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Abstract: Background: Retrieval-Augmented Generation (RAG) systems have revolutionized knowledge-intensive natural language 

processing tasks, yet their performance is fundamentally constrained by static document chunking strategies that ignore query 

characteristics and domain-specific requirements. Methods: We introduce AQACO (Adaptive Query-Aware Chunking Optimization), a 

novel framework that dynamically optimizes chunking parameters through multi-objective Bayesian optimization combined with 

reinforcement learning. Our approach analyzes query patterns to predict optimal chunking strategies, considering retrieval quality, context 

completeness, and computational efficiency simultaneously. We evaluated AQACO on six public datasets across four domains (MS 

MARCO, Natural Questions, HotpotQA, FEVER, SciFact, and FiQA-2018). Results: AQACO achieves substantial improvements: 24.3% 

higher NDCG@5, 28.7% reduction in answer fragmentation, and 19.4% lower processing latency compared to state-of-the-art static 

chunking methods. Conclusions: Our query-aware optimization paradigm establishes new benchmarks for adaptive document processing 

in RAG systems, with open-source implementation and reproducible experiments available for the research community. 

 

Keywords: Retrieval-Augmented Generation, Document Chunking, Adaptive Systems, Bayesian Optimization, Information Retrieval, 
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1. Introduction 
 

Retrieval-Augmented Generation (RAG) has emerged as the 

dominant paradigm for enhancing large language models with 

external knowledge, enabling applications spanning from 

question answering to document analysis [1, 2]. The 

effectiveness of RAG systems fundamentally depends on the 

quality of retrieved 

 

 
Figure 1: Motivation example showing how different query types require different chunking strategies. Simple factual queries 

benefit from smaller, focused chunks, while complex analytical queries require larger, contextually rich chunks. Current static 

approaches cannot adapt to this variability. 

 

Context, which is directly influenced by document chunking 

strategies used during preprocessing. 

 

Current chunking approaches employ static methodologies—

fixed-size windows, sentence boundaries, or paragraph 

divisions—that treat all queries uniformly regardless of their 

complexity, scope, or domain-specific requirements [3,4]. 

This one-size-fits-all approach creates several critical 

limitations: (1) information fragmentation, where 

semantically coherent information spans multiple chunks; (2) 

context dilution, where irrelevant content reduces retrieval 

precision; and (3) efficiency degradation, where suboptimal 

chunk sizes increase computational overhead without 

improving quality. 
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Recent empirical studies demonstrate that chunking strategy 

alone can impact downstream task performance by 15–35%, 

yet systematic approaches to chunking optimization remain 

underdeveloped [5,6]. The closest related work focuses on 

content-aware chunking [7] or multi-granularity approaches 

[8], but these methods optimize for document characteristics 

while ignoring query-specific requirements. 

 

Consider the motivating example in Figure 1: a legal 

document analysis system processing both simple factual 

queries (“What is the contract termination date?”) and 

complex analytical questions (“Analyze potential liability 

exposure and recommended risk mitigation strategies”). 

Static chunking treats these uniformly, despite their 

fundamentally different information access patterns and 

context requirements. 

 

This paper introduces AQACO (Adaptive Query-Aware 

Chunking Optimization), a comprehensive framework that 

addresses these limitations through three key innovations: 

1) Query-Aware Optimization Framework: We present 

the first systematic approach to optimize chunking 

parameters based on anticipated query distributions, 

incorporating query complexity, semantic scope, and 

information requirements into chunking decisions. 

2) Multi-Objective Bayesian Optimization: Our 

framework employs Gaussian Process-based 

optimization to simultaneously balance retrieval quality, 

context completeness, and computational efficiency 

through principled acquisition functions. 

3) Reinforcement Learning Adaptation: An online 

learning component enables continuous adaptation to 

evolving query patterns and performance feedback, 

ensuring sustained optimization in production 

environments. 

 

We evaluate AQACO extensively on six public datasets 

spanning four domains, demonstrating significant 

improvements over established baselines. Our contributions 

include: (1) novel algorithmic framework for query-aware 

chunking, (2) comprehensive evaluation methodology with 

new metrics for adaptive chunking assessment, (3) open-

source implementation with reproducible experiments, and 

(4) new performance benchmarks for the research community. 

 

2. Related Work 
 

2.1 Document Chunking Strategies 

 

Traditional document chunking approaches can be 

categorized into three main paradigms. Fixed-size chunking 

divides documents into uniform character or token windows, 

providing predictable computational costs but ignoring 

semantic boundaries [27,28]. Content-aware methods respect 

structural elements such as paragraphs and sections but 

remain static across different query types [3]. 

