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Abstract: Background: Retrieval-Augmented Generation (RAG) systems have revolutionized knowledge-intensive natural language
processing tasks, yet their performance is fundamentally constrained by static document chunking strategies that ignore query
characteristics and domain-specific requirements. Methods: We introduce AQACO (Adaptive Query-Aware Chunking Optimization), a
novel framework that dynamically optimizes chunking parameters through multi-objective Bayesian optimization combined with
reinforcement learning. Our approach analyzes query patterns to predict optimal chunking strategies, considering retrieval quality, context
completeness, and computational efficiency simultaneously. We evaluated AQACO on six public datasets across four domains (MS
MARCO, Natural Questions, HotpotQA, FEVER, SciFact, and FiQA-2018). Results: AQACO achieves substantial improvements: 24.3%
higher NDCG@5, 28.7% reduction in answer fragmentation, and 19.4% lower processing latency compared to state-of-the-art static
chunking methods. Conclusions: Our query-aware optimization paradigm establishes new benchmarks for adaptive document processing
in RAG systems, with open-source implementation and reproducible experiments available for the research community.
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external knowledge, enabling applications spanning from
question answering to document analysis [1, 2]. The
effectiveness of RAG systems fundamentally depends on the
quality of retrieved

1. Introduction

Retrieval-Augmented Generation (RAG) has emerged as the
dominant paradigm for enhancing large language models with
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Figure 1: Motivation example showing how different query types require different chunking strategies. Simple factual queries
benefit from smaller, focused chunks, while complex analytical queries require larger, contextually rich chunks. Current static
approaches cannot adapt to this variability.

Context, which is directly influenced by document chunking
strategies used during preprocessing.

This one-size-fits-all approach creates several critical
limitations: (1)  information  fragmentation, — where
semantically coherent information spans multiple chunks; (2)

Current chunking approaches employ static methodologies—
fixed-size windows, sentence boundaries, or paragraph
divisions—that treat all queries uniformly regardless of their
complexity, scope, or domain-specific requirements [3,4].

context dilution, where irrelevant content reduces retrieval
precision; and (3) efficiency degradation, where suboptimal
chunk sizes increase computational overhead without
improving quality.
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Recent empirical studies demonstrate that chunking strategy
alone can impact downstream task performance by 15-35%,
yet systematic approaches to chunking optimization remain
underdeveloped [5,6]. The closest related work focuses on
content-aware chunking [7] or multi-granularity approaches
[8], but these methods optimize for document characteristics
while ignoring query-specific requirements.

Consider the motivating example in Figure 1: a legal
document analysis system processing both simple factual
queries (“What is the contract termination date?”) and
complex analytical questions (“Analyze potential liability
exposure and recommended risk mitigation strategies”).
Static chunking treats these uniformly, despite their
fundamentally different information access patterns and
context requirements.

This paper introduces AQACO (Adaptive Query-Aware
Chunking Optimization), a comprehensive framework that
addresses these limitations through three key innovations:

1) Query-Aware Optimization Framework: We present
the first systematic approach to optimize chunking
parameters based on anticipated query distributions,
incorporating query complexity, semantic scope, and
information requirements into chunking decisions.

2) Multi-Objective  Bayesian  Optimization:  Our
framework employs Gaussian Process-based
optimization to simultaneously balance retrieval quality,
context completeness, and computational efficiency
through principled acquisition functions.

3) Reinforcement Learning Adaptation: An online
learning component enables continuous adaptation to
evolving query patterns and performance feedback,
ensuring  sustained optimization in production
environments.

We evaluate AQACO extensively on six public datasets
spanning  four domains, demonstrating significant
improvements over established baselines. Our contributions
include: (1) novel algorithmic framework for query-aware
chunking, (2) comprehensive evaluation methodology with
new metrics for adaptive chunking assessment, (3) open-
source implementation with reproducible experiments, and
(4) new performance benchmarks for the research community.

2. Related Work
2.1 Document Chunking Strategies

Traditional document chunking approaches can be
categorized into three main paradigms. Fixed-size chunking
divides documents into uniform character or token windows,
providing predictable computational costs but ignoring
semantic boundaries [27,28]. Content-aware methods respect
structural elements such as paragraphs and sections but
remain static across different query types [3].

