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Abstract: In large-scale distributed systems with numerous workflows and microservices, traditional service dependency mapping 

approaches rely on static graphs that fail to capture real-time changes, leading to delayed incident detection and prolonged downtime. 

This research explores Graph Reinforcement Learning (GRL) as a dynamic solution for modeling inter-service dependencies and 

predicting failure propagation in real time. By leveraging real-time telemetry data and historical incidents, GRL continuously updates 

dependency graphs, reducing Mean Time to Detect (MTTD) and Mean Time to Recover (MTTR). The paper further discusses 

implementation challenges, including computational complexity and scalability, and proposes solutions such as hierarchical clustering 

and distributed processing. The findings suggest that GRL significantly enhances system resilience, making it a valuable tool for modern 

reliability engineering. 
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1. Introduction 
 

Today’s cloud, SaaS, and other large-scale applications result 

from distributed systems controlling the attention of various 

fields. These systems are defined as thousands of workflows 

and tens of thousands of interconnected microservices that are 

constantly evolving in most cases. Therefore, tracking service 

dependency mappings and identifying root causes of failures 

is challenging. 

 

The traditional approach to SRE involves using dependency 

graphs or hand maps, which are outdated in assessing the 

dynamic nature of the services and their interactions. 

Engineers face the major problem of identifying which 

dependency is responsible for failure in such circumstances; 

hence, the time taken to rectify the situation is enormous. This 

leads to higher values of Mean Time to Detect, i.e., the time 

taken before a failure is even detected by the customer, and 

Mean Time to Recover, which hampers system reliability and 

customer satisfaction. Graph Reinforcement Learning (GRL) 

is a promising strategy for specifying and predicting the 

service dependencies and failures in real time. Hence, using 

the real-time service logs and previous data of the incidents 

helps update the dependency graphs and defines which 

microservices or part of the infrastructure will likely fail next 

in GRL. Compared with conventional approaches which are 

usually static, GRL has adaptive, automated, and predictive 

features that aid organisations in preventing failures from 

going out-of-hand. 

 

This research is significant as it addresses the limitations of 

static dependency mapping in large-scale distributed systems. 

By leveraging GRL, it proposes a proactive approach to 

failure prediction, potentially transforming incident 

management in cloud computing, SaaS, and large IT 

infrastructures. The study critically examines existing 

methodologies through service dependency mapping, 

proposes an innovative GRL-based framework for real-time 

failure prediction and dynamic dependency graph updates in 

IT systems, and evaluates MTTD and MTTR outcomes, 

demonstrating GRL's efficacy in reducing downtime and 

facilitating in-depth root cause analysis. 

 

Some issues associated with implementing soft voting are 

computation overhead and scalability. 

 

2. The Problem: Static Service Dependency 

Graphs and Their Limitations 
 

Now, Site Reliability Engineering (SRE) practices in modern 

businesses heavily depend upon service dependency graphs 

to understand the relationships between different service 

microservices and the infrastructure components. These 

graphs are the fundamental monitoring system for health 

monitoring, failure diagnosis, and performance optimization 

instruments. The dependency graph of service interactions 

that SRE teams traditionally use is based on manually created 

or statically generated graphs (Narapureddy, n.d.). However, 

traditional approaches tend to fall short as systems fall under 

thousands of workflows and tens of thousands of 

microservices. 

 

2.1 Challenges with Static Dependency Graphs in Large-

Scale Distributed Systems 

 

One of the main challenges is that they cannot cope with 

changes to dynamic services. Due to the high fluid nature of 

modern microservices architecture, which consists of 

frequent updates and deployments, and deprecations, there is 

a strong need to avoid any architectural side affects you might 

have incurred efficiently. However, as the service mappings 

become static, they quickly become outdated and thus provide 

an inaccurate representation of the service relationships. 

These graphs can be written without continuous updates, and 

they fail to accurately diagnose failures when they do not 

reflect the current system state.  

