On the Topological Indices of Hexagonal Network (HX₆), Complete Bi-Partite and Complete Graphs

N. K. Raut

Ex. Head, Department of Physics, Sunderrao Solanke Mahavidyalaya, Majalgaon Dist. Beed (M.S.) India Email: *rautnk87[at]gmail.com*

Abstract: A graph in which any two distinct points are adjacent is called a complete graph. A complete bi-partite graph is a graph whose vertices can be partitioned into two subsets V_1 and V_2 such that no edge has both endpoints in the same subset and every possible edge that could connect vertices in different subsets is part of graph and is denoted by $K_{m,p}$. In this paper some d_2 -distance degree, eccentricity; sum-degree based topological indices are studied for hexagonal network with dimension six, complete bi-partite and complete graphs.

Keywords: Complete graph, complete bi-partite graph, degree, distance-degree, eccentricity, hexagonal network, Sanskruti index, sumdegree and topological index

1. Introduction

Let G be a simple, finite, connected graph with vertex set V(G) and edge set E(G). The degree of a vertex $u \in V(G)$ is denoted by d_u and is the number of vertices adjacent to u. The edge connecting the vertices u and v is denoted by uv [1]. A topological index is a numerical parameter mathematically derived from the graph structure. Topological indices based on degrees play a major role in the field of chemical graph theory among several classes of topological indices [2]. Hexagonal network is symbolized by HX_n, where n is the number of vertices in each side of hexagon. Hexagonal networks are multiprocessor interconnection network based on regular triangular tessellations [3]. The 2-dimensional hexagonal mesh HX_2 is composed of six triangles. If we add a layer of triangles around this 2-dimensional mesh, we obtain the 3dimensional mesh HX₃ [4]. The strong metric dimension of triangular tessellations are studied in [5]. Honeycomb, hexagonal networks are known as natural architectures as they bear resemblance to atomic or molecular lattice structure [6]. Hexagonal meshes like HX2, HX3 were constructed and studied for topological indices in [7]. Motivated by the definitions of Gourava indices and their applications, the neighborhood Gourava indices were defined in [8-9]. The eccentric atom-bond sum connectivity index of complete graph has the lowest possible value zero [10]. Multiple atom-bond connectivity index of some grid graph were studied in [11]. In 2017, Naji et al. [12] defined first and second leap Zagreb indices by taking 2-distance degree of vertices instead of taking degree. The first and second leap hyper Zagreb indices were proposed by Kulli [13]. The first and second leap Gourava indices are defined as [14]

$$LGO_{1}(G) = \sum_{uv \in E(G)} [d_{2}(u) + d_{2}(v) + d_{2}(u)d_{2}(v)]. \quad (1)$$

$$LGO_{2}(G) = \sum_{uv \in E(G)} [(d_{2}(u) + d_{2}(v)) \times d_{2}(u)d_{2}(v)]. \quad (2)$$

The new versions of first and second leap Zagreb indices are defined as

$$LM_{1}^{*}(G) = \sum_{uv \in E(G)} [d_{2}(u) + d_{2}(v)].$$
(3)

$$LM_{2}(G) = \sum_{uv \in E(G)} [d_{2}(u) \times d_{2}(v)], \qquad (4)$$

where $d_2(v)$ is the 2-distance degree of v, defined as the number of vertices which are at distance 2 from v in G.The

distance d(u,v) between two vertices u and v of a graph G is defined as the length of shortest path connecting them. For any vertex $u \in V(G)$, its eccentricity ecc(u) is defined as

 $Ecc(u) = \max\{d(u,v)\forall u \in V(G)\}.$

Some new modified versions of Zagreb indices [15-21] are expressed as follows:

$$M_{1}^{*}(G) = \sum_{uv \in E(G)} [ecc(u) + ecc(v)].$$
(5)

$$M_1^{**}(G) = \sum_{v \in V(G)} ecc(v)^2.$$
 (6)

$$M_2^*(G) = \sum_{uv \in E(G)} ecc(u) \times ecc(v).$$
(7)

The eccentric connectivity index [22] of molecular graph is defined as

ECI (G) =
$$\sum_{u \in V(G)} d_u \times ecc(u)$$
, (8)

where ecc (u) is the eccentricity of vertex u of a graph G.