Recent semantic chunking approaches use embedding
similarity to identify natural breakpoints [6, 7]. The
ClusterSemanticChunker  groups semantically  similar
sentences [9], while embedding-based boundary detection
identifies coherence shifts [10]. However, these methods

optimize for content coherence without considering query-
specific requirements.

The Mix-of-Granularity (MoQG) approach represents current
state-of-the-art, combining multiple chunk sizes for the same
document [8]. While MoG addresses granularity limitations,
it lacks query-aware adaptation and increases storage
overhead linearly with granularity levels.

2.2 Query-Aware Information Retrieval

Query classification and adaptation have been extensively
studied in classical information retrieval [11,12]. Recent work
demonstrates that query complexity significantly impacts
optimal retrieval parameters [13], while query intent
classification shows promise for adaptive retrieval strategies
[14].

However, existing query-aware approaches focus on retrieval
algorithm parameters rather than document preprocessing.
The disconnect between query analysis and document
segmentation represents a fundamental limitation in current
RAG architectures.

2.3 Optimization in RAG Systems

Recent optimization efforts in RAG systems target embedding
model selection [15], retrieval algorithm tuning [16], and
generation parameter optimization [17]. AutoRAG provides
automated hyperparameter tuning for RAG pipelines but
treats chunking as fixed preprocessing [18].

Reinforcement learning applications in information retrieval
demonstrate potential for adaptive systems [19,20], but
existing work focuses on ranking and recommendation rather
than document preprocessing optimization.

2.4 Research Gap

Despite extensive research in individual components, no
existing work addresses the fundamental challenge of query-
aware chunking optimization. Current systems optimize
retrieval and generation components while leaving chunking
strategies static, creating a significant performance bottleneck
that AQACO directly addresses.

3. Methods

3.1 Problem Formulation

Let D = {di,d>,...,d,} represent a document collection and Q =
{91,92,...,qm} a distribution of anticipated queries. For each
document d;, we seek an optimal chunking strategyci* that
maximizes retrieval performance across the query
distribution.

Formally, we define the chunking optimization problem as:
*= argmaxEq~q.s~p[R(q,C(d)) — 4 - L(C(d))] (1
C
where:
e R(q,C(d)) measures retrieval quality for query ¢ given
chunking C(d)
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e L(C(d)) represents
processing latency)
o A balances quality-efficiency tradeoffs

computational cost (storage,

3.2 AQACO Framework Architecture

AQACO consists of four integrated components operating in
a feedback loop, as illustrated in Figure 2.

AQACO Framework Architecture
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Figure 2: AQACO framework architecture showing the integration of query pattern analysis, document profiling, Bayesian
optimization, and reinforcement learning components.

3.2.1Query Pattern Analyzer
The Query Pattern Analyzer extracts features from query
distributions to inform chunking decisions. For each query ¢,
we compute:

Syntactic Features:

I, = |tokens(q)| (2)

e, = complerity_score(parse(g)) (3)
|entities(q)|

S T T 4

“a [tokens(q)| )
Semantic Features:
1 lql

q= embed(token; 5
7= {4 ; ( ) (5)
84 € {local, global, comparative} (6)
w, = context_estimator(q) (n
xdfeat

The analyzer maintains a query profile matrix P € R
where each row represents a query’s feature vector.

3.2.2 Document Structure Profiler
For each document d, we extract structural and semantic
characteristics: Structural Analysis:

ha= max depth(structure(d)) ®)
Ba= {b1,b>,...,bi} C)
|content tokens(d)|
Pd =
[total tokens(d)| (10)

Semantic Coherence Mapping: We compute semantic
coherence scores between adjacent passages:
coherence(pi,piv1) = cosine sim(embed(p;), embed(pir1))

(11)

This creates a coherence profile Cy= [c1,¢2,...,ca-1] used for
boundary detection.

3.2.3 Multi-Objective Bayesian Optimizer
The core optimization component uses Gaussian Process-
based Bayesian Optimization to find optimal chunking
parameters. We define the parameter space ® = {chunk size,
overlap ratio, boundary strategy, context window}. Our
acquisition function balances exploration and exploitation:
o(0) = u(6) + Pa(0) + y - diversity(6) (12)
where 1(60) and o(6) are GP posterior mean and variance,
controls exploration- exploitation tradeoff, and y - diversity(6)
encourages parameter space exploration.

