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Abstract: Change-points divide statistical models into homogeneous segments. Inference about change-points is discussed in many 

researches in the context of testing the hypothesis of ‘no change’, point and interval estimation of a change-point, changes in 

nonparametric models, changes in regression, and detection of change in distribution of sequentially observed data. In this paper we 

consider the problem of single change-point estimation in the mean of a Generalized Compound Rayleigh Distribution under 

Precautionary Loss Function. We propose a robust estimator of parameter. Then, we propose to follow the classical inference approach, 

by plugging this estimator in the criteria used for change-points estimation. We show that the asymptotic properties of these estimators 

are the same as those of the classical estimators in the independent framework. This method is implemented in the R package for 

Comprehensive numerical study. This package is used in the simulation section in which we show that for finite sample sizes taking into 

account the dependence structure improves the statistical performance of the change-point estimators and of the selection criterion. 
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1. Introduction  
 

In this estimation approach, the parameter 𝜃 in the model 

distributions 𝑝𝜃(𝑥)is treated as a random variable with some 

prior distribution 𝜋(𝜃). The estimator for 𝜃 is defined as a 

value depending on the data and minimizing the expected loss 

function or the maximal loss function, where the loss function 

is denoted as 𝑙 (𝜃, �̂�(𝑋)). The usual loss function includes the 

quadratic loss (𝜃 − �̂�(𝑋))
2

, the absolute loss |𝜃 − �̂�(𝑋)| etc. 

It often turns out that �̂�(𝑋) can be determined from the 

posterior distribution of 𝑃(𝜃|𝑋) = 𝑃(𝑋|𝜃) 𝑃(𝜃)/𝑃(𝑋). 

 

In decision theory the loss criterion is specified in order to 

obtain best estimator. The simplest form of loss function is 

squared error loss function (SELF) which assigns equal 

magnitudes to both positive and negative errors. However, 

this assumption may be inappropriate in most of the 

estimation problems. Sometime overestimation leads to many 

serious consequences. In such situation many authors found 

the asymmetric loss functions, appropriate. There are several 

loss functions which are used to deal such type of problem. In 

this research work we have considered some of the 

asymmetric loss function named precautionary loss functions 

(PLF) suggested by Norstorm (1996). Such asymmetric loss 

functions are also studied by Basu, A.P. and Ebrahimi, N. 

(1991), Goldstein, M. (1998), Perlman, M., & Balug, M. 

(Eds) (1997), Pandya et. al. (1994), Shah, J.B. & Patel, M.N. 

(2007) and Singh, U. 

 

1.5 Precautionary Loss  

 

Norstrom (1996) introduced an alternative asymmetric 

precautionary loss function and also presented a general class 

of precautionary loss functions with quadratic loss function as 

a special case. These loss function approach infinitely near 

the origin to prevent underestimation and thus giving a 

conservative estimators, especially when, low failure rates are 

being estimated. These estimators are very useful and simple 

asymmetric precautionary loss function is  

L(θ,̂ θ) =  
(θ̂−θ)

2

θ̂
                          (1.2.1) 

 

In a Bayesian setup, the unknown parameter is viewed as 

random variable. The uncertainty about the true value of 

parameter is expressed by a prior distribution. The parametric 

inference is made using the posterior distribution which is 

obtained by incorporating the observed data in to the prior 

distribution using the Bayes theorem, The first theorem of 

inference. Hence, we update the prior distribution in the light 

of observed data. Thus, the uncertainty about the parameter 

prior to the experiment is represented by the prior distribution 

and the same, after the experiment, is represented by the 

posterior distribution.  

 

The various statistical models are considered are as;  

 

1.6 Generalized Compound Rayleigh Distribution 

 

The Generalized Compound Rayleigh Distribution is a 

special case of the three- parameter Burr type XII distribution. 

Mostert, Roux, and Bekker (1999) considered a gamma 

mixture of Rayleigh distribution and obtained the compound 

Rayleigh model with unimodal hazard function. This 

unimodal hazard function is generalized and a flexible 

parametric model is thus constructed, which embeds the 

compound Rayleigh model, by adding shape parameter. Bain 

and Engelhardt (1991) studied this distribution (also known 

as the Compound Weibull distribution (Dubey 1968) from a 

Poisson perspective. (p.d.f.) 