The Sankruti index was introduced by Hossamani in [23] as

$$S(G) = \sum_{uv \in E(G)} \left(\frac{s_u \times s_v}{s_u + s_v - 2}\right)^3.$$
(9)

The sum-degree based geometric-arithmetic index can be defined as [24-25]

$$GA_5(G) = \sum_{uv \in E(G)} \frac{2\sqrt{S_u \times S_v}}{S_u + S_v}, \quad (10)$$

where S_u is the sum of degrees of all adjacent vertices to a vertex u.

Gourava Sombor index [26-27] and fourth ABC index are defined as

$$GSO(G) = \sum_{uv \in E(G)} \sqrt{(d_u + d_v)^2 + (d_u \times d_v)^2}. (11)$$
$$ABC_4(G) = \sum_{uv \in E(G)} \frac{\sqrt{S_u + S_v - 2}}{S_u S_v}, (12)$$

where $S_u = \sum_{uv \in E(G)} d_v$ and $S_v = \sum_{uv \in E(G)} d_u$.

Hexagonal network is symbolized by HX_n, where n is the number of vertices in each side of hexagon. By algebraic method there are five types of edges based on the degree of the end vertices of each edge as: E_{34} , E_{36} , E_{44} , E_{46} , and E_{66} . There are $|V| = 3n^2-3n+1$ number of vertices and $|E|=9n^2-15n+6$ edges and $\Delta = 6$, $\delta = 3$ in HX₆ [28-29]. There are 240 edges which match the HX₆ structure and twelve types of edges based on the sum-degree of vertices and the vertices are either of degree 3, 4 or 6 [30-31].

Eccentricity pairs (e_u, e_v) describe how far apart vertices are, degree pairs (d_u, d_v) describe how well connected they are. The eccentricity ecc(v) of v is the distance between v and a vertex farthest from v in G. Eccentricities of vertices for HX₆ are: corner vertices has eccentricity 3, edge vertices has eccentricity 4 and interior vertices eccentricity equal to 6.

Let $K_{m,n}$ be a complete bi-partite graph with m+n vertices as $|V_1|=m, |V_2|=n$, $V(K_{m,n}) = V_1 \cup V_2$. The total number of edges in $K_{m,n}$ are $|E|=m \times n$. The degrees are such that each vertex in the first set (size m) has a degree of n, each vertex in the second set (size n) has a degree of m. In $K_{m,n}$ graph 2-distane degree of a vertex in set 1 is (m-1)+n and 2-distance degree of a vertex in set 2 is (n-1)+m. All the vertices in a complete bi-partite graph have eccentricity is equal to 2 that is ecc(u) = $2 \forall u \in V(G)$.

Let K_n be a complete graph with n vertices. In this graph corner vertices has degree 3 and there are six vertices of degree 3. Every vertex of K_n is incident with n-1 edges and $|V|=n, d_u=n-1, |E|=\frac{n(n-1)}{2}$.Since K_n is symmetric, all vertices have the same sum-degree as $S_u=S_v=(n-1)^2$.Each vertex has eccentricity 1 for complete graph K_n of order n > 2, since diameter of graph $K_n = 1$.For any vertex v in a complete graph, $d_2(v) = 0$.There is no vertex that is exactly at distance 2 from any given vertex because all vertices are directly adjacent.

All the symbols and notations used in this paper are standard and taken from standard books of graph theory [32-34]. In this paper $LGO_1(G)$, $LGO_2(G)$, $LM_1^*(G)$, $LM_2(G)$, $M_1^*(G)$, $M_1^{**}(G)$, $M_2^*(G)$, ECI(G), S(G), GA₅(G), GSO(G) and ABC₄(G) are studied for hexagonal network with dimension six, complete bi-partite and complete graphs.

2. Materials and Methods

A molecular graph is a graph in which the vertices correspond to the atoms and the edges to the bonds of a molecule. The molecular graphs of HX₆, complete bi-partite $K_{3,4}$ and complete K_4 graphs are given in figures (1), (2) and (3) respectively. It is observed from figure of HX₆ there are five types of edges based on (d_u, d_v) and twelve types edges for sum-degree of end vertices. Edge partition, degree, frequency, eccentricity partition and sum-degree vertex partition of HX₆ obtained from figure (1) are given in tables (1), (2) and (3).

Results and Discussion

1) Hexagonal network HX₆ Leap degree:

Theorem 1.1: First leap Gourava index of hexagonal network HX_6 is 1546n+226.

Proof. By using definition of first leap Gourava index and d_2 -distance degree from figure (1), we have

$$\begin{split} & LGO_{1}(HX_{6}) = \sum_{uv \in E(G)} [d_{2}(u) + d_{2}(v) + d_{2}(u)d_{2}(v)] \\ = & |E_{1}|[d_{2}(u) + d_{2}(v) + d_{2}(u)d_{2}(v)] + |E_{2}|[d_{2}(u) + d_{2}(v) + d_{2}(u)d_{2}(v)] + |E_{3}|[d_{2}(u) + d_{2}(v) + d_{2}(u)d_{2}(v)] + |E_{4}|[d_{2}(u) + d_{2}(v) + d_{2}(u)d_{2}(v)] + |E_{5}|[d_{2}(u) + d_{2}(v) + d_{2}(u)d_{2}(v)] \end{split}$$

 $=2n[3 + 4 + 3 \times 4] + 2n[3 + 6 + 3 \times 6] + (3n+2)[4 + 4 + 4 \times 4] + (11n+1)[4 + 6 + 4 \times 6] + (21n+3)[6 + 6 + 6 \times 6] = 1546n+226.$

Theorem 1.2: Second leap Gourava index of hexagonal network HX_6 is 12588n+1792.

Proof. By using definition of second leap Gourava index and d_2 -distance degree of each vertex from figure (1), we have

$$\begin{split} & LGO_{2}(HX_{6}) = \sum_{uv \in E(G)} [(d_{2}(u) + d_{2}(v)) \times d_{2}(u)d_{2}(v)] \\ = & |E_{1}|[(d_{2}(u) + d_{2}(v)) \times d_{2}(u)d_{2}(v)] + |E_{2}|[(d_{2}(u) + d_{2}(v)) \times d_{2}(u)d_{2}(v)] + |E_{3}|[(d_{2}(u) + d_{2}(v)) \times d_{2}(u)d_{2}(v)] + |E_{4}|[(d_{2}(u) + d_{2}(v)) \times d_{2}(u)d_{2}(v)] + |E_{5}|[(d_{2}(u) + d_{2}(v)) \times d_{2}(u)d_{2}(v)] \\ = & 2n[(3 + 4) \times 3 \times 4] + 2n[(3 + 6) \times 3 \times 6] + (3n + 2)[(4 + 4) \times 4 \times 4] + (11n + 1)[(4 + 6) \times 4 \times 6] + (21n + 3)[(6 + 6) \times 6 \times 6] \\ = & 12588n + 1792. \end{split}$$

Eccentricity:

Theorem 1.3: $M_1^*(HX_6)$ of hexagonal network HX_6 is 2148. **Proof.** By using equation (5) and table (2), we have $M_1^*(HX_6) = \sum_{uv \in E(G)} [ecc(u) + ecc(v)]$ $=|E_1|[ecc(u) + ecc(v)] + |E_2|[ecc(u) + ecc(v)] +$ $|E_3|[ecc(u) + ecc(v)] + |E_4|[ecc(u) + ecc(v)] +$ $|E_5|[ecc(u) + ecc(v)]$ = 36[3 + 4] + 72[3 + 6] + 48[4 + 4] + 72[4 + 6] + 12[6 +6] = 2148.

Theorem 1.4: Eccentric connectivity index of hexagonal network HX₆ is 2514.

Proof. By using equation (8) and tables (1) and (2), we have ECI (HX₆) = $\sum_{u \in V(G)} d_u \times ecc(u)$

 $= |E_1|[d_u \times ecc(u)] + |E_2|[d_u \times ecc(u)] + |E_3|[d_u \times ecc(u)]$ $= 6 \times 3 \times 3 + 30 \times 4 \times 4 + 55 \times 6 \times 6$

= 2514.

Theorem 1.5: New modified version second Zagreb index of hexagonal network HX_6 is 4656.

Proof. By using equation (7) and table (2), we have $M_2^*(HX_6) = \sum_{uv \in E(G)} [ecc(u) \times ecc(v)]$ $=|E_1|[ecc(u) \times ecc(v)] + |E_2|[ecc(u) \times ecc(v)] +$ $|E_3|[ecc(u) \times ecc(v)] + |E_4|[ecc(u) \times ecc(v)] +$ $|E_5|[ecc(u) \times ecc(v)]$ = 36 (3 × 4) + 72(3 × 6) + 48(4 × 4) + 72(4 × 6) + 12(6 × 6)=4656.

Sum-degree:

Theorem 1.6: Sankruti index of hexagonal network HX_6 is 1017953.

$$S(HX_6) = \sum_{uv \in E(G)} \left(\frac{1}{S_u + S_v - 2} \right)^3$$

=12 $\left(\frac{14 \times 19}{14 + 19 - 2} \right)^3 + 12\left(\frac{19 \times 20}{19 + 20 - 2} \right)^3 + 6(n-5)\left(\frac{20 \times 20}{20 + 20 - 2} \right)^3 + 12\left(\frac{19 \times 32}{19 + 32 - 2} \right)^3 + 12(n-4)\left(\frac{20 \times 32}{20 + 32 - 2} \right)^3 + 6\left(\frac{14 \times 29}{14 + 29 - 2} \right)^3 + 12\left(\frac{29 \times 32}{29 + 32 - 2} \right)^3 + 6\left(\frac{29 \times 36}{29 + 36 - 2} \right)^3 + 6\left(\frac{29 \times 36}$

 $\begin{array}{l} 12(n-3)(\frac{32\times36}{32+36-2})^3 + 6(n-4)(\frac{32\times32}{32+32-2})^3 + (9n^2 - 51n + \\72)(\frac{36\times36}{36+36-2})^3 \\ = 1017953. \end{array}$

Theorem 1.7: Gourava Sombor index of hexagonal network HX_6 is 7778.

Proof. GSO(G) of hexagonal network HX₆

$$\begin{split} & \mathrm{GSO}(\mathrm{HX}_6) = \sum_{uv \in \mathrm{E}(\mathrm{G})} \ \sqrt{(\mathrm{d}_u + \mathrm{d}_v)^2 + (\mathrm{d}_u \times \mathrm{d}_v)^2} \\ & = |\mathrm{E}_1| \sqrt{(3+4)^2 + (3\times4)^2} + |\mathrm{E}_2| \sqrt{(3+6)^2 + (3\times6)^2} + \\ & |\mathrm{E}_3| \sqrt{(4+4)^2 + (4\times4)^2} + |\mathrm{E}_4| \sqrt{(4+6)^2 + (4\times6)^2} + \\ & |\mathrm{E}_5| \sqrt{(6+6)^2 + (6\times6)^2} \\ & = 12\sqrt{(3+4)^2 + (3\times4)^2} + 6\sqrt{(3+6)^2 + (3\times6)^2} + \\ & (6n-18)\sqrt{(4+4)^2 + (4\times4)^2} + (12n-24)\sqrt{(4+6)^2 + (4\times6)^2} + (9n^2-33n+30)|\sqrt{(6+6)^2 + (6\times6)^2} = 7778. \end{split}$$

2) Complete bi-partite graph (K_{m, n}) Leap degree:

Theorem 2.1: First leap Gourava index of complete bipartite graph is $mn(m^2 + n^2 + 2mn - 1)$.

Proof. By using equation (1) and d_2 -distance degree of each vertex from figure (2), we have

$$\begin{split} & LGO_1(K_{m,n}) = \sum_{uv \in E(G)} [d_2(u) + d_2(v) + d_2(u)d_2(v)] = |E|[d_2(u) + d_2(v) + d_2(u)d_2(v)] \\ &= mn[(m + n - 1) + (m + n - 1) + (m + n - 1)(m + n - 1)] \\ &= mn(m^2 + n^2 + 2mn - 1). \end{split}$$

Theorem 2.2: Second leap Gourava index of complete bipartite graph is $2mn(m + n - 1)^3$.

Proof. By using definition of second leap Gourava index (2) and d_2 -distance degree of each vertex from figure (2), we have

$$\begin{split} LGO_2(K_{m,n}) &= \sum_{uv \in E(G)} [(d_2(u) + d_2(v)) \times \\ d_2(u)d_2(v)] &= |E| [(d_2(u) + d_2(v)) \times d_2(u)d_2(v)] \\ &= mn[((m + n - 1) + (m + n - 1)) \times (m + n - 1)(m + n - 1)] \\ &= 2mn(m + n - 1)^3 \,. \end{split}$$

Eccentricity:

Theorem 2.3: New modified version of first Zagreb index of complete bi-partite graph is 4mn.

Proof. By using equation (5) and figure (2), we have $M_1^*(K_{m,n}) = \sum_{uv \in E(G)} [ecc(u) + ecc(v)]$ = |E|[ecc(u) + ecc(v)] =mn(2+2)=4mn.

Theorem 2.4: Eccentric connectivity index of complete bipartite graph is 4mn.

Proof. By using equation (8) and figure (2), we have ECI $(\mathbf{K}_{m,n}) = \sum_{\mathbf{u} \in \mathbf{V}(\mathbf{G})} d_{\mathbf{u}} \times \text{ecc}(\mathbf{u})$ $= \sum_{\mathbf{v} \in V_1(\mathbf{G})} n \times 2 + \sum_{\mathbf{v} \in V_2(\mathbf{G})} m \times 2$ $= (m \times n \times 2) + (n \times m \times 2) = 4mn.$

Theorem 2.5: New modified version of second Zagreb index of complete bi-partite graph is 4mn.

Proof. By using (7) and figure(2), we have new modified version of second Zagreb index $M_2^*(K_{m,n}) = \sum_{uv \in E(G)} ecc(u) \times ecc(v)$

 $= |\mathbf{E}| [\operatorname{ecc}(\mathbf{u}) \times \operatorname{ecc}(\mathbf{v})]$

= mn(2 \times 2)=4mn.

Sum-degree:

Theorem 2.6: Sankruti index complete bi-partite graph is $mn(\frac{m^2n^2}{2(mn-1)})^3$.

Proof. It is observed from figure (2), $S_u = \sum_{uv \in E(G)} d_v = mn$ and $S_v = \sum_{uv \in E(G)} d_u = mn$, so the Sankruti index of complete bi-partite graph is

$$\begin{split} S(K_{m,n}) &= \sum_{uv \in E(G)} \left(\frac{S_u \times S_v}{S_u + S_v - 2} \right)^3 \\ &= |E| \left(\frac{mn \times mn}{mn + mn - 2} \right)^3 \\ &= mn \left(\frac{m^2 n^2}{2(mn - 1)} \right)^3. \end{split}$$

Theorem 2.7: Gourava Sombor index of complete bi-partite graph is $mn \sqrt{(m+n)^2 + (mn)^2}$.

Proof. Each vertex in the first set (size m) has degree of n and each vertex in the second set (size n) has degree of m, then Gourava Sombor index of complete bi-partite graph is

$$\begin{aligned} &GSO(K_{m,n}) = \sum_{uv \in E(G)} \sqrt{(d_u + d_v)^2 + (d_u \times d_v)^2} \\ &= |E| \sqrt{(d_u + d_v)^2 + (d_u \times d_v)^2} \\ &= mn \sqrt{(m+n)^2 + (mn)^2}. \end{aligned}$$

3) Complete graph Leap degree:

Theorem 3.1: First leap Gourava index of complete graph is zero.

Proof. For a complete graph K_n of order n, the diameter is 1.So for any vertex v in a complete graph, the $d_2(v) = 0$. There is no vertex that is exactly at distance 2 from any given vertex because all vertices are directly adjacent. $LGO_1(K_n) = 0$.

Theorem 3.2: Second leap Gourava index of complete graph is zero.

Proof. For a complete graph K_n of order n, the diameter is 1.So for any vertex v in a complete graph, $d_2(v) = 0$. There is no vertex that is exactly at distance 2 from any given vertex because all vertices are directly adjacent.

$LGO_2(K_n) = 0.$

Eccentricity:

Theorem 3.3: New modified version of first Zagreb index of complete graph is n(n-1).

Proof. By using equation (5) and figure (3), we have $M_1^*(K_n) = \sum_{uv \in E(G)} ecc(u) + ecc(v)$ = |E|[ecc(u) + ecc(v)] $= \frac{n(n-1)}{2}(1+1) = n(n-1).$

Theorem 3.4: Eccentric connectivity index complete graph is $\frac{n(n-1)^2}{2}$.

Proof. By using (8) and figure (3), we have ECI (K_n) = $\sum_{u \in V(G)} d_u \times ecc(u)$ = $\sum_{v \in V(G)} (n-1) \times 1$

 $=\frac{n(n-1)^2}{2}.$

Theorem 3.5: New modified version of second Zagreb index of complete graph is $\frac{n(n-1)}{2}$.

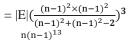
Proof. By using equation (7) and figure (3), we have $M_{2}^{*}(K_{n}) = \sum_{uv \in E(G)} ecc(u) \times ecc(v)$ $= |E|[ecc(u) \times ecc(v)]$ $= \frac{n(n-1)}{2} (1 \times 1) = \frac{n(n-1)}{2}.$

Sum-degree:

Theorem 3.6: Sankruti index of complete graph is $\frac{n(n-1)^{13}}{n(n-1)^{13}}$

Proof. By using equation (9) and figure (3), we have sumdegree $S_u=S_v=(n-1)^2$. Then Sankruti index of complete graph is

$$\mathbf{S}(\mathbf{K}_n) = \sum_{uv \in E(G)} \left(\frac{\mathbf{S}_u \times \mathbf{S}_v}{\mathbf{S}_u + \mathbf{S}_v - 2} \right)^3$$



$$=\frac{16(n^2-2n)^3}{16(n^2-2n)^3}$$
.

Theorem 3.7: Gourava Sombor index of complete graph is $\frac{n(n-1)^2}{2}\sqrt{2+(n-1)^2}$.

Proof. By using equation (11) and figure (3), we have

$$GSO(K_n) = \sum_{uv \in E(G)} \sqrt{(d_u + d_v)^2 + (d_u \times d_v)^2} = \frac{|E|\sqrt{(d_u + d_v)^2 + (d_u \times d_v)^2}}{2} \sqrt{[(n-1) + (n-1)]^2 + [(n-1) \times (n-1)]^2} = \frac{n(n-1)^2}{2} \sqrt{2 + (n-1)^2}.$$

The computed values of $LM_1^*(G)$, $LM_2(G)$, $M_1^{**}(G)$, $GA_5(G)$ and $ABC_4(G)$ topological indices of HX_6 , complete bipartite and complete graphs are represented in table (4).

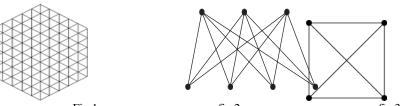


Fig.1. fig.2. fig.3. Figure 1. Hexagonal network of dimension 6, figure 2. Complete bipartite graph K_{3,4}, **Figure 3:** Complete graph K₄.

Table 1: Edge partition of HX _n .							
(d_u, d_v)	(3, 4)	(3, 6)	(4, 4)	(4, 6)	(6, 6)		
No. of edges	12	6	6n-18	12n-24	9n ² -33n+30		

Table 2.Degree, frequency, eccentricity partition of HX₆.

Position of vertex	du	Eccentricity	Count
corner vertices	3	3	6
edge vertices	4	4	30
interior vertices	6	6	55

Table	3:	Sum-degree	partition	of	HX ₆ .
Lanc	. .	Sum degree	partition	O1	11770.

(S_u, S_v)	(14, 19)	(19,20)	(20, 20)	(19, 29)	(19,32)	(20,32)	(14,29)	(29,32)	(29,36)	(32,36)	(32,32)	(36,36)
No. of edges	12	12	6(n-5)	12	12	12(n-4)	6	12	6	12(n-3)	6(n-4)	$9n^2-51n+72$

Table 4: Topologocal indices of HX₆, complete bi-partite and complete graphs.

Topological index →	$LM_1^*(G)$	LM ₂ (G)	$M_1^{**}(G)$	GA5(G)	ABC4(G)
HX ₆	418n+62	1128n+164	2514	239	2.455
complete bi- partite graph	2mn(m+n- 1)	$mn(m+n-1)^2$	4mn	mn	$\frac{\sqrt{2mn-2}}{mn}$
complete graph	0	0	$\frac{n(n-1)}{2}$	$\frac{n(n-1)}{2}$	$\frac{n\sqrt{2(n-1)^2-2}}{2(n-1)^3}$

3. Conclusion

The topological indices $LGO_1(G)$, $LGO_2(G)$, $LM_1^*(G)$, $LM_2(G)$, $M_1^*(G)$, $M_1^*(G)$, $M_2^*(G)$, ECI (G), S(G), GA₅(G), GSO(G) and ABC₄(G) are studied for hexagonal network with dimension six, complete bi-partite and complete graphs. $M_1^*(G)$, $M_2^*(G)$, $M_1^{**}(G)$ and ECI(G) has the same value 4mn for complete bi-partite graph. $LGO_1(G)$,

 $LGO_2(G)$, $LM_1^*(G)$ and $LM_2(G)$ topological indices has zero value for complete graph (K_n).

References

[1] M. R. R. Kanna, S. Roopa and L. Parashivamurthy, Topological indices of Vitamin D₃, International

Journal of Engineering and Technology, 7 (4) (2018) 6276 - 6284.

- [2] S. Mondal, M. Imran, N. De and A. Pal, Neighborhood M - polynomial of titanium compounds, Arabian Journal of Chemistry, 103244, 14 (2021) 01 - 12.
- [3] P. Sivagami, I. Rajasingh and S. M. Arul, On 3 rainbow domination in hexagonal networks and honeycomb networks, International Journal of Pure and Applied Mathematics, 101 (5) (2015) 839 - 847.
- [4] S. M. Kang, W. Nazeer, M. A. Zahid, A. R. Nizami, A. Aslam and M. Munir, M - polynomials and topological indices of hex - derived networks, Open Phys., 16 (2018) 394 - 403.
- [5] K. Sathish, B. Rajan, On strong metric dimension of certain triangular tessellations, International Journal of Pure and Applied Mathematics, 101 (5) (2015) 637 - 645.
- [6] R. Prabha, S. R. Devi, General position problem of hexagonal derived networks, Advances and Applications in Mathematical Sciences, 21 (1) (2021) 145 - 154.
- [7] Ali N. A. Koam, A. Ahmad and Y. Ahmad, Computation of reverse degree - based topological indices of hex - derived networks, AIMS Mathematics, 6 (10) (2021) 11330 - 11345.
- [8] J. R. Tousi, M. Ghods and F. Mohavedi, Investigating neighborhood Gourava indices using neighborhood M
 polynomial as some drug structures, Commun. Combin. Cryptography and Computer Science, 2 (2022) 154 - 166.
- [9] K. G. Mirajkar, Pooja B., On Gourava indices of some chemical graphs, International Journal of Applied Engineering Research, 14 (3) (2019) 743 -749.
- [10] Z. Hussain, M. A. Binyamin, On the eccentric atom bond sum - connectivity index, Open Journal of Discrete Mathematics, 7 (2) (2024) 11 - 22.
- [11] W. Gao, M. K. Siddiqui, N. Naeem and M. Imran, Computing multiple ABC index and multiple GA index of some grid graphs, Open Phys., 16 (2018) 588 - 596.
- [12] A. M. Naji, N. D. Soner and I. Gutman, On leap Zagreb indices of graph operations, International Journal of Applied Graph Theory, 2 (1) (2018) 07 -18.
- [13] V. R. Kulli, Leap hyper Zagreb indices and their polynomials of certain graphs, International Journal of Current Research in Life Sciences, 7 (10) (2018) 2783 - 2791.
- [14] F. Dayan, M. Javaid and M. A. UR. Rehman, On leap Gourava indices of some wheel related graphs, Scientific Inquiry and Review, 2 (4) (2018) 01 - 11.
- [15] P. Padamapriya, V. Mathad, Eccentricity based topological indices of some graphs, TWMS Journal of Applied and Engineering Mathematics, 10 (4) (2020) 1084 - 1095.
- [16] L. Yan, W. Gao, Eccentric related indices of an infinite class of nanostar dendrimers (II), Journal of Chemical and Pharmaceutical Research, 8 (5) (2016) 359 - 362.

- [17] R. Xing, B. Zhou and N. Trinajstic, On Zagreb eccentricity indices, Crotica Chemica Acta, 84 (4) (2011) 493 - 497.
- [18] N. K. Raut, Eccentricity based topological indices of L (CN₄ [2]) and L (CN₃ [2]) graphs, International Journal of Science and Research, 12 (12) (2023) 1996 1999.
- [19] D. Vukicevic, A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov., 57 (2010) 524 - 528.
- [20] V. Sharma R. Goswami and A. K. Madan, Eccentricity connectivity index: A novel highly discriminating topological descriptor for structure property and structure activities studies, J. Chem. Inf. Comput. Sci., 37 (1997) 273.
- [21] H. Ahmad, A. Alsinai, A. Khan and A. Othman, The eccentric Zagreb indices for the subdivision of some graphs and their applications, Applied Math. Inf. Sci., 16 (3) (2022) 467 - 472.
- [22] M. J. Morgan, S. Mukwembi and H. C. Swart, On the eccentric connectivity index of a graph, Discrete Mathematics, 311 (13) (2011) 1229 1234.
- [23] S. M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl. Math. Comput., 54 (2017) 425 - 433.
- [24] A. Graovac, M. Ghorbani and M. A. Hosseinzadeh, Computing fifth geometric - arithmetic index for nanostar dendrimers, J. Math. Nanoscience, 1 (1) (2011) 33 - 42.
- [25] N. Soleimani, E. Moheseni and S. Helalbin, Theoretical study of nanostar dendrimers, STUDIA UBB CHEMIA, LXI, 2016, 127 - 140.
- [26] V. R. Kulli, Gourava Sombor indices, International Journal of Engineering Sciences and Research Technology, 11 (11) (2022) 29 - 38.
- [27] I. Gutman, V. R. Kulli, Estimating the Gourava Sombor index, Scientific Publications of the State University of Novi Pazar Ser. A: Appl. Math. Inform. And Mech., 16 (1) (2024) 47 - 52.
- [28] V. R. Kulli, Elliptic delta and modified elliptic delta indices of certain networks, Int. J. Math. And Appl., 12 (2) (2024) 105 - 116.
- [29] B. Rajan, A. William and S. Stephen, On certain topological indices of silicate, honeycomb and hexagonal networks, J. Comp. And Math. Sci., 3 (5) (2012) 530 - 535.
- [30] V. R. Kulli, Sum connectivity Revan index of silicate and hexagonal networks, Annals of Pure and Applied Mathematics, 1 (3) (2017) 401 - 406.
- [31] J. Liu, et al., Computation of irregularity indices of certain computer networks, Mathematical Problems in Engineering, Volume 2020, Article ID - 2797286, 17 pages.
- [32] Narsing Deo, Graph Theory, Prentice Hall of India, New Delhi (2007).
- [33] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL., 1992.
- [34] R. Todeschini, and V. Consonni, Handbook of Molecular Descriptors, Wiley - VCH: Weinheim, 2000