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Abstract: The increasing demand for renewable energy integration in hybrid microgrids necessitates intelligent control strategies to 

optimize power generation. Accurately tracking the Maximum Power Point (MPP) under fluctuating environmental conditions remains 

a significant challenge in hybrid photovoltaic (PV)–wind energy systems. To address this, the paper introduces an innovative MPPT 

method that employs an Artificial Neural Network (ANN) optimized using the Hippopotamus Algorithm (HA). This approach is 

specifically designed to enhance power extraction efficiency within a hybrid PV-wind configuration integrated into a microgrid 

environment. The proposed HA-ANN MPPT technique exhibits superior tracking efficiency, reduced steady-state oscillations, and faster 

convergence compared to conventional methods. Simulation results demonstrate that the HA-ANN MPPT improves power extraction 

efficiency under dynamic weather conditions while minimizing energy losses. Furthermore, the hybrid microgrid's overall performance, 

stability, and reliability are significantly enhanced. This research highlights the effectiveness of bio-inspired optimization algorithms in 

renewable energy applications and their potential to revolutionize MPPT strategies in hybrid microgrids. The proposed HA-ANN MPPT 

offers a promising solution for maximizing power utilization, ensuring sustainable energy management, and supporting the global 

transition toward renewable energy-based smart grids. 
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1. Introduction  
 

In recent years, the shift toward renewable energy has 

accelerated considerably, fueled by the global demand for 

clean, sustainable, and environmentally friendly power 

solutions [1]. Hybrid microgrids that combine photovoltaic 

(PV) and wind energy technologies are gaining widespread 

recognition as efficient and reliable alternative systems for 

meeting energy needs while lowering reliance on 

conventional fossil fuels [2]. Due to the variable and 

nonlinear nature of these renewable sources, advanced 

control strategies are essential to maximize energy harvesting 

and ensure efficient operation [3]. MPPT is a crucial strategy 

for ensuring maximum energy harvesting from renewable 

sources, enhancing the efficiency and reliability of hybrid 

microgrids [4]. 

 

Traditional MPPT techniques, often encounter challenges 

such as delayed convergence, oscillations at steady state, and 

decreased accuracy when environmental conditions change 

rapidly [5][6]. To address these issues, researchers have 

investigated artificial intelligence (AI)-driven solutions, 

especially Artificial Neural Networks (ANNs) for MPPT, 

given their capacity to learn and adapt to the complex, 

nonlinear relationship between power and voltage [7]. 

However, the performance of ANN-based MPPT is highly 

dependent on its training process, which requires efficient 

optimization techniques to achieve accurate and fast 

convergence [8]. 

 

This research introduces a novel MPPT approach utilizing an 

ANN optimized by the Hippopotamus Algorithm (HA) for 

hybrid PV-wind microgrids. HA is a recently developed bio-

inspired optimization technique that mimics the cooperative 

and adaptive behaviors of hippopotamuses in their natural 

habitat [9]. By leveraging HA’s exploration and exploitation 

capabilities, ANN training is significantly enhanced, leading 

to improved MPPT performance. The proposed HA-ANN 

MPPT is evaluated through simulations and compared with 

conventional methods to validate its superiority in terms of 

tracking speed, accuracy, and stability [10]. 

 

2. System Description 
 

The designed hybrid microgrid combines solar photovoltaic 

(PV) modules, a wind turbine generator (WTG), and a battery 

energy storage system (BESS), and AC loads, all 

interconnected to a main grid. The PV system utilizes an 

MPPT-controlled inverter to optimize solar energy 

conversion, while the wind turbine operates with a variable-

speed generator and a power converter to maintain stable AC 

output. The BESS, managed by a bidirectional converter, 

balances power fluctuations by storing excess energy and 

supplying power during deficits. The AC load profile 

comprises residential, commercial, and industrial users, 

supported by a load management system that maintains 

consistent voltage and frequency levels. Grid integration is 

achieved through a grid-connected inverter coupled with a 

phase-locked loop (PLL), allowing two-way power flow to 

improve system reliability and stability. This setup 

maximizes the use of renewable energy sources while 

providing a dependable and uninterrupted power supply. 
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Figure 1: Proposed Hybrid Microgrid scheme 