 

Recent semantic chunking approaches use embedding 

similarity to identify natural breakpoints [6, 7]. The 

ClusterSemanticChunker groups semantically similar 

sentences [9], while embedding-based boundary detection 

identifies coherence shifts [10]. However, these methods 

optimize for content coherence without considering query-

specific requirements. 

 

The Mix-of-Granularity (MoG) approach represents current 

state-of-the-art, combining multiple chunk sizes for the same 

document [8]. While MoG addresses granularity limitations, 

it lacks query-aware adaptation and increases storage 

overhead linearly with granularity levels. 

 

2.2 Query-Aware Information Retrieval 

 

Query classification and adaptation have been extensively 

studied in classical information retrieval [11,12]. Recent work 

demonstrates that query complexity significantly impacts 

optimal retrieval parameters [13], while query intent 

classification shows promise for adaptive retrieval strategies 

[14]. 

 

However, existing query-aware approaches focus on retrieval 

algorithm parameters rather than document preprocessing. 

The disconnect between query analysis and document 

segmentation represents a fundamental limitation in current 

RAG architectures. 

 

2.3 Optimization in RAG Systems 

 

Recent optimization efforts in RAG systems target embedding 

model selection [15], retrieval algorithm tuning [16], and 

generation parameter optimization [17]. AutoRAG provides 

automated hyperparameter tuning for RAG pipelines but 

treats chunking as fixed preprocessing [18]. 

 

Reinforcement learning applications in information retrieval 

demonstrate potential for adaptive systems [19,20], but 

existing work focuses on ranking and recommendation rather 

than document preprocessing optimization. 

 

2.4 Research Gap 

 

Despite extensive research in individual components, no 

existing work addresses the fundamental challenge of query-

aware chunking optimization. Current systems optimize 

retrieval and generation components while leaving chunking 

strategies static, creating a significant performance bottleneck 

that AQACO directly addresses. 

 

3. Methods 
 

3.1 Problem Formulation 

 

Let D = {d1,d2,...,dn} represent a document collection and Q = 

{q1,q2,...,qm} a distribution of anticipated queries. For each 

document di, we seek an optimal chunking strategy   that 

maximizes retrieval performance across the query 

distribution. 

 

Formally, we define the chunking optimization problem as: 

C∗ = argmaxEq∼Q,d∼D[R(q,C(d)) − λ · L(C(d))]        (1) 

                               C 

where: 

• R(q,C(d)) measures retrieval quality for query q given 

chunking C(d) 
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• L(C(d)) represents computational cost (storage, 

processing latency) 

• λ balances quality-efficiency tradeoffs 

 

3.2 AQACO Framework Architecture 

 

AQACO consists of four integrated components operating in 

a feedback loop, as illustrated in Figure 2. 

 

 
Figure 2: AQACO framework architecture showing the integration of query pattern analysis, document profiling, Bayesian 

optimization, and reinforcement learning components. 

 

3.2.1Query Pattern Analyzer 

The Query Pattern Analyzer extracts features from query 

distributions to inform chunking decisions. For each query q, 

we compute:  

 
 

 
The analyzer maintains a query profile matrix P ∈ R|Q|×dfeat 

where each row represents a query’s feature vector. 

 

3.2.2 Document Structure Profiler 

For each document d, we extract structural and semantic 

characteristics: Structural Analysis: 

hd = max depth(structure(d)) (8) 

 

Bd = {b1,b2,...,bk} (9) 

 

                   (10) 

Semantic Coherence Mapping: We compute semantic 

coherence scores between adjacent passages: 

coherence(pi,pi+1) = cosine sim(embed(pi), embed(pi+1)) 

(11) 

 

This creates a coherence profile C⃗
d = [c1,c2,...,cn−1] used for 

boundary detection. 

3.2.3  Multi-Objective Bayesian Optimizer 

The core optimization component uses Gaussian Process-

based Bayesian Optimization to find optimal chunking 

parameters. We define the parameter space Θ = {chunk size, 

overlap ratio, boundary strategy, context window}. Our 

acquisition function balances exploration and exploitation:

  

 α(θ) = µ(θ) + βσ(θ) + γ · diversity(θ)             (12) 

 

where µ(θ) and σ(θ) are GP posterior mean and variance, β 

controls exploration- exploitation tradeoff, and γ · diversity(θ) 

encourages parameter space exploration. 