Multi-Objective Formulation:

We optimize three objectives simultaneously:
[1(8) = NDCGaQk(retrieval(8)) (13)
f2(0) = completeness_score(d) (14)
[3(8) = —latency(f) — storage_overhead(d) (15)

Using scalarization with dynamic weights:

F(O) =wifi(6) + wafa(6) +wifsi(6)  (16)

3.2.4 Reinforcement Learning Adapter

To enable online adaptation, we implement a policy gradient
method that refines chunking decisions based on retrieval
feedback:

State Representation:
s:= [query features(q:), document features(d:), current params(6)]

(17)

Action Space:
ar € {adjust chunk size, modify overlap, change boundary strategy}

(18)
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Reward Function:
re=a  ANDCG + f§ - Acompleteness —y - Alatency (19)

Policy Update: Using REINFORCE with baseline:
VoJ(0 ~E[(r,— b)Velogme(als))] (20)

3.3 Implementation Algorithm

Algorithm 1 presents the complete AQACO optimization
procedure.

Algorithm 1 AQACO Optimization
Require: Documents D, Query patterns Q, Initial parameters o
Ensure: Optimized chunking strategy C*

1: Initialize Gaussian Process GP with &

2: for tteration f = 1 to T'do

3 // Bayesian Optimization Phase

4. f,+ argmaxa(f) vsing GP

3 Apply chunking strategy C(8,) to sample documents

6:  Evaluate objectives f,,/1./; on validation queries
7. Update GP with (6, F(8,))
8
9

/{ Reinforcement Learming Phase

10:  forepisodee=1to E de

11: Sample query g ~ Q and document & ~ D
2: Observe state 5,= [features(g, d),6,]

13: Select action a, ~ mg(-|s,)

14: Apply action and observe reward r,

15: Update policy using policy gradient

16: end for

17: end for

18: return & < argmaxGP mean(f)

o Natural Questions [22]: 307K naturally occurring
questions from Google search with Wikipedia answers

Multi-hop Reasoning:
o HotpotQA [23]: 113K questions requiring reasoning over
multiple documents

Fact Verification:
« FEVER [24]: 185K claims for verification against
Wikipedia passages

Scientific/Technical:
e SciFact [25]: Scientific claim verification with research
papers

Financial:
o FiQA-2018 [26]: Financial question answering with
earnings reports and SEC filings

Table 1: Summarizes the dataset characteristics and evaluation splits

Dataset Domain Queries Docs | AvgQLen | AvgD Len
MS MARCO| Web Search | 1,010K 8.8M 5.9 287
Natural Q | Encyclopedic 307K | 2.7M 9.1 342
HotpotQA Multi-hop 113K 1.3M 17.8 156
FEVER Fact Verify 185K | 5.4M 8.2 78
SciFact Scientific 1.4K 5K 12.3 2,847
FiQA-2018 | Financial 8.7K 57K 11.7 1,234

3.4 Baseline Methods

We compare against seven established chunking strategies

representing current state-of-the-art:

1) Fixed-256/512/1024: Fixed-size chunking with different
window sizes

2) Recursive Character Splitter: Respects structural
boundaries (LangChain implementation)

3) Semantic Chunking: Embedding-based boundary
detection [6]

4) ClusterSemanticChunker:
approach [9]

5) Mix-of-Granularity (MoG): Multiple chunk sizes per
document [8]

6) Oracle Chunking: Human-optimized boundaries (upper
bound)

Sentence clustering

3.5 Evaluation Metrics

Primary Retrieval Metrics:

« NDCG@wk (k=1,3,5,10):
cumulative gain

e Recall@k: Fraction of relevant chunks retrieved in top-
k

e MRR: Mean reciprocal rank of first relevant chunk

Normalized discounted

Context Quality Metrics:

e Completeness Score: Fraction of query-relevant
information captured in retrieved chunks

o Fragmentation Rate: Percentage of answers requiring
information from multiple chunks

e Context Coherence: Semantic consistency of retrieved
context Efficiency Metrics:

e Processing Latency: End-to-end chunking and retrieval
time

e Storage Overhead: Index size compared to original
documents

e Query Throughput: Queries processed per second
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3.6 Implementation Details

Hardware Configuration:

¢ Development Platform: MacBook Pro M1 (16GB unified
memory)

e Processor: Apple M1 Pro chip with 10-core CPU and 16-
core GPU

e Optimization: Metal Performance Shaders for GPU
acceleration

Software Environment:

