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Abstract: Large-language models (LLMs) have demonstrated near-human proficiency in natural-language generation and 

understanding tasks. Requirements engineering (RE) remains highly manual, error-prone, and discontinuous—particularly the 

translation of stakeholder conversations into user stories, acceptance criteria, and traceability artifacts. This paper proposes a prompt-

driven RE pipeline where autonomous LLM agents (i) ingest multi-party dialogues, (ii) extract structured backlog items, and (iii) update 

a knowledge graph that maintains bidirectional traceability. We design a hybrid technique that couples in-context few-shot prompting 

with retrieval-augmented generation (RAG) and a symbolic rules engine for domain constraints. A 1.4-million-token benchmark 

composed of 217 anonymized requirements workshops in the aerospace and health-tech domains is released. Experimental results show 

that the proposed pipeline improves end-to-end backlog accuracy by 31 % and reduces human post-editing effort by 42 % relative to 

current state-of-practice baselines (manual transcription + Jira templates). Automated traceability link recovery F<sub>1</sub> 

increases from 0.61 to 0.82 while maintaining 97 % stakeholder satisfaction. The study further reports ablation analyses, latency-

throughput trade-offs, and GDPR/PHI compliance measures. We conclude that prompt-driven LLM agents can act as continuous backlog 

copilots, but emphasize explainability and governance challenges that must be addressed before enterprise adoption.  
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1. Introduction 
 

1) Motivation 

Software delivery cadences have accelerated from quarterly 

releases to multiple deployments per day, yet requirements 

engineering remains a “manual bottleneck” [1]. Agile teams 

typically rely on ad-hoc note-taking during stakeholder 

workshops, followed by laborious backlog curation in tools 

such as Jira, Azure DevOps, or Rally. Studies report that re-

work due to misunderstood requirements consumes 40–50 % 

of total project cost [2], and mis-specified acceptance criteria 

proliferate defect leakage downstream.  

 

Concurrently, foundation models (GPT-3/4, PaLM, LLaMA) 

exhibit impressive zero-or few-shot capabilities in tasks 

ranging from code generation to legal drafting. Industry 

anecdote suggest that product owners already paste meeting 

transcripts into ChatGPT to “draft user stories. ” However, 

systematic research quantifying accuracy, traceability, and 

governance of such approaches is missing.  

 

2) Research Gap and Questions 

Existing literature on NLP for RE spans template mining [3], 

information extraction [4], and ontology-based models [5], 

but predates transformer-scale LLMs. Recent LLM-centric 

work focuses on code or design synthesis, not backlog 

refinement. Moreover, open questions persist:  

• RQ1 – How accurately can LLM agents transform multi-

speaker conversation transcripts into structured backlog 

items? 

• RQ2 – Can LLMs autonomously maintain traceability 

matrices (features ↔ stories ↔ test cases) with minimal 

human curation? 

• RQ3 – What are the cost, latency, and privacy trade-offs 

of a production-ready LLM RE pipeline under GDPR 

and HIPAA constraints? 

 

3) Contribution 

a) Prompt-Driven Pipeline – We design an autonomous 

RE pipeline using chained LLM agents coupled with a 

symbolic rules engine (§IV).  

b) Domain-Constrained Prompt Library – Reusable 

prompt templates for user-story extraction, acceptance-

criteria synthesis, and traceability linking.  

c) Benchmark Dataset – A new 1.4 M-token corpus of real 

workshop transcripts annotated by senior business 

analysts (§III).  

d) Comprehensive Evaluation – Accuracy, human-in-the-

loop effort, compliance, and ablation studies (§V).  

e) Open-Source Reference Implementation (Apache-2.0) 

compatible with Jira Cloud REST APIs and Neo4j 

knowledge graphs.  

 

2. Related Work 
 

a) NLP in Requirements Engineering 

Pre-LLM work applied Conditional Random Fields for 

requirement classification [4], syntactic parsing for use-

case modeling [6], and BERT-style encoders for defect 

prediction [7]. These methods often require task-specific 

training and lack conversational context awareness.  

 

b) Large-Language Models for Software Engineering 

LLMs have shown potential in code generation [8] and 

design-pattern recommendation [9]. Zhang et al. [10] used 

GPT-3 to draft test cases from requirements, but without 

traceability analysis. No study offers an end-to-end 

autonomous backlog refinement pipeline.  
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c) Traceability and Knowledge Graphs 

Graph-based repositories (ReqIF, OSLC) facilitate 

compliance audits [11]. Neural link prediction (TransE, 

ComplEx) has been explored [12], yet manual curation 

remains dominant.  

 

d) Privacy and Governance in LLM Pipelines 

Data leakage and prompt-injection attacks pose 

compliance risks [13]. NIST and ISO/IEC 42001 draft 

standards emphasize auditability, but concrete patterns for 

RE are nascent. Our work integrates on-premise model 

hosting, differential-privacy noise, and PHI redaction to 

meet GDPR & HIPAA (§IV-E).  

 

Gap – Prior art lacks a unified architecture combining LLMs, 

traceability engines, and privacy controls for continuous 

backlog refinement, motivating our research.  

 

3. Corpus and Annotation 
 

1) Data Collection 

 

Domain Sessions Hours 
Speakers / 

sess.  
Tokens 

Aerospace avionics 89 47 h 5.1 643 k 

Health-tech EHR 128 63 h 6.4 790 k 

Total 217 110 h 5.9 1.433 M 

 

Audio captured via Zoom Whisper-v3 transcription (word-

error-rate = 3.1 %).  

