuzzing is a dynamic testing technique that inputs malformed,

unexpected, or random data to driver interfaces—especially

IOCTL dispatch routines—to trigger failures or unexpected

behavior. Tools like WinAFL, based on the AFL fuzzer, adapt

fuzzing to Windows environments by using instrumentation

to guide input generation.

Advanced fuzzing frameworks can inject malformed IRPs,

manipulate buffer sizes, and perform targeted attacks on

protocol handlers. Microsoft and researchers have used

fuzzing to uncover dozens of previously unknown bugs in

graphics, networking, and sensor drivers.

Strengths: Finds memory corruption, buffer overflows, and

crash bugs quickly.

Limitations: May miss logic bugs and complex race

conditions.

Symbolic Execution

Symbolic execution analyzes code by treating input variables

as symbols rather than concrete values. This allows

systematic exploration of different execution paths and helps

identify vulnerabilities like buffer overflows or invalid

pointer dereferences.

Tools like angr, S2E, and Microsoft's internal binary analysis

engines allow symbolic execution of drivers to trace deep

logic errors that fuzzers might miss. Researchers use this to

verify whether unchecked paths can lead to kernel panics or

privilege elevation.

Strengths: Excellent for path - sensitive bugs and validation

of logic.

Limitations: May suffer from path explosion and complexity

in large drivers.

Static Analysis

Static analysis involves examining the source or compiled

code of drivers without executing them. Microsoft’s Static

Driver Verifier (SDV) validates Windows driver source code

against a set of safety and security rules, including correct use

of IRPs, proper buffer access, and correct IRQL transitions.

Tools like CodeQL and Coverity can catch common issues

like memory leaks, improper structure initialization, and use

- after - free bugs. These tools can be integrated into CI/CD

pipelines to continuously scan code for regression issues.

Strengths: High coverage, early detection of coding

mistakes, integration with build pipelines.

Limitations: May produce false positives, especially with

complex pointer logic.

Dynamic Analysis

Dynamic analysis tests driver behavior at runtime under

controlled and stress conditions. Tools like Driver Verifier

enforce stricter memory management, detect use of

uninitialized memory, and simulate allocation failures. They

can detect improper use of IRQLs, deadlocks, and buffer

overflows that might only appear during concurrent or edge -

case execution.

Debugging tools like WinDbg allow developers to set

breakpoints, monitor kernel memory, and trace I/O flows

during driver execution. In addition, using QEMU or Bochs

with memory taint tracking can help identify cross - boundary

access or TOCTOU vulnerabilities.

Paper ID: SR25407125626 DOI: https://dx.doi.org/10.21275/SR25407125626 794

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Strengths: Catches real - world bugs under stress, exposes

timing issues and concurrency faults.

Limitations: Requires setup and may miss rare paths unless

stress - tested with comprehensive scenarios.

Patch diffing, comparing binaries of driver versions before

and after a security patch, is also useful in reverse engineering

and auditing third - party drivers. It helps researchers pinpoint

the exact vulnerability fixed, which can inform defenses and

blacklists.

6. Secure Development Practices for Windows

Driver Developers

• Framework Use: Prefer KMDF/UMDF over WDM to

reduce low - level management errors.
• Defensive Coding: Validate all external inputs, including

buffer sizes and pointer addresses.

• Access Restriction: Use IoCreateDeviceSecure with

proper SDDL to limit access to privileged users.

• Memory Safety: Use NonPagedPoolNX for allocations

and ensure buffers are zeroed.

• Testing: Integrate Driver Verifier and SDV into the build

process.

• Code Reviews and Threat Modeling: Regularly assess

the attack surface and common abuse patterns.

• Vulnerability Monitoring: Subscribe to driver security

bulletins and community databases.

7. Conclusion

Windows drivers are essential for enabling hardware

functionality, but their kernel - mode operation makes them

highly sensitive from a security perspective. Small coding

errors can escalate into major vulnerabilities if not addressed

with appropriate diligence. This paper highlighted key

categories of driver bugs, examined real - world examples of

exploitation, and outlined a path toward safer driver

development. By adopting frameworks, rigorous validation,

and thorough testing, developers can significantly reduce the

risk of exposing systems to kernel - level threats.

References

[1] CVE - 2019 - 16098, MSI Afterburner RTCore64. sys

vulnerability – https: //cve. mitre. org/cgi -

bin/cvename. cgi?name=CVE - 2019 - 16098

[2] CVE - 2021 - 21551, Dell dbutil_2_3. sys driver

vulnerability – https: //cve. mitre. org/cgi -

bin/cvename. cgi?name=CVE - 2021 - 21551

[3] Microsoft Static Driver Verifier – https: //learn.

microsoft. com/en - us/windows -

hardware/drivers/devtest/static - driver - verifier

[4] Microsoft Driver Verifier – https: //learn. microsoft.

com/en - us/windows - hardware/drivers/devtest/driver

- verifier

[5] WinAFL – Fuzzing Framework for Windows – https:

//github. com/googleprojectzero/winaflangr – https:

//angr. io/

[6] Microsoft Driver Security Guidelines – https: //learn.

microsoft. com/en - us/windows -

hardware/drivers/driversecurity/

Paper ID: SR25407125626 DOI: https://dx.doi.org/10.21275/SR25407125626 795

http://www.ijsr.net/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16098
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21551
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21551
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/driver-verifier
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/driver-verifier
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/driver-verifier
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://angr.io/
https://angr.io/
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/
https://learn.microsoft.com/en-us/windows-hardware/drivers/driversecurity/