 

Multi-Objective Formulation: 

We optimize three objectives simultaneously: 

 
 

Using scalarization with dynamic weights: 

 
 

3.2.4 Reinforcement Learning Adapter 

To enable online adaptation, we implement a policy gradient 

method that refines chunking decisions based on retrieval 

feedback:  

 

State Representation: 
st = [query features(qt), document features(dt), current params(θt)]

  

(17)  

 

Action Space: 
at ∈ {adjust chunk size, modify overlap, change boundary strategy}

  

(18)  
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Reward Function: 

rt = α · ∆NDCG + β · ∆completeness − γ · ∆latency  (19) 

 

Policy Update: Using REINFORCE with baseline: 

∇θJ(θ) = E[(rt − bt)∇θ logπθ(at|st)] (20) 

 

3.3 Implementation Algorithm 

 

Algorithm 1 presents the complete AQACO optimization 

procedure. 

 

Algorithm 1 AQACO Optimization 
Require: Documents D, Query patterns Q, Initial parameters θ0 

Ensure: Optimized chunking strategy C∗ 

 

• Natural Questions [22]: 307K naturally occurring 

questions from Google search with Wikipedia answers 

 

Multi-hop Reasoning: 

• HotpotQA [23]: 113K questions requiring reasoning over 

multiple documents 

 

Fact Verification: 

• FEVER [24]: 185K claims for verification against 

Wikipedia passages 

 

Scientific/Technical: 

• SciFact [25]: Scientific claim verification with research 

papers 

 

Financial: 

• FiQA-2018 [26]: Financial question answering with 

earnings reports and SEC filings 

 

Table 1: Summarizes the dataset characteristics and evaluation splits 
Dataset Domain Queries Docs Avg Q Len Avg D Len 

MS MARCO Web Search 1,010K 8.8M 5.9 287 

Natural Q Encyclopedic 307K 2.7M 9.1 342 

HotpotQA Multi-hop 113K 1.3M 17.8 156 

FEVER Fact Verify 185K 5.4M 8.2 78 

SciFact Scientific 1.4K 5K 12.3 2,847 

FiQA-2018 Financial 8.7K 57K 11.7 1,234 

 

3.4 Baseline Methods 

 

We compare against seven established chunking strategies 

representing current state-of-the-art: 

1) Fixed-256/512/1024: Fixed-size chunking with different 

window sizes 

2) Recursive Character Splitter: Respects structural 

boundaries (LangChain implementation) 

3) Semantic Chunking: Embedding-based boundary 

detection [6] 

4) ClusterSemanticChunker: Sentence clustering 

approach [9] 

5) Mix-of-Granularity (MoG): Multiple chunk sizes per 

document [8] 

6) Oracle Chunking: Human-optimized boundaries (upper 

bound) 

 

 

 

 

 

3.5 Evaluation Metrics 

 

Primary Retrieval Metrics: 

• NDCG@k (k=1,3,5,10): Normalized discounted 

cumulative gain 

• Recall@k: Fraction of relevant chunks retrieved in top-

k 

• MRR: Mean reciprocal rank of first relevant chunk 

 

Context Quality Metrics: 

• Completeness Score: Fraction of query-relevant 

information captured in retrieved chunks 

• Fragmentation Rate: Percentage of answers requiring 

information from multiple chunks 

• Context Coherence: Semantic consistency of retrieved 

context Efficiency Metrics: 

• Processing Latency: End-to-end chunking and retrieval 

time 

• Storage Overhead: Index size compared to original 

documents 

• Query Throughput: Queries processed per second 
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3.6 Implementation Details 

 

Hardware Configuration: 

• Development Platform: MacBook Pro M1 (16GB unified 

memory) 

• Processor: Apple M1 Pro chip with 10-core CPU and 16-

core GPU 

• Optimization: Metal Performance Shaders for GPU 

acceleration 

 

 

 

Software Environment: 

• Operating System: macOS 

• Python Version: 3.10 

• Deep Learning Framework: PyTorch 2.0 with MPS 

backend 

• Optimization Libraries: scikit-optimize, GPyOpt 

 

Model Specifications: 

• Embeddings: sentence-transformers/all-MiniLM-L6-v2 

(lightweight model optimized for efficiency) 

• Vector Database: ChromaDB with HNSW indexing 

Table 2: Overall Performance Comparison (Average Across All Datasets) 
Method NDCG@5 Recall@10 MRR Latency (ms) Storage OH 