 

a) PV Modeling 

The photovoltaic (PV) system in the hybrid microgrid 

converts solar energy into electrical power through an array 

of solar panels. The performance of a PV system depends on 

solar irradiance, temperature, and panel characteristics. A 

widely used approach to model PV behavior is the single-

diode equivalent circuit, It includes, a series resistance (Rs), a 

current source, a diode, and a shunt resistance (Rp) [11]. The 

output current (Ipv) from the PV module can be expressed as: 

 

             𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑝                                        (1) 

 

Here, Iph represents the photocurrent, Id denotes the current 

flowing through the diode, and Ip refers to the leakage current 

across the shunt resistance (Rp). The diode current is 

expressed as: 

 

                  𝐼𝑑 = 𝐼𝑠 [𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑛𝑘𝑇
) − 1]                           (2) 

 

In this equation, Is denotes the reverse saturation current, q is 

the elementary charge (1.602 × 10⁻¹⁹ C), V represents the 

output voltage of the PV module. 

 

The output power of a photovoltaic (PV) module exhibits a 

highly nonlinear behavior and is significantly influenced by 

environmental factors, making the use of a MPPT algorithm 

essential for effective energy harvesting [12]. MPPT 

algorithms continuously regulate the operating voltage and 

current to maximize power transfer via a DC-DC converter. 

Due to the fluctuating availability of solar energy, 

implementing real-time MPPT control is vital for enhancing 

both the performance and reliability of hybrid microgrid 

systems [13]. 

 

 
Figure 2: PV Equivalent Circuit 

 
 

 
Figure 3: IV & PV Characteristics of PV 

 

b) Wind Turbine Modeling 

Wind turbines channel the kinetic energy from the wind and 

transform it into mechanical energy, which is again converted 

into electrical power through a generator. The amount of 

power generated is influenced by factors such as wind 

velocity, air density, the swept area of the rotor, and the 

turbine’s power coefficient (Cp). The aerodynamic power 

captured from the wind can be calculated using the following 

expression [14]: 

 

                          𝑃𝑤 =
1

2
𝜌𝐴𝐶𝑝𝑉𝑤

3                                   (3) 

 

In this formula, Pw represents the wind power captured, ρ is 

the air density measured (kg/m³), A is the rotor's swept area 

(m²), Vw denotes the wind speed (m/s), and Cp is the power 

coefficient, which varies based on the tip-speed ratio (λ) and 

the blade pitch angle (β). The TSR (λ) can be expressed as 

follows [15]: 

 

                                  𝜆 =
𝑅𝛺

𝑉𝑤
                                         (4) 

 

The Cp indicates how efficiently a wind turbine converts the 

kinetic energy of the wind into mechanical energy. As stated 

by Betz's Law, the theoretical maximum efficiency for energy 

extraction from wind is limited to 59.3% [16]. However, real-

world turbines typically operate at lower efficiencies due to 

losses caused by mechanical and aerodynamic factors. 

Mechanical energy produced by the turbine is converted into 
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electrical energy using various types of generators, such as 

DFIG, PMSG, and SCIG. The selection of the generator plays 

a crucial role in determining the system’s efficiency and the 

applied control strategy [17]. To maintain reliable grid 

connection, power electronic converters are employed to 

regulate both voltage and frequency. Since wind energy is 

inherently variable, implementing a MPPT strategy is 

essential to maximize energy capture by continuously 

adjusting parameters like rotor speed and blade pitch angle. 

To improve tracking accuracy under dynamic wind 

conditions, advanced MPPT techniques utilizing Artificial 

Neural Networks (ANNs) and bio-inspired optimization 

algorithms have been investigated [18].  

 

c) Battery Controller 

Figure 4 illustrates the battery control system equipped with 

a bidirectional regulator. In a hybrid microgrid, the Battery 

Energy Storage System (BESS) plays a vital role in mitigating 

power fluctuations, maintaining voltage stability, and 

improving overall system reliability. The battery controller 

oversees both charging and discharging operations via a 

bidirectional DC-DC converter, which manages power 

exchange between the battery and the DC bus. This control 

system comprises a PI controller, a PWM unit, and a 

switching pulse circuit responsible for operating the 

converter. 