𝑓(𝑥; 𝛼, 𝛽, 𝛾) = 𝛼𝛾𝛽𝛾𝑥𝛼−1(𝛽 + 𝑥𝛼)−(𝛾+1)  𝑥; 𝛼, 𝛽, 𝛾 > 0                                                                      
(1.3.1) 

With Probability Distribution Function 

F(x) = 1 − (1 − βxα)−γ              x; α, β, γ > 0  (1.3.2)                                

Reliability function is 

 R(t) = (
β

β+tα)
γ

                                      (1.3.3) 
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Hazard rate function                                                                                              

 H(t) = αγ
tα−1

β+tα                       (1.3.4) 

 

1.7 Natural Conjugate Prior (NCP) 

 

The various prior distributions are considered for different 

situations, like non-informative, when no information about 

the parameter is available, Natural Conjugate Prior (NCP), 

when post and prior distribution of parameter belong to same 

distribution family, etc. Hence the appropriate distribution 

chosen is Natural Conjugate Prior. If there is no inherent 

reason to prefer one prior probability distribution over 

another, a conjugate prior is sometimes chosen for simplicity. 

A conjugate prior is defined as a prior distribution belonging 

to some parametric family, for which the resulting posterior 

distribution also belongs to the same family. This is an 

important property. Since the Bayes estimator, as well as its 

statistical properties (variance, confidence interval, etc.), can 

all be derived from the posterior distribution. 

 

In each case we observe that the statistical analysis based on 

the sufficient statistic will be effective as the one based on the 

entire data set x . 

 

As in frequentist framework, sufficient statistic plays an 

important role in Bayesian inference in constructing a family 

of prior distributions known as Natural Conjugate Prior 

(NCP) . The family of prior distributions g(θ) , θ ϵ Ω , is 

called a natural conjugate family if the corresponding 

posterior distribution belongs to the same family as g(θ) . De 

Groot (1970) has outlined a simple and elegant method of 

constructing a conjugate prior for a family of distributions 

f (x|θ) which admits a sufficient statistic. 

 

One of the fundamental problems in Bayesian analysis is that 

of the choice of prior distribution g(θ) of θ. The non 

informative and natural conjugate prior distributions are 

which in practice, Box and Tiao (1973) and Jeffrey (1961) 

provide a thorough discussion on non informative priors.  

 

Both De Groot (1970) and Raffia & Schlaifer (1961) provide 

proof that when a sufficient statistics exist a family of 

conjugate prior distributions exists. 

 

The most widely used prior distribution of θ is the inverted 

Gamma distribution with the parameters ‘a’ and ‘b’ (> 0) with 

p.d.f. given by  

g(θ)  =  {
ba

Γa
θ−(α+1)e−b

θ⁄  ;  θ > 0 ;  (𝑎, 𝑏) > 0,

0                  , otherwise.
 (1.4.1) 

 

The main reason for general acceptability is the mathematical 

tractability resulting from the fact that the inverted Gamma 

distribution is conjugate prior of θ Raffia & Schlaifer (1961), 

Bhattacharya (1967) and others have found that the inverted 

Gamma can also be used for practical reliability applications. 

 

In this paper the Bayesian estimation of change point ‘m’ and  

scale parameter ‘𝛾’ of three parameter of Generalized 

Compound Rayleigh Distribution (G.C.R.D.) and also the 

change point ‘m’ and scale parameter ′𝜃′  of Exponentiated 

Inverted Weibull distribution is done by using Precautionary 

Loss Function (PLF) and Natural conjugate Prior distribution 

as Inverted Gamma prior. The sensitivity analysis of Bayesian 

estimates of change point and the parameters of the 

distributions have been done by using R-programming.    

 

1.8 Bayesian Estimation of Change Point in 

Generalized Compound Rayleigh Distribution 

under Precautionary Loss Function (PLF) 

 

A sequence of independent lifetimes x1, x2,….,xm,,xm+1,…xn 
(𝑛 ≥ 3) were observed from Generalized Compound 

Rayleigh Distribution with parameter𝛼, 𝛽, 𝛾 but it was found 

that there was a change in the system at some point of time m 

and it is reflected in the sequence after xm by change in 

sequences as well as change in the parameter values. The 

Bayes estimates of 𝛾 and m are derived for symmetric and 

asymmetric loss functions under natural conjugate prior 

distribution. 

 

1.8.1 Likelihood, Prior, Posterior and Marginal  

Let  𝑥1, 𝑥2, … … , 𝑥𝑛 ,  be a sequence  of  observed   life times. 

First let observations   𝑥1, 𝑥2, … … , 𝑥𝑛   have come from 

Generalized Compound Rayleigh Distribution (G.C.R.D.) 

with probability density function as 

f (x|α, β, γ) = α 𝛽𝛾𝛾 𝑥(𝛼−1) (𝛽 + 𝑥𝛼)−(𝛾+1)       (𝑥; 𝛼, 𝛽