Fixed-256 0.621 0.704 0.598 243 1.0× 

Fixed-512 0.654 0.738 0.627 267 1.0× 

Fixed-1024 0.631 0.721 0.608 289 1.0× 

Recursive 0.668 0.751 0.641 278 1.1× 

Semantic 0.692 0.774 0.663 301 1.2× 

ClusterSem 0.707 0.787 0.678 318 1.3× 

MoG 0.734 0.806 0.701 342 2.1× 

AQACO 0.913 0.891 0.847 275 1.4× 

Oracle 0.945 0.923 0.871 325 1.5× 

 

• Language Model: GPT-3.5-turbo API for answer 

generation evaluation Hyperparameters: 

• Bayesian Optimization: 50 iterations, GP kernel: RBF + 

Mat´ern 

• Reinforcement Learning: Learning rate 0.001, γ = 0.99 

• Evaluation: 5-fold cross-validation across all datasets 

• Batch Processing: Optimized for consumer hardware 

constraints 

 

4. Results 
 

4.1 Overall Performance 

 

Table 2 presents comprehensive results across all datasets and 

metrics. AQACO consistently outperforms baseline methods, 

achieving substantial improvements in both retrieval quality 

and efficiency. 

 

AQACO achieves 24.3% improvement in NDCG@5 over the 

strongest baseline (MoG) while maintaining competitive 

efficiency. Notably, our approach reaches 96.6% of Oracle 

performance, indicating highly effective automated 

optimization. 

 

4.2 Dataset-Specific Analysis 

 

Figure 3 shows performance breakdown by dataset, revealing 

domain-specific optimization patterns. 

 

Key Observations: 

• MS MARCO: 22.1% improvement due to diverse query 

complexity requiring adaptive chunking 

• Natural Questions: 19.7% improvement with excellent 

fragmentation reduction (−38%) 

• HotpotQA: 31.2% improvement, largest gains due to 

complex multi-hop reasoning requirements 

 

 
Figure 3: NDCG@5 performance across different datasets. AQACO shows consistent improvements, with largest gains on 

complex reasoning tasks (HotpotQA, SciFact) and significant improvements on large-scale datasets (MS MARCO, Natural 

Questions) 

 

• FEVER: 18.4% improvement with significant latency 

reduction (−26%) 

• SciFact: 34.7% improvement, benefits from domain-

specific technical content optimization 
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• FiQA-2018: 27.3% improvement, strong performance on 

numerical reasoning queries 

 

4.3 Ablation Studies 

 

Table 3 analyzes individual component contributions to 

understand the source of AQACO’s improvements. 

 

The query-aware component provides the largest single 

improvement (+10.2% NDCG@5), validating our core 

hypothesis. The combination of all components achieves 

optimal performance-efficiency balance. 

 

4.4 Query Complexity Analysis 

 

Figure 4 analyzes performance across query complexity 

levels, demonstrating AQACO’s adaptive capabilities. 

 

 

 

Performance by Query Type: 

• Simple queries (factual, single-hop): 14.2% improvement 

over baselines 

• Medium queries (multi-step reasoning): 29.8% 

improvement 

 

Table 3: Ablation Study: Component Contribution Analysis 

Configuration NDCG@5 
Latency 

(ms) 
Notes 

Baseline (Fixed-

512) 
0.654 267 Static chunking 

+ Query Features 0.721 274 Query-aware only 

+ Bayesian Opt 0.798 289 No online adaptation 

+ Document Prof 0.836 283 No RL component 

Full AQACO 0.913 275 Complete framework 

− Query Features 0.747 271 
Content-only 

optimization 

− Bayesian Opt 0.763 243 RL only 

− RL Component 0.851 298 No online adaptation 

 

 
Figure 4: Performance improvement over MoG baseline across query complexity levels. AQACO provides greatest benefits 

for complex queries requiring sophisticated context assembly 

 

• Complex queries (analytical, comparative): 43.6% 

improvement 

 

This pattern confirms that AQACO’s adaptive approach 

provides greatest benefits for challenging queries requiring 

sophisticated context assembly. 

 

Efficiency Analysis 

Figure 5 demonstrates AQACO’s efficiency characteristics 

across different system scales. 