¢ Operating System: macOS

e Python Version: 3.10

e Deep Learning Framework: PyTorch 2.0 with MPS
backend

e  Optimization Libraries: scikit-optimize, GPyOpt

Model Specifications:

¢ Embeddings: sentence-transformers/all-MiniLM-L6-v2
(lightweight model optimized for efficiency)

e Vector Database: ChromaDB with HNSW indexing

Table 2: Overall Performance Comparison (Average Across All Datasets)

Method NDCG@5 | Recall@l0 | MRR | Latency (ms) | Storage OH
Fixed-256 0.621 0.704 0.598 243 1.0x
Fixed-512 0.654 0.738 0.627 267 1.0x

Fixed-1024 0.631 0.721 0.608 289 1.0x
Recursive 0.668 0.751 0.641 278 1.1x

Semantic 0.692 0.774 0.663 301 1.2x

ClusterSem 0.707 0.787 0.678 318 1.3x
MoG 0.734 0.806 0.701 342 2.1x

AQACO 0.913 0.891 0.847 275 1.4x

Oracle 0.945 0.923 0.871 325 1.5x

o Language Model: GPT-3.5-turbo API for answer  AQACO achieves 24.3% improvement in NDCG@)5 over the

generation evaluation Hyperparameters:

o Bayesian Optimization: 50 iterations, GP kernel: RBF +
Mat’ern

o Reinforcement Learning: Learning rate 0.001, y = 0.99

o Evaluation: 5-fold cross-validation across all datasets

e Batch Processing: Optimized for consumer hardware
constraints

4. Results
4.1 Overall Performance

Table 2 presents comprehensive results across all datasets and
metrics. AQACO consistently outperforms baseline methods,
achieving substantial improvements in both retrieval quality
and efficiency.

strongest baseline (MoG) while maintaining competitive
efficiency. Notably, our approach reaches 96.6% of Oracle
performance, indicating highly effective automated
optimization.

4.2 Dataset-Specific Analysis

Figure 3 shows performance breakdown by dataset, revealing
domain-specific optimization patterns.

Key Observations:

¢ MS MARCO: 22.1% improvement due to diverse query
complexity requiring adaptive chunking

e Natural Questions: 19.7% improvement with excellent
fragmentation reduction (—38%)

¢ HotpotQA: 31.2% improvement, largest gains due to
complex multi-hop reasoning requirements

HDCGES Parformancs Across Datasste

Datacet

FroshA2
- A

Firr o o

Figure 3: NDCG@?5 performance across different datasets. AQACO shows consistent improvements, with largest gains on
complex reasoning tasks (HotpotQA, SciFact) and significant improvements on large-scale datasets (MS MARCO, Natural
Questions)

e FEVER: 18.4% improvement with significant latency
reduction (—26%)

e SciFact: 34.7% improvement, benefits from domain-
specific technical content optimization
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¢ FiQA-2018: 27.3% improvement, strong performance on
numerical reasoning queries

4.3 Ablation Studies

Table 3 analyzes individual component contributions to
understand the source of AQACO’s improvements.

The query-aware component provides the largest single
improvement (+10.2% NDCG@S5), validating our core
hypothesis. The combination of all components achieves
optimal performance-efficiency balance.

4.4 Query Complexity Analysis

Figure 4 analyzes performance across query complexity
levels, demonstrating AQACO’s adaptive capabilities.

Performance by Query Type:

¢ Simple queries (factual, single-hop): 14.2% improvement
over baselines

e Medium queries
improvement

multi-ste reasoning):  29.8%
( p g)

Table 3: Ablation Study: Component Contribution Analysis

Configuration [NDCG@5 L?:EISI)C y Notes
Basehg‘fg ixed- | 654 267 Static chunking
+ Query Features | 0.721 274 Query-aware only
+ Bayesian Opt 0.798 289  |No online adaptation
+ Document Prof | 0.836 283 No RL component
Full AQACO 0.913 275 |Complete framework
B Content-only
Query Features | 0.747 271 optimization
— Bayesian Opt 0.763 243 RL only
—RL Component | 0.851 298  |No online adaptation
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Figure 4: Performance improvement over MoG baseline across query complex1ty levels. AQACO provides greatest benefits
for complex queries requiring sophisticated context assembly

e Complex queries (analytical, comparative): 43.6%

improvement

This pattern confirms that AQACQO’s adaptive approach
provides greatest benefits for challenging queries requiring
sophisticated context assembly.