 

A further hurdle that is critical in limitation is the 

impossibility of predicting failure in real time. Static graphs 

refer to historical points rather than being predictive. 
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Therefore, they do not include telemetry data or past failure 

patterns and do not predict future problems until too late. 

Therefore, service disruptions continue to propagate 

uncontrollably, causing widespread outages and extended 

downtime without the ability to predict them accurately. 

Keeping static dependency mappings is also expensive and 

consumes many resources. Constant updating of the 

dependency graphs becomes necessary while operating large-

scale environments with thousands of microservices. As a 

result, there are more operational costs and time-consuming 

troubleshooting processes. Dependency graphs need to be 

maintained accurately, and that prevents them from allocating 

engineering resources to more strategic initiatives. 

 

 
 

2.1.1 Inability to Adapt to Dynamic Service Changes 

Static service dependency graphs cannot reflect evolving 

service architectures in real time and are hence inadequate for 

manipulating service architectures. Microservices are 

updated, deployed, and retired often and quickly in large-

scale environments, leaving dependencies changing rapidly 

(Malikireddy, S. K. R., Algubelli, B., Katragadda, S. R., & 

Narapureddy, A. R., 2021). Dependency mappings done 

traditionally are never automatically updated, which makes 

them obsolete over time, making failure diagnostics 

inaccurate and incident resolution ineffective. 

 

Services interact dynamically, and workloads disbursement, 

scaling pattern, and infrastructure changes (Fan et al., 2022) 

will shift the interdependency. These fluid transitions make 

static graphs inadequate, and SREs rarely have the correct 

information at hand if an incident arises. Since teams cannot 

pinpoint the origin of failures without an accurate and up-to-

date representation of service relationships, they end up 

experiencing delays in mitigation and long downtimes. 

 

A second fundamental issue is the complexity that the new 

DevOps practices require, in which rapid deployments and 

continuous integration (Tam, Ros, Song, Kang, & Kim, 2024) 

should occur in as little time as possible. Due to its high 

deployment frequency, the service landscape constantly 

changes, so the static graph cannot depict it. As such, manual 

tracking or ad hoc updates have become essential for 

engineering, increasing operational overhead and injecting 

additional human error. 

 

The fact that static graphs cannot adapt to dynamic service 

changes also affects predictive maintenance efforts. As they 

lack live monitoring data and historical incident patterns, 

these graphs enable only the retrospective view but not 

forward-looking insights (Farahmand, Xu, & Mostafavi, 

2023). This reactive approach fails only after such failure 

impacts system performance rather than managing risk that 

could develop into failures. 

 

However, as with these properties, it is obvious that an 

alternative approach that dynamically updates the service 

dependencies in real time and integrates predictive analytics 

is needed to avoid failures before they happen. 

 

2.1.2 Lack of Real-Time Failure Prediction 

Static service dependency graphs primarily function as 

historical snapshots rather than predictive tools. They offer a 

retrospective view of system architecture but fail to integrate 

real-time telemetry data, anomaly detection, or historical 

failure patterns to anticipate future disruptions (Fan, Zhang, 

& Yu, 2022). As a result, incident response teams are forced 

into a reactive approach, addressing failures only after they 

have already impacted system performance (Tam et al., 

2024). 

 

Site reliability engineers (SREs) cannot foresee cascading 

failures across microservices without real-time failure 

prediction. A single point of failure in a critical service can 

propagate through dependencies, causing widespread 

outages, yet static graphs remain incapable of forecasting 

such scenarios (Farahmand, Xu, & Mostafavi, 2023). This 

limitation extends resolution time, requiring engineers to 

manually trace failures rather than leveraging predictive 

insights. 