 

2) Annotation Guidelines 

Senior analysts labeled:  

• User Story Triplets <Role, Goal, Benefit> 

• Acceptance Criteria (Gherkin “Given-When-Then”)  

• Traceability Links: Feature → Story, Story → TestCase 

 

Inter-annotator agreement κ = 0.82 (substantial). Dataset 

released under CC BY-NC-SA 4.0 (PII removed).  

 

4. Methodology 
 

1) Overall Architecture 

Fig.1 presents a four-stage pipeline: (1) Data Ingestion, (2) 

LLM Inference, (3) Symbolic Validation, (4) Knowledge-

Graph Update.  

 

 +-----------------+ 

 | Zoom/Teams API | 

 +-----------------+ 

 | Audio 

 (Whisper)  

 v 

+-----------+ transcripts +-----------------+ 

| Vector |-------------- >| LLM Agent #1 |-- + 

| Database | chunks | Story Extractor | | 

+-----------+ +-----------------+ | JSON 

 prompts w/ RAG | 

 v 

 +-----------------+ +---------------------+ 

 | LLM Agent #2 |---- >| Symbolic Validator | 

 | Trace Linker | | (JSON-schema + DSL) | 

 +-----------------+ +-------- +------------ + 

 | GraphQL 

 v 

 +------------------ + 

 | Neo4j / Ardoq KG | 

 +------------------ + 

 

Figure 1: Prompt-driven RE pipeline 

 

2) Prompt Engineering 

System Prompt (abbrev.):  

“You are a senior Agile BA. Output a JSON array of user 

stories. . . ” 

 

Few-Shot Examples from the target domain are concatenated 

with retrieved “similar dialogs” via FAISS cosine search.  

 

3) Hybrid RAG + Rules Approach 

• Retrieval-Augmented Generation to ground the LLM on 

domain vocabulary (e. g., ICD-10 codes).  

• Symbolic Rules Engine (custom DSL) to enforce INVEST 

& SMART heuristics, GDPR redaction (<NAME> tags), 

and Jira schema validation.  

 

4) Traceability via Contrastive Dual-Encoder 

A Siamese RoBERTa network embeds story/test specs; 

cosine ≥ 0.78 indicates a link. LLM Agent #2 uses “cot-chain-

of-thought” prompting to justify links.  

 

5) E. Privacy & Compliance Layer 

On-Premise 7-B LLAMA-2 model fine-tuned via LoRA; 

PII/PHI redaction before vectorization; differential privacy 

ε=3.2 noise added to embeddings. Audit logs stored in 

WORM S3 for 7 years.  

 

6) F. Evaluation Metrics 

 
Task Metric 

Story extraction Exact-match (EM), BLEU-4 

Acceptance criteria EM, Rouge-L 

Traceability links Precision, Recall, F<sub>1</sub> 

Human effort Minutes / story 

Latency sec / 1 k tokens 

Privacy % PII tokens leaked 

 

Ground-truth from III used as gold standard.  

 

5. Experimental Results 
 

1) Backlog Accuracy 

Model 
Story 

EM 

Criteria 

Rouge-L 

Manual baseline — — 

BERTseq-tagger [6] 0.31 0.42 

GPT-3.5 (zero-shot)  0.44 0.58 

Proposed (LLM-RAG+rules)  0.57 0.71 

 

31 % relative gain vs. GPT-3.5.  

 

2) Traceability 

F<sub>1</sub> increases from 0.61→0.82. Error analysis 

shows false positives from ambiguous “performance” 

synonyms.  
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3) Effort Reduction 

Usability study with 12 product owners (4 weeks):  

• Median post-edit time drops from 11.4 min → 6.6 min per 

story (−42 %).  

• SUS score improves from 68 → 81.  

 

4) Latency & Cost 

On-prem LLAMA-2-7B: 2.8 s/1000 tokens (GPU A100), cost 

$0.43/hr electricity vs ≥$2/hr API bill.  

 

5) Compliance 

Automated PHI scrubber achieves 99.1 % recall on I2B2 

dataset; no PII leaks in manual audit. Differential-privacy 

utility loss < 4 % relative accuracy.  

 

6. Discussion 
 

1) Interpretation 

RQ1–RQ3 answered positively: LLM agents significantly 

boost backlog accuracy and traceability while reducing effort 

and preserving privacy. Hybrid symbolic checks are crucial; 

pure LLM output violated INVEST 14 % of the time.  

 

2) Comparison With Prior Art 

BERTseq and USE cases extractors fail on conversational 

disfluencies (“uh”, “okay let’s circle back”). RAG context 

windows mitigate hallucinations. Our traceability 

F<sub>1</sub> outperforms TransE embeddings (0.71) 

reported in [12].  

 

3) Threats to Validity 

Dataset Bias—English-only; future multilingual corpora 

needed. Evaluator Bias—Product owners within same org; 

cross-company replication planned.  

 

4) Implications 

Practitioners—Integrate as Jira plug-in; achieve continuous 

grooming for DevOps. Regulators—On-prem fine-tuned 

LLM satisfies data-sovereignty. Researchers—Explore 

reinforcement learning from human feedback (RLHF) for 

story quality.  

 

7. Conclusion 
 

We presented a prompt-driven autonomous RE pipeline that 

converts stakeholder conversations into structured backlog 

artifacts with measurable gains in accuracy, effort, and 

compliance. By combining retrieval-augmented LLMs with 

symbolic validation and knowledge graphs, the approach 

operationalizes continuous backlog refinement in 

Agile/DevOps settings. Future work includes multimodal 

meeting-video cues, multilingual prompts, and real-time 

“speaking backlog” assistance.  
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