Efficiency Analysis
Figure 5 demonstrates AQACO’s efficiency characteristics
across different system scales.

Efficiency Highlights:

e Training Overhead: 4-8 hours per dataset for initial
optimization on consumer hardware (amortizes over query
volume)

e Inference Latency: 19.4%
despite superior quality

e Memory Usage: 1.4x storage overhead vs.
granularity methods

faster than MoG baseline

single-
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Figure 5: Efficiency analysis showing processing latency and storage overhead vs. dataset size. AQACO maintains
competitive efficiency while significantly improving retrieval quality
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¢ Scalability: Linear scaling with document collection size;
implementation optimized for resource-constrained
environments

4.5 Error Analysis and Limitations

Failure Cases:

e Very short documents (<100 tokens): Limited
optimization benefit due to minimal chunking variability

o Highly structured data (tables, lists): Requires domain-
specific boundary detection

o Real-time applications: Initial optimization phase adds
deployment complexity

Sensitivity Analysis:

» Robust to embedding model choice (+2.8% NDCG@5
across 5 different models)

o Sensitive to query pattern coverage during training
(requires representative samples)

e Performance degrades gracefully with limited training
data (>80% performance with 50% data)

5. Discussion
5.1 Implications for RAG System Design

AQACO fundamentally changes how we approach document
preprocessing in RAG systems. By treating chunking as a
learnable component rather than fixed preprocessing, we
enable several key improvements:

e End-to-end Optimization: Chunking parameters can be
jointly optimized with retrieval and generation
components, leading to global rather than local optima.

e Domain Adaptation: Systems can automatically adapt
to new domains through query pattern analysis without
manual tuning.

e Personalization: Individual user query patterns can
drive personalized chunking strategies for improved user
experience.

5.2 Theoretical Contributions

Our work establishes theoretical foundations for adaptive

document processing:

e Multi-objective Formulation: Provides principled
framework for balancing competing objectives in
chunking optimization.

e Query-Document Interaction Modeling: Formalizes
how query characteristics should influence document
segmentation decisions.

e Convergence Guarantees: Bayesian optimization
component ensures convergence to locally optimal
solutions with theoretical backing.

5.3 Practical Deployment Considerations

Production deployment of AQACO requires consideration of

several factors:

o Computational Resources: Initial optimization requires
modest compute resources and can be performed on
consumer hardware (e.g., modern laptops with sufficient
RAM). Training time ranges from 4-8 hours per dataset on
a MacBook M1 Pro, which amortizes across query volume

in production systems. The framework is designed to be
efficient and accessible without requiring specialized
GPU infrastructure.

o Integration Complexity: Framework integrates with
existing RAG pipelines through standardized APIs with
minimal modifications.

e Monitoring and Maintenance:
requires continuous performance
occasional model retraining.

Online adaptation
monitoring and

6. Future Research Directions

AQACO opens several promising research avenues:

o Hierarchical Chunking: Multi-level optimization across
document hierarchies for complex document structures.

e Cross-modal Adaptation: Extension to multimedia
documents incorporating images, tables, and structured
data.

e Federated Learning: Collaborative optimization across
organizations while preserving data privacy.

e Neural Chunking: End-to-end learnable segmentation
using transformer architectures trained specifically for
retrieval optimization.

7. Conclusion

We presented AQACO, a novel framework for adaptive
query-aware chunking optimization in RAG systems.
Through comprehensive evaluation across six public datasets
spanning four domains, we demonstrated substantial
improvements over state-of-the-art methods: 24.3% better
NDCG@S5, 28.7% reduction in answer fragmentation, and
19.4% lower processing latency.

Our key contributions include: (1) the first systematic
approach to queryaware chunking optimization, (2) a
principled  multi-objective  optimization  framework
combining Bayesian optimization with reinforcement
learning, (3) comprehensive empirical validation establishing
new performance benchmarks, and (4) open-source
implementation enabling reproducible research.

AQACO addresses fundamental limitations in current RAG
systems by treating document chunking as an adaptive,
learnable component rather than static preprocessing. This
paradigm shift enables significant performance improvements
while maintaining computational efficiency, with clear paths
for production deployment.

Future work will explore hierarchical chunking strategies,
cross-modal document processing, and integration with end-
to-end neural architectures. We release our implementation,
datasets, and experimental protocols to facilitate reproducible
research in adaptive document processing.
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