 

The control strategy is based on maintaining the DC bus 

voltage (VdcBus) at the reference voltage (Vref) by adjusting the 

duty cycle of the bidirectional converter. The PI controller 

processes the error signal between Vref and VdcBus, ensuring 

minimal steady-state error and fast dynamic response. The 

output of the PI controller determines the duty cycle (D) of 

the PWM signal, which is fed to the switching pulse 

generator. The generated PWM signals control the 

semiconductor switches of the bidirectional converter, 

facilitating smooth power exchange between the battery and 

the DC bus. 

 

During surplus power conditions (high renewable 

generation), the converter operates in buck mode, charging 

the battery by stepping down the DC bus voltage. Conversely, 

during power deficits (low renewable generation), it switches 

to boost mode, discharging the battery to maintain VdcBus 

stability. The bidirectional power flow ensures continuous 

operation of AC loads and seamless integration with the main 

grid. The optimized tuning of the PI controller improves 

transient response, reduces voltage ripples, and enhances 

overall system efficiency. Advanced optimization techniques, 

such as Artificial Neural Networks (ANN) and metaheuristic 

algorithms, can further improve PI controller performance for 

dynamic load variations. 

 

 
Figure 4: Battery Control 

 

d)  Interlinking Converter Control logic 

The converters current control method in the d-q reference 

frame is depicted in Fig.4. The interlinking converter enables 

bidirectional power flow between the AC and DC subsystems 

of a hybrid microgrid, ensuring voltage and frequency 

stability. The control logic is based on the d-q reference frame 

transformation, which converts three-phase voltages and 

currents (Va,Vb,Vc and Ia,Ib,Ic) into d-q components using 

Park’s transformation. This simplifies power regulation, 

where the d-axis controls active power and the q-axis 

manages reactive power. A PLL synchronizes the reference 

frame to the grid frequency.  

 

The controller continuously monitors the SOC of the BESS to 

determine power exchange. When SOC is high, power is 

exported to the grid, and when low, the system prioritizes 

charging. A PI controller processes the error between 

reference (Vref) and measured DC bus voltage (VdcBus), 

generating control signals for voltage regulation. The 

computed d-q control signals are then transformed back into 

abc components using the inverse Park transformation and 

fed into the PWM generator. The switching pulses produced 

by PWM generator drive the Voltage Source Converter 

(VSC), ensuring seamless power exchange while maintaining 

microgrid stability. Optimized tuning methods, such as 

Artificial Neural Networks (ANNs) and metaheuristic 

algorithms, enhance PI controller performance, improving 

dynamic response and reducing voltage deviations 

 

 
Figure 5: Control of Interlinking Converter 

 

3. HOA-ANN MPPT 
 

a) Procedure of HOA 

The MPPT technique based on an Artificial Neural Network 

(ANN) optimized using the Hippopotamus Algorithm (HA) 

significantly improves the performance of hybrid 

photovoltaic (PV)–wind energy systems. It does so by 

continuously adapting the operating point in response to 

variations in environmental conditions. The step-by-step 

process is outlined as follows: 

1) Data Acquisition: Real-time measurement of solar 

irradiance, temperature, wind speed, voltage, and current 

from PV and wind energy sources is conducted. The 

acquired data is normalized and fed into the ANN-based 

MPPT controller for real-time prediction of the optimal 

duty cycle. 

2) Artificial Neural Network (ANN) Training: The ANN is 

trained using historical PV and wind power datasets, 

where inputs include solar irradiance, temperature, wind 

speed, and voltage, and the output is the optimal duty 

cycle of the DC-DC converter. A supervised learning 
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approach, such as Levenberg-Marquardt backpropagation, 

minimizes tracking error and improves adaptability. 

3) Hippopotamus Algorithm (HA) Optimization: HA, a 

metaheuristic optimization algorithm inspired by 

hippopotamus social behavior, fine-tunes the ANN's 

weight and bias parameters. Candidate ANN 

configurations are evaluated iteratively, with the best 

model selected based on Mean Squared Error (MSE) and 

convergence speed. 

4) Real-Time MPPT Execution: The optimized ANN 

continuously predicts the Maximum Power Point (MPP) 

using real-time input variables. The DC-DC converter 

duty cycle is adjusted accordingly, ensuring optimal 

power extraction. 

5) Performance Validation: The MPPT system is monitored, 

and efficiency is evaluated under dynamic environmental 

conditions. The HA-ANN MPPT demonstrates faster 

convergence and higher tracking accuracy compared to 

conventional methods. 

 

This hybrid approach significantly improves tracking speed, 

efficiency, and adaptability, making it well-suited for hybrid 

renewable energy microgrids. 

 

4. Results & Discussions 
 

The proposed scheme is simulated using MATLAB, where 

the HOA-optimized ANN-based MPPT is applied to both the 

PV and wind subsystems. The convergence behavior of the 

Hippopotamus Optimization Algorithm (HOA) for the PV 

and wind systems is illustrated in Figures 6 and 7, 

respectively. The optimization process achieved a best score 

of 0.0064 for the PV system and 0.9801 for the wind system, 

indicating effective convergence and optimal performance in 

both cases. 

 

 

Figure 6: Convergence plot For PV MPPT using HOA 

 

 
Figure 7: Convergence plot For Wind MPPT using HOA 

 

The PV system is tested under varying irradiance conditions: 

1000 W/m² from 0 to 1 second, 800 W/m² during 1–2 seconds 

and again from 3–4 seconds, and 500 W/m² between 2–3 

seconds. Figure 8 illustrates the power contribution within the 

DC microgrid, which includes the PV, wind, battery, and DC 

load components. The wind subsystem operates at a wind 

speed of 12 m/s for the duration of 0–2 seconds, followed by 

a reduced speed of 10 m/s from 2–4 seconds. 

 
Figure 8: Powers of DC Microgrid 

 

 

 

 

Table 1 presents the PV power output recorded at different time intervals under varying irradiance conditions. 

 

Table 1: Efficiency Analysis of the HOA-Driven ANN MPPT 
Irradiance 

(W/m2) 

Theoretical 

Power (kW) 

Measured 

Power (kW) 

Efficiency 

(%) 

1000 20.58 20.12 97.76 

800 16.57 16.18 97.65 

500 10.38 10.06 96.92 
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Table 1 summarizes the efficiency of the proposed HOA-

ANN MPPT algorithm under different irradiance levels. 

When operating at 1000 W/m², the system achieves a 

measured output of 20.12 kW compared to a theoretical 

maximum of 20.58 kW, corresponding to an efficiency of 

97.76%. At an irradiance of 800 W/m², the output reaches 

16.18 kW against a theoretical value of 16.57 kW, resulting 

in 97.65% efficiency. Under lower irradiance conditions of 

500 W/m², the system produces 10.06 kW, while the expected 

power is 10.38 kW, leading to an efficiency of 96.92%. 

 

5. Conclusion 
 

This research presents the Hippopotamus Algorithm (HA) 

optimized Artificial Neural Network (ANN) MPPT for 

efficient power extraction in a hybrid PV-Wind microgrid. 

The proposed method enhances the tracking accuracy, 

convergence speed, and adaptability under varying 

environmental conditions compared to conventional MPPT 

techniques. The performance evaluation under different 

irradiance levels demonstrates the effectiveness of the HOA-

ANN MPPT in maintaining high efficiency. At a solar 

irradiance of 1000 W/m², the system achieves a measured 

power output of 20.12 kW, closely matching the theoretical 

value of 20.58 kW and resulting in an efficiency of 97.76%. 

When the irradiance level drops to 800 W/m², the output 

power is recorded at 16.18 kW compared to the expected 

16.57 kW, maintaining a high efficiency of 97.65%. Under 

lower irradiance conditions of 500 W/m², the system produces 

10.06 kW against a theoretical maximum of 10.38 kW, 

corresponding to an efficiency of 96.92%. These results 

indicate that the HOA-ANN MPPT significantly enhances 

power tracking performance, reducing losses and improving 

system reliability. Furthermore, the metaheuristic 

optimization of ANN parameters ensures faster convergence 

and robustness against sudden irradiance and wind speed 

fluctuations. The findings confirm that the proposed MPPT 

technique outperforms conventional methods making it a 

promising solution for hybrid renewable energy microgrids. 
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