
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Data Orchestration: Modernizing Legacy Data

Orchestration with Cloud Composer

Gautami Nadkarni

Department of Information Systems, State University of New York, University at Buffalo, USA

Abstract: This paper discusses the migration of data orchestration workflows from a legacy tool like Autosys to a modern, cloud - based

solution, Google Cloud Composer. It explores the transition from traditional job scheduling to Directed Acyclic Graph (DAG) - based

workflows using Apache Airflow, culminating in the deployment and management of these workflows in Cloud Composer. The benefits

and challenges of this migration are examined, highlighting the advantages of scalability, flexibility, and cloud integration offered by

Cloud Composer.

Keywords: Data Orchestration, Autosys, Apache Airflow, Cloud Composer, DAG, Migration, Cloud Computing, open source

1. Introduction

Data orchestration is a critical component of modern data

engineering, ensuring that data pipelines run reliably and

efficiently. Traditionally, tools like Autosys have been used

to manage these workflows. However, the rise of cloud

computing and the need for more flexible and scalable

solutions have driven the adoption of modern orchestration

platforms like Apache Airflow and Google Cloud Composer

[1].

This paper explores the journey of migrating data

orchestration from Autosys to Cloud Composer. It outlines

the challenges of legacy systems, the benefits of Airflow's

DAG - based approach, and the advantages of deploying

Airflow on Cloud Composer.

2. Legacy Orchestration with Autosys

Autosys is a widely used job scheduling system that has

served many organizations for decades. It is known for its

reliability and robust scheduling capabilities. However, it also

presents several limitations:

• Rigid Structure: Autosys often requires complex

scripting and configuration, making it difficult to adapt to

changing requirements.
• Limited Scalability: Scaling Autosys can be challenging

and often requires significant infrastructure upgrades.
• Lack of Cloud Integration: Autosys is typically

deployed on - premises, making it difficult to integrate

with cloud - based services.
• Maintenance Overhead: Managing and maintaining

Autosys can be time - consuming and require specialized

expertise.

These limitations often hinder agility and innovation,

prompting organizations to seek more modern solutions.

3. Transition to Apache Airflow

Apache Airflow, an open - source platform, is instrumental in

orchestrating intricate workflows. These workflows are

represented using Directed Acyclic Graphs (DAGs), which

provide a visual representation of the workflow's structure.

This visualization allows for clear and intuitive definition of

dependencies between tasks, ensuring that tasks are executed

in the correct order. Airflow's flexibility and scalability make

it a popular choice for managing data pipelines and other

complex workflows in a variety of industries.

1) DAG - Based Workflows

Airflow's DAG - based approach offers several advantages:

a) Clarity and Visibility: DAGs provide a visual

representation of workflows, making it easier to

understand and manage complex processes.

b) Flexibility: Airflow supports various operators and

integrations, allowing for diverse tasks to be included in

workflows.

c) Scalability: Airflow can be scaled horizontally by adding

more worker nodes.

2) Advantages of Airflow

a) Open Source: Airflow is an open - source project with a

large and active community.

b) Extensibility: Airflow can be extended with custom

operators and integrations.

c) Monitoring and Logging: Airflow provides robust

monitoring and logging capabilities.

4. Moving to Google Cloud Composer

Google Cloud Composer is a managed orchestration service

built on Apache Airflow. It simplifies the deployment and

management of Airflow environments, allowing users to

focus on building and running workflows.

1) Benefits of Cloud Composer

a) Managed Service: Cloud Composer is a fully managed

service, reducing the operational overhead of managing

Airflow infrastructure.

b) Scalability and Reliability: Cloud Composer provides

automatic scaling and high availability.

c) Cloud Integration: Cloud Composer seamlessly

integrates with other Google Cloud services, such as

BigQuery, Dataflow, and Cloud Storage [2].

2) Migration Process

The migration from Autosys to Cloud Composer typically

involves the following steps:

Paper ID: SR25401101851 DOI: https://dx.doi.org/10.21275/SR25401101851 156

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 4, April 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

a) Assessment:
• Conduct a thorough analysis of current Autosys

workflows, meticulously documenting all job

dependencies, schedules, and notification triggers.
• Identify any potential bottlenecks or areas for optimization

within the existing workflows.
• Create a comprehensive inventory of all Autosys jobs,

including their associated scripts, commands, and

input/output files.

b) DAG Development:
• Translate the logic and dependencies of Autosys

workflows into equivalent Airflow DAGs, ensuring a

seamless transition.
• Leverage Airflow's rich set of operators and features to

enhance workflow functionality and flexibility.
• Implement error handling and retry mechanisms within

the DAGs to ensure robustness and reliability.
• Parameterize DAGs to enable dynamic configuration and

adaptability to changing requirements.

c) Testing:
• Rigorously test DAGs in a controlled development

environment that mirrors the production setup.
• Validate that DAGs execute as expected, producing the

desired outcomes and adhering to defined schedules.
• Simulate various failure scenarios to verify the

effectiveness of error handling and recovery mechanisms.
• Conduct performance testing to assess the efficiency and

scalability of DAGs under different workloads.

d) Deployment:
• Establish a secure and scalable Cloud Composer

environment that aligns with organizational policies and

standards.
• Automate the deployment process to minimize manual

intervention and reduce the risk of errors.
• Implement version control and configuration management

practices to track changes and ensure reproducibility.
• Configure appropriate access controls and permissions to

safeguard sensitive data and resources.

e) Monitoring:
• Implement comprehensive monitoring and logging to

track workflow execution, identify potential issues, and

gain insights into system performance.
• Set up alerts and notifications to proactively respond to

anomalies and prevent disruptions.
• Leverage Cloud Composer's built - in monitoring

capabilities and integrate with external monitoring tools as

needed.
• Regularly review logs and metrics to identify trends,

optimize workflows, and ensure operational efficiency.

5. Challenges and Considerations

While the migration to Cloud Composer offers significant

benefits, it also presents challenges:
• Learning Curve: Transitioning to Airflow and DAGs

requires learning new concepts and tools.
• Code Conversion: Existing Autosys scripts may need to

be rewritten for Airflow.

• Dependency Management: Managing dependencies in

Airflow can be complex.

6. Conclusions

Migrating from legacy orchestration tools like Autosys to

modern platforms like Google Cloud Composer offers

substantial advantages in terms of scalability, flexibility, and

cloud integration. By adopting Airflow's DAG - based

approach and leveraging Cloud Composer's managed service,

organizations can streamline their data orchestration

processes and enhance their data engineering capabilities.

Acknowledgment

Causal Productions wishes to acknowledge Michael Shell and

other contributors for developing and maintaining the IEEE

LaTeX style files which have been used in the preparation of

this template. To see the list of contributors, please refer to

the top of file IEEETran. cls in the IEEE LaTeX distribution.

References

[1] Apache Airflow Documentation. [Online]. Available:

https: //airflow. apache. org/

[2] Google Cloud Composer Documentation. [Online].

Available: https: //cloud. google. com/composer/docs

[3] https: //github. com/apache/airflow

[4] Data Pipelines with Apache Airflow Book by Bas

Harenslak and Julian de Ruiter

Paper ID: SR25401101851 DOI: https://dx.doi.org/10.21275/SR25401101851 157

http://www.ijsr.net/
https://cloud.google.com/composer/docs
https://github.com/apache/airflow