 

Moreover, modern distributed systems generate vast amounts 

of observability data, including logs, metrics, and traces, but 

static graphs fail to leverage this information for real-time 

analysis (Li, Liu, Zhang, & Fu, 2024). Without integrating 

live system behaviour, these graphs cannot dynamically 

adjust to evolving service states or identify early warning 

signs of degradation. Consequently, organizations experience 

increased mean time to detect (MTTD) failures, as alerts are 

often triggered too late for preventive action. 

 

Given the increasing complexity of cloud-native architectures 

and the need for proactive reliability strategies, relying solely 

on static graphs presents a significant operational risk. A 

transition toward dynamic, learning-based models that 

continuously update dependency mappings and predict 

failure propagation is essential to enhancing service resilience 

and minimizing downtime. 
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Section Details  

Problem Static Service Dependency Graphs and Their Limitations 

Importance of Dependency 

Graphs 

• Used in SRE practices to understand relationships between microservices and infrastructure. 

• Essential for health monitoring, failure diagnosis, and performance optimization. 

Challenges with Static 

Dependency Graphs 

• Cannot handle dynamic changes in services.  

• Become outdated quickly due to frequent updates and deployments.  

• Fail to predict failures in real-time.  

• Maintenance is costly and resource-intensive. 

Inability to Adapt to 

Dynamic Changes 

• Static graphs do not update automatically with evolving service architectures.  

• Frequent updates in microservices make static mappings obsolete.  

• Manual updates lead to delays and higher operational overhead.  

• Lack of real-time data affects failure diagnostics and incident resolution. 

Impact on Predictive 

Maintenance 

• Lack of live monitoring data and historical patterns limits proactive risk management.  

• Reactive approach leads to addressing failures post-impact. 

Lack of Real-Time Failure 

Prediction 

• Static graphs function as historical snapshots without real-time telemetry or anomaly detection.  

• Cannot foresee cascading failures across microservices.  

• Prolongs incident resolution times due to reactive approach. 

Need for Alternative 

Approaches 

• Requires dynamically updating service dependencies in real-time.  

• Integration of predictive analytics to prevent failures proactively. 

 

2.1.3 High Operational Costs in Maintaining Manual 

Mappings 

Continuous manual effort is needed to maintain accurate 

service dependency maps in large-scale distributed systems, 

and it is very resource-intensive and inefficient. 

Organizations must dedicate their engineering teams to 

tracking changes, updating documentation, and maintaining 

service dependencies correctly across time (Farahmand et al., 

2023). As microservices continue to proliferate in application 

architectures, evolve, and interoperate with each other in a 

dynamic and distributed fashion among their architecture’s 

many environments, which include, but are not limited to, 

cloud-native platforms, hybrid deployments and even third 

party APIs (Zhang & Cheng, 2020), this becomes 

increasingly unsustainable. 

 

As systems scale, the burden of operationalizing these 

mappings scales exponentially. An update to a new 

microservice, API, or stack update requires changes to the 

existing dependency graphs. Despite being frequent as 

deployments in the DevOps world become very frequent, 

such updates (Malikireddy, S. K. R., Algubelli, B., Katragadda, 
S. R., & Narapureddy, A. R., 2021) always lag behind the 

actual system changes, so they become outdated or wrong. 

This requires engineers to verify dependencies upon incidents 

manually, extend MTTR during an incident, and slow service 

recovery. 

 

Besides direct engineering costs, static dependency graphs 

also bring in unseen inefficiencies in incident management. 

As these mappings are not automated processes, SRE teams 

need to go through multiple sources of information, including 

logs, dashboards, and legacy documentation, to diagnose 

service failures (Li, Liu, Zhang, and Fu, 2024). The fact that 

troubleshooting is broken makes it slow and leads to the 

situation where the root cause cannot be spotted, leading to 

prolonged downtime. 

 

In addition, organizations that are relying on manual 

dependency mapping are prone to inconsistencies across 

teams. Knowledge silos and inconsistencies arise since 

dependencies are documented in different formats by 

different engineering groups (Tam et al., 2024). There is no 

central, dynamically updated mapping that makes 

collaboration amongst teams harder and makes it more 

challenging to resolve system failure faster. 

 

2.2 Consequences of Static Dependency Graphs 

 

The disadvantages of static dependency graphs are critical 

when it comes to managing the effect of each component on 

other components, which in turn affects the efficiency of 

incident control and reliability of the system. 

 

The second-time consequence is long MTTD and MTTR: 

When an outage happens, the engineers use out-of-date 

mappings to locate the source of the problem, consequently 

prolonging the overall time required to detect and resolve the 

issue (Katragadda et al., 2021). 

 

Lack of Real-time Failure Propagation Model: Work teams' 

inability to prioritize the services impacted by failures 

increases service downtime and multiple failures (Li et al., 

2024). Higher Downtime Costs: Those industries where 

downtime is costly (such as finance and healthcare, cloud 

services), a small time lag in failure identification may result 

in huge revenue loss and tarnished reputation (Li, Jiao, & 

Yang, 2023). 

 

In view of this, real-time issues require adaptive and 

intelligent approaches to modifying dependency graphs and 

propagating failures. Graph Reinforcement Learning (GRL) 

can mitigate these drawbacks as a self-updated, predictively 

learning solution for service dependency mapping (Hui et al., 

2021). 

 

3. Graph Reinforcement Learning: A New 

Approach to Service Dependency Mapping   
 

Reinforcement learning (RL) is among the machine learning 

methodologies that allow the systems to decide on the best 

course of action with the help of experiences. With graph-

based models incorporated, Graph Reinforcement Learning 

(GRL) can learn dynamic dependency of LS-DSs (Working’ 

and Zhang bin, 2021; Fan, Zhang, & Yu, 2022). While 

traditional dependency graphs are usually designed to be 

updated gradually and frequently lose their relevance quickly, 

GRL reconstructs the service relationships dynamically by 
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using historical incident data and continually analyzing 

telemetry information triggered in actual operations (Tam et 

al., 2024). 

 

Standard SRE processes do not work with rigid mappings and 

cannot keep up with the system's flexibility in a microservices 

architecture. On the other hand, GRL adapts the GRL model 

of the service dependency continuously through practice and 

experience gained from failure, propagation of failures and 

performance indices (Farahmand, Xu, & Mostafavi, 2023). 

This adaptive learning process enables GRL models to build 

a service dependency graph that is ever dynamic. The incident 

response teams continuously work with the most updated and 

correct system map (Zhang & Cheng, 2020). 

 

Another capability that GRL has is the ability to use preceding 

events for failure prognostication and determine the 

fundamental cause. Unlike other models that handle a failure 

as an isolated occurrence, GRL learns recurring dependency 

patterns and shares this feedback with future models 

(Malikireddy, S. K. R., Algubelli, B., Katragadda, S. R., & 
Narapureddy, A. R., 2021). Thus, knowing which services are 

most impacted by failures in certain circumstances, engineers 

can be notified of complex dependencies in advance of 

failures (Li et al., 2024). 

 

However, another advantage is that it can also recognize 

indirect requirements, that is, the requirements derived from 

other requirements. Service interactions in distributed 

systems are complex, making failure patterns harder to detect 

with static graphs (Li et al., 2023). Unlike other failure 

models, GRL models can review the failure chains and 

identify some dependencies that can be uncovered but are not 

necessarily described in the documentation. This capability 

makes the response to the incident much more effective as it 

can detect paths where the failure may extend and therefore 

will remain unnoticed (Hui, Yan, Chen, & Ku, 2021). 

 

It also adapts automatically to changes to the new number or 

infrastructure of services. New microservices and overall 

organizational changes occur, and GRL adapts by adding 

these to its dependency graph without further user input (Tam 

et al., 2024). Further, mapping management is automated to 

avoid relying on reliability engineers to constantly update and 

maintain its entries so that they can engage in other advanced-

level optimization and reliability plans (Farahmand, Xu, & 

Mostafavi, 2023). 

 

Thus, integrating GRL into service dependency mapping will 

add another capability to the current static graph models and 

help the organization make better predictions with the least 

value of MTTD and MTTR of the failed system. This is a big 

step towards the self-learning of reliability engineering for 

dependability systems, which provides dependency maps and 

detects when something is about to go wrong with the end-

user. 

 

4. Predicting Failure Propagation with GRL 
 

Failure propagation in distributed systems can be viewed and 

analyzed as the problem in graphs: nodes are services 

interconnected with edges depending on their dependencies. 

If a specific microservice is not performing as expected, a 

negative impact will negatively affect other affiliated 

services. Conventional approaches cannot predict such 

disruptions since the employed graphs cannot continuously 

change in response to dynamics (Li et al., 2024). 

 

It can be averted before mishaps transpire with the aid of 

graph reinforcement learning (GRL). GRL always uses 

historical incident data to determine which services are more 

exposed to failure occurrences (Tam et al., 2024). This way, 

the possibility of shifting the dependence weight is 

introduced, which depends on the current schedule of services 

and infrastructure configuration. 

 

Organizations should consider training GRL models on 

historical incident data to improve their output. These models 

study historical service disruptions, recognize the failure 

domino effect, and continuously improve decision-making 

processes (Farahmand, Xu, & Mostafavi, 2023). Conversely, 

GRL can return application-level failure predictions by 

dynamically updating its service relationships. 

 

Indeed, among the main advantages of GRL, using the FMEA 

as an example, it can be concluded that one of the key benefits 

is the analysis of potential failures that can eventually lead to 

large-scale blackouts. Thus, it plays a crucial role in helping 

SRE teams predict and prevent service-related issues, 

something made possible by the risk scores GRL assigns to 

the numerous services (Zhang & Cheng, 2020). This can 

predict, cut down on Mean Time to Detect (MTTD), hence 

Mean Time to Recovery (MTTR), since it eases faster and 

informed response in case of an incident. 

 

Another way to support it will be to present a case or 

simulation example that illustrates the possibility of applying 

GRL for failure propagation prediction and suppression. 

Specifically, providing service engineers with a set of failures 

that occurred to the system under test and comparing the 

results GRL produced against traditional static dependency 

graphs would allow quantifying the degree of improvement 

in terms of detection and response value. 

 

5. Real-Time Incident Detection and MTTR 

Reduction 
 

GRL also improves the real-time identification of incidents 

using the learned service dependency and failure patterns. 

Today’s monitoring systems are based on alerting and static 

dependency tables, which increases the time it takes to 

identify the actual failure and consequently the Mean Time to 

Detect (MTTD) (Li, Jiao, & Yang, 2023). While comparing 

GRL with other approaches, it is important to know that it 

dynamically updates service dependency graphs with the 

possibility of failure identification prior to incidents. 

 

Instead of discussing asset configurations, dependency graphs 

show the system's state based on the real-time telemetry data 

in GRL. This capability helps more accurate failure 

localization, which in turn helps engineers spend less time 

investigating the causes of an occurrence (Fan et al., 2022). 

In the case of a security incident, GRL can identify how it 

spreads and might indicate services at high risk and possible 

ways to deal with the situation based on past events (Tam et 

al., 2024). 
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That is why one of GRL's significant benefits is the possibility 

of automating the Root Cause Analysis (RCA). To avoid the 

need for manual debugging of the system, GRL uses past 

failures to predict other possible failures that may occur in the 

system. This minimizes the MTTR as engineers know which 

micro-service, infrastructure part, or external service is 

probably causing the issue (Farahmand et al., 2023). 

 

Specifically, for the practical implementation of GRL, it can 

be wrapped along with the present tools such as Prometheus, 

Datadog, or OpenTelemetry. These platforms gather many 

metrics, logs, and traces which can be used as training data 

for GRL models. Thus, incorporating GRL-driven analytics 

in these tools helps improve the observability stack of any 

organization and moves from a reactive mode to a more 

proactive mode of incident identifying and mitigation (Zhang 

& Cheng, 2020). 

 

6. Implementation Considerations and 

Challenges 
 

There are some challenges involved when in integrating 

Graph Reinforcement Learning (GRL) for service 

dependency mapping and failure prediction in real-time 

operation: 

 

Data sources: As mentioned in the works by Li, Jiao, and 

Yang (2023), GRL uses data from logs, observability metrics, 

and traces. Training and inference need deep failure data of 

structures, history, services, or changes in dependency over 

time. Employing other observability tools such as 

Prometheus, OpenTelemetry, and Jaeger can further extend 

GRL's capability of identifying dynamic dependency between 

services, as Tam et al. (2024). This additional feature renders 

GRL models different from static dependency maps, and their 

computation involves continuous processing of streaming 

telemetry data and dynamics of their predictions, which 

considerably consume many computation resources (Fan, 

Zhang, & Yu, 2022). That is even more difficult in large-scale 

distributed systems with millions of these microservices, 

where tracking high-dimensional dependencies comes with a 

heavy processing cost (Farahmand, Xu, & Mostafavi, 2023). 

 

Scalability issues: GRL must perform well in settings with 

tens of millions of dependencies, whereas conventional RL 

approaches are applied in training and inference. However, a 

failure prediction model based on genuine raw language 

might cause latency when it is not optimized, making it less 

effective in a real-life situation (Zhang & Cheng, 2020). 

 

Solutions: It is possible to address these challenges in the 

following ways. Most GRL models can be distributed to 

accomplish computations over various nodes leading to 

enhanced efficiency. Real-time inference can be served 

through edge computing so that cloud resources would not be 

utilized much and the valuable services would take less time 

to respond (Li et al., 2024). More specifically, in terms of 

scalability, it is possible to enhance GNN improvements, for 

example, the hierarchical clustering, as the microservices 

related to each other can be grouped and the computational 

hardness may be decreased (Malikireddy, S. K. R., Algubelli, 

B., Katragadda, S. R., & Narapureddy, A. R. 2021). 

 

By implementing these challenges, the organizations can 

quickly deploy the GRL-based service observability as a near 

real-time failure prediction system that goes beyond quick 

alerts and transforms into a proactive self-learning ground for 

improving the overall Mean Time to Detect (MTTD) to Mean 

Time to Recovery (MTTR). 

 
Aspect Details  

Challenges 

• Data Sources: Requires deep failure data (structures, history, services, and changes in dependencies) and integration 

with observability tools like Prometheus, Open Telemetry, and Jaeger. Continuous processing of streaming telemetry 

data consumes significant computational resources, especially in large-scale distributed systems.  

• Scalability Issues: Handling tens of millions of dependencies efficiently. Raw language-based failure prediction can 

cause latency if not optimized.  

Reference: Zhang & Cheng (2020). 

Solutions 

• Distributed Computation: Utilizing multiple nodes for efficient processing.  

• Edge Computing: Reduces cloud resource usage and response times.  

• Scalability Enhancements: Hierarchical clustering of microservices to reduce computational complexity.  

References: Li et al. (2024); Malikireddy, S. K. R., Algubelli, B., Katragadda, S. R., & Narapureddy, A. R. (2021). 

Benefits 
It enables GRL-based service observability for near real-time failure prediction and improves Mean Time to Detect (MTTD) 

and Mean Time to Recovery (MTTR) by transforming alerts into proactive, self-learning systems. 

 

7. Future Directions and Research 

Opportunities 
 

These approaches can be united in Graph Reinforcement 

Learning (GRL) which provides a perfect solution for 

dynamic service dependency mapping and failure prediction. 

Nevertheless, some issues should be addressed to improve the 

system’s performance, implemented in a larger scale, and 

utilized in other domains: 

 

Adding anomaly detection to GRL model: Unsupervised 

anomaly detection circuiting with GRL helps in early failure 

prediction of a service since it is detected before it grows to 

be an issue of the system (Li et al., 2024). With autoencoders, 

variational inference, and self-supervised learning, GRL 

models can successfully filter out much noise to find 

correlation between service interactions and thus minimize 

false positives and increase accuracy in its predictions (Tam 

et al., 2024). 

 

Adoptions beyond IT infrastructure: The case of GRL has 

significant potential in managing IT service management; 

however, more research is possible in other domains such as 

supply chain, manufacturing, smart grid, etc. For instance, in 

logistics, GRL can capture the dependency structure of 

suppliers, determine potential disruptions and allocate 

resources efficiently (Fan et al., 2022). In the same way, in 

smart manufacturing, GRL could improve the analytical 
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framework of the intelligent maintenance and predictive 

maintenance model by forecasting the equipment failures 

based on the real-time data in the sensors (Farahmand et al., 

2023). 

 

Possible enhancements in MARL for distributed systems: 

Current distributed environments may contain tens of 

thousands or even hundreds of thousands of self-contained 

services that function concurrently. GRL can let the MARL 

independent agents cooperate and share derived dependencies 

within related system components, as described in Zhang & 

Cheng (2020). Again, studies in MARL to advance GRL 

could perhaps lead to improved collaboration between 

services, load balancing, and failure handling mechanisms 

(Malikireddy, S. K. R., Algubelli, B., Katragadda, S. R., & 
Narapureddy, A. R., 2021). 

 

Future works aim to make GRL more efficient regarding 

scalability, computational complexity, and timely 

adaptability to enhance service observability. Thus, with the 

development of the concept of AI-based observability, GRL 

can become a solid foundation for the resilience of 

infrastructure in IT systems, making them self-adapt and self-

sustain in the community to minimize losses due to failures. 

 

8. Discussion 
 

Real-life service interdependency graphs and their evaluation 

with other approaches introduce the problem of less effective 

analyses. That is why developing more flexible approaches in 

current Site Reliability Engineering (SRE) is necessary. As 

will be discussed later, traditional dependency graphs that 

primarily have a historical focus and are more difficult for 

large software systems, and especially for microservices-

based architectures. The paper shows that the system cannot 

predict changes to real-time conditions, failure cascading, and 

optimal incident resolution since these aspects can devastate 

the system since they have leaked through as major unsolved 

problems. 

 

One of the conclusions drawn from the work presented is that 

static graphs are unsuitable in the defined context since they 

appeared designed for setting up a system where the services 

remain static as they are, constantly being updated, deployed 

and retired from active service. This contributes to the rise in 

MTTD and MTTR because engineers need to identify 

dependencies and the root of a failure on their own. Moreover, 

the probability of these mappings is high and they require a 

substantial number of engineers to maintain them while 

addressing more critical reliability aspects. These aspects are 

compounded by the absence of timely failure prognosis since 

the breakdowns worsen before they can be controlled. 

 

The shift from static graph mapping to the Graph 

Reinforcement Learning (GRL) mapping is pioneered in the 

current study and shifts the paradigm of reliability 

engineering. Given that, GRL offers a way to update service 

dependencies depending on the context of execution, 

incorporate telemetry data, and predict the failure cascading 

effect, which makes it a good choice for addressing the 

problems of utilizing static graphs. As such, GRL models 

employ past accidents and real-time information to create 

more proactive approaches to system reliability issues where 

an organisation can identify possible failure before it happens 

on a large scale. 

 

Furthermore, using GRL to automatically complete both 

RCA and incident detection also impacts the SRE work 

model. This contrasts with static mapping techniques, where 

the mappings are updated manually and checked for every 

error that may occur, while GRL dynamically adjusts the 

dependency graphs after learning about the system's behavior. 

It increases the visibility of the service interactions and hence 

quick identification and response to the incidents besides 

efficiently utilizing the available resources. Moreover, 

integrating GRL with other monitoring tools such as 

Prometheus, Datadog, and Open Telemetry enables 

additional observability and improves predictive analysis for 

handling incidents. 

 

Therefore, the understanding of GRL-based service 

dependency mapping is still theoretical, and there are still 

some barriers to its implementation. The data generated in this 

case mean that a constant stream of telemetry data must be 

processed, and the high-dimensional dependencies involved 

in a large-scale system can become demanding when it comes 

to computation. Also, it is important to note that updating the 

set of historical incident patterns and its availability in 

training GRL models is crucial to ensure accuracy. Despite 

this, there are still obstacles associated with utilization of such 

data due to limited access to reliable machine data 

observability tools and efficient cloud environments. In 

summary, transitioning from the TDG-based approaches to 

GRL-based ones significantly improves SRE practices. 

Through picking real-time learning, failure prediction, and 

automated dependency management, it will be easier to make 

the system more resilient and have minimal downtimes, 

together with having the proper response to a given incident. 

More work should be done on improving GRL for scalability, 

and in using it in large-scale programs, and practicing using 

AI as a substitute for observation and integration with 

traditional/standard analytical methods for software 

management. 

 

9. Conclusion 
 

This study highlights the shortcomings of static dependency 

mapping in modern distributed systems and proposes Graph 

Reinforcement Learning (GRL) as a more dynamic, 

predictive alternative. By integrating real-time telemetry and 

historical incident data, GRL significantly reduces Mean 

Time to Detect (MTTD) and Mean Time to Recover (MTTR), 

improving system resilience. The research further identifies 

implementation challenges, such as computational 

complexity and scalability, and suggests solutions like 

hierarchical clustering and distributed processing. Future 

work should focus on refining GRL algorithms for greater 

efficiency and expanding applications beyond IT 

infrastructure. 

 

Service maps have been a part of SRE from the beginning and 

can be generally defined as static diagrams representing 

service dependencies. However, as the complexity of the 

modern distributed systems with thousands of microservices 

and frequent iterations increases, such static graphs lack the 

desired effectiveness. They do not address the issues of 
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dynamicism of services, they also do not offer real-time 

failure indication, and they have high operational costs in 

terms of maintenance. These limitations allow incidents to 

take a long time before they are identified, extended 

downtime, and poor identification and prevention of failure 

causes. 

 

It introduces innovations to deal with the problem of updating 

these dependencies in real-time, predicting the failures’ 

spread, and responding to it autonomously. GRL does not 

follow a conventional top-down modeling technique based on 

organization charts; instead, it uses historical incident data, 

live telemetry and predictive analytical data to map out the 

dependencies of a service in real-time and determine the 

critical junctures of failure ahead of time. This shift also helps 

to determine the root cause quicker, decreases MTTD and 

MTTR, and increases system redundancy. 

 

In addition, GRL is incorporated in observability 

infrastructure like Prometheus, OpenTelemetry, and Datadog, 

which means that hardly any significant code changes are 

needed to utilize it, and it enables organizations to have a 

realistic plan for system reliability. However, some 

limitations are associated with the computational resource 

demand and data acquisition. However, the advantages of 

GRL, such as enhanced service reliability, decreased 

operational burden, and effective prognosis of required 

maintenance, compensate all the shortcomings. As the cloud 

guarantees new native architectures, organizations must opt 

for dynamic ‘integrating intelligence mapping’ of services 

that adapt to continual learning processes. By adopting GRL, 

enterprises can improve their practical approach to incident 

handling, reduce the associated costs of failures, and ensure 

their SRE practices are equipped adequately for the 

challenges of modern distributed systems. 
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