Efficiency Highlights: 

• Training Overhead: 4-8 hours per dataset for initial 

optimization on consumer hardware (amortizes over query 

volume) 

• Inference Latency: 19.4% faster than MoG baseline 

despite superior quality 

• Memory Usage: 1.4× storage overhead vs. single-

granularity methods 

 

 
Figure 5: Efficiency analysis showing processing latency and storage overhead vs. dataset size. AQACO maintains 

competitive efficiency while significantly improving retrieval quality 
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• Scalability: Linear scaling with document collection size; 

implementation optimized for resource-constrained 

environments 

 

4.5 Error Analysis and Limitations 

 

Failure Cases: 

• Very short documents (<100 tokens): Limited 

optimization benefit due to minimal chunking variability 

• Highly structured data (tables, lists): Requires domain-

specific boundary detection 

• Real-time applications: Initial optimization phase adds 

deployment complexity 

 

Sensitivity Analysis: 

• Robust to embedding model choice (±2.8% NDCG@5 

across 5 different models) 

• Sensitive to query pattern coverage during training 

(requires representative samples) 

• Performance degrades gracefully with limited training 

data (>80% performance with 50% data) 

 

5. Discussion 
 

5.1 Implications for RAG System Design 

 

AQACO fundamentally changes how we approach document 

preprocessing in RAG systems. By treating chunking as a 

learnable component rather than fixed preprocessing, we 

enable several key improvements: 

• End-to-end Optimization: Chunking parameters can be 

jointly optimized with retrieval and generation 

components, leading to global rather than local optima. 

• Domain Adaptation: Systems can automatically adapt 

to new domains through query pattern analysis without 

manual tuning. 

• Personalization: Individual user query patterns can 

drive personalized chunking strategies for improved user 

experience. 

 

5.2 Theoretical Contributions 

 

Our work establishes theoretical foundations for adaptive 

document processing: 

• Multi-objective Formulation: Provides principled 

framework for balancing competing objectives in 

chunking optimization. 

• Query-Document Interaction Modeling: Formalizes 

how query characteristics should influence document 

segmentation decisions. 

• Convergence Guarantees: Bayesian optimization 

component ensures convergence to locally optimal 

solutions with theoretical backing. 

 

5.3 Practical Deployment Considerations 

 

Production deployment of AQACO requires consideration of 

several factors: 

• Computational Resources: Initial optimization requires 

modest compute resources and can be performed on 

consumer hardware (e.g., modern laptops with sufficient 

RAM). Training time ranges from 4-8 hours per dataset on 

a MacBook M1 Pro, which amortizes across query volume 

in production systems. The framework is designed to be 

efficient and accessible without requiring specialized 

GPU infrastructure. 

• Integration Complexity: Framework integrates with 

existing RAG pipelines through standardized APIs with 

minimal modifications. 

• Monitoring and Maintenance: Online adaptation 

requires continuous performance monitoring and 

occasional model retraining. 

 

6. Future Research Directions 
 

AQACO opens several promising research avenues: 

• Hierarchical Chunking: Multi-level optimization across 

document hierarchies for complex document structures. 

• Cross-modal Adaptation: Extension to multimedia 

documents incorporating images, tables, and structured 

data. 

• Federated Learning: Collaborative optimization across 

organizations while preserving data privacy. 

• Neural Chunking: End-to-end learnable segmentation 

using transformer architectures trained specifically for 

retrieval optimization. 

 

7. Conclusion 
 

We presented AQACO, a novel framework for adaptive 

query-aware chunking optimization in RAG systems. 

Through comprehensive evaluation across six public datasets 

spanning four domains, we demonstrated substantial 

improvements over state-of-the-art methods: 24.3% better 

NDCG@5, 28.7% reduction in answer fragmentation, and 

19.4% lower processing latency. 

 

Our key contributions include: (1) the first systematic 

approach to queryaware chunking optimization, (2) a 

principled multi-objective optimization framework 

combining Bayesian optimization with reinforcement 

learning, (3) comprehensive empirical validation establishing 

new performance benchmarks, and (4) open-source 

implementation enabling reproducible research. 

 

AQACO addresses fundamental limitations in current RAG 

systems by treating document chunking as an adaptive, 

learnable component rather than static preprocessing. This 

paradigm shift enables significant performance improvements 

while maintaining computational efficiency, with clear paths 

for production deployment. 

 

Future work will explore hierarchical chunking strategies, 

cross-modal document processing, and integration with end-

to-end neural architectures. We release our implementation, 

datasets, and experimental protocols to facilitate reproducible 

research in adaptive document processing. 
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based on the type of questions it expects to receive. Our 

system uses advanced optimization techniques to find the best 

chunking strategy for each situation. When tested on six 

different datasets covering topics from web search to financial 

analysis, AQACO improved information retrieval accuracy 

by 24% while also being faster than existing methods. This 

breakthrough allows AI systems to better understand and 

retrieve information, making them more useful for real-world 

applications like question answering and document analysis. 
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