
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 4, April 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Automating Performance Degradation Detection in 

CI/CD Pipelines 
 

Alex Kuriakose 
 

Senior Software Engineer, Workday Inc. 

 

 

Abstract: In production settings, deteriorating performance can result in lost revenue, higher infrastructure expenses, and a bad user 

experience. Automating performance validation is crucial for identifying and averting regressions early in the development lifecycle in 

contemporary CI/CD pipelines. This journal describes a methodical approach to determine response time degradation, specify pass/fail 

criteria, and integrate best practices for a robust performance analysis. To increase the precision of performance validation in CI/CD 

pipelines, the suggested methodology makes use of weighted scoring, statistical filtering, trend detection, and dynamic baselines.  
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1. Introduction 
 

Background and Motivation 

It is essential to incorporate a strong performance evaluation 

component into the CI/CD pipeline as part of the universal 

shift - left methodology. By identifying performance 

bottlenecks early in the development lifecycle, shift - left 

testing significantly lowers the cost of fixing these problems 

later.  

 

According to industry research, the cost of fixing 

performance issues increases exponentially as the defect 

moves from development to production. Early detection 

allows development teams to fix bottlenecks before 

deployment, reducing downtime, infrastructure costs, and 

user impact. For example, a 100 - millisecond increase in page 

load time can reduce conversion rates by 7% and raise 

infrastructure costs by 30% due to increased server load. 

Performance regressions are not only costly in terms of 

infrastructure but can also impact user retention, search 

rankings, and overall business revenue.  

 

In such a scenario, the algorithm used to evaluate 

performance degradation becomes critical. A well - 

designed algorithm should be able to:  

• Accurately detect performance degradation 

• Weigh critical transactions appropriately 

• Handle outliers and noise 

• Avoid false positives and false negatives 

• Allow configurability to accommodate different 

application types and load patterns 

 

Making the algorithm adaptable to various application 

domains, load patterns, and application sizes is another 

crucial aspect. It is highly unlikely that a one - size - fits - all 

strategy would work on large scale, complex systems.  

 

2. Problem Statement 
 

Traditional performance validation in CI/CD pipelines faces 

several challenges:  

• Simple threshold - based validation often leads to false 

positives or negatives.  

• Lack of context around business - critical endpoints can 

misrepresent the severity of degradation.  

• Outliers and noise from environmental factors can skew 

results.  

• Additionally, gradual degradation over multiple releases 

may go unnoticed.  

• Inconsistent test outcomes due to cold starts or initial 

warmup noise.  

 

An effective solution should:  

• Provide a structured scoring mechanism based on 

response time changes.  

• Account for endpoint criticality through weighted scoring.  

• Filter out statistical outliers.  

• Detect trends over multiple releases.  

• Offer clear and consistent pass/fail criteria.  

• Adapt dynamically to different load patterns and 

application sizes.  

 

3. Methodology 
 

1) Response Time Degradation Formula 

The response time degradation score (S) is computed as:  

  
where:  

• S = Response time degradation score (%)  

• Rn = Average response time for the new release 

• Ro = Average response time for the previous release 

 

2) Severity Classification 

Based on the computed degradation score, performance 

outcomes are classified into three zones:  

 

Zone Criteria Interpretation 

 Green S≤+5% 
Minimal or no degradation — 

Acceptable 

  Yellow +5%<S≤+20% Moderate degradation — Warning 

  Red S>+20% Significant degradation — Critical 

 

3) Baseline and Tolerance Ranges 
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Rather than using static thresholds, acceptable deviation is 

adjusted dynamically based on historical performance. A 

rolling average over the last 5–10 releases define the baseline:  

Tolerance = Baseline * (1 + acceptable deviation)  

Example:  

• Baseline = 200 ms 

• Acceptable deviation = 5% 

   Acceptable range = 200 ms ± 10 ms 

This ensures that gradual performance improvements or 

acceptable fluctuations are handled gracefully.  

 

4) Pass/Fail Criteria 

The pass/fail logic incorporates two key conditions:  

• Any red transaction = FAIL 

• More than 50% yellow transactions = FAIL 

If neither of the above occurs, the result is a PASS.  

 

5) Gray Zone Handling 

To prevent hard failures on borderline cases, a "Gray Zone" 

is introduced:  

• If yellow transaction percentage is exactly 50%, the result 

is marked as "Inconclusive. " 

• In such cases, the test is either manually reviewed or a re 

- test is triggered 

 

6) Weighted Scoring 

Endpoints are assigned weights based on their business 

criticality to reflect the actual impact of performance 

degradation. The weighted score is computed as:  

   
where:  

• Wi = Weight based on criticality 

• Si = Degradation score for each transaction 

 
Criticality Weight Example Endpoints 

Critical 1.5 Checkout, Login 

High 1.2 Product Search 

Normal 1 Category Browsing 

Low 0.8 Static Content 

 

7) Outlier Detection 

Outliers caused by temporary infrastructure issues or network 

spikes are filtered out using the 3 - sigma rule:  

• Compute the mean (μ) and standard deviation (σ) of the 

scores.  

• Remove scores that deviate from the mean by more than 

3σ:  

μ − 3σ ≤ S ≤ μ + 3σ 

 

8) Trend Detection 

Degradation over multiple releases may indicate a gradual 

regression even if individual scores pass the criteria. A release 

will fail if degradation persists across the last three or more 

consecutive releases:  

 Sn - 3 > 0, Sn - 2 > 0, Sn - 1 > 0 

 

9) Separate Warmup and Steady - State Metrics 

• Initial warmup requests often show higher response times. 

To prevent skewing, separate warmup from steady - state 

performance:  

• First 5–10% of transactions are excluded from analysis.  

 

10) Graceful Handling of Missing Data 

• Transactions with invalid or missing response time data 

are ignored.  

• If over 10% of the data is missing, the test is flagged as 

inconclusive.  

 

11) Logging and Diagnostics 

Detailed logging is added to simplify root cause analysis:  

• Capture failed transactions and scores.  

• Include timestamps and endpoint names.  

• Generate diagnostic reports for analysis.  

 

Implementation 

The methodology was implemented using Python and 

integrated into a CI/CD pipeline. The system dynamically 

adjusts thresholds based on historical data and transaction 

weighting, ensuring accurate performance validation across 

diverse load conditions.  
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4. Challenges and Limitations 
 

• Weight tuning requires ongoing adjustment based on 

business feedback.  

• Trend analysis may miss performance drops if they are not 

sustained.  

• Outlier filtering can remove valid data if sample size is 

small.  

 

5. Conclusion 
 

The proposed solution provides a structured, adaptive 

approach to performance validation in CI/CD pipelines. By 

combining weighted scoring, outlier removal, and trend 

analysis, it enables more accurate pass/fail decisions and 

helps identify degradation patterns early in the development 

cycle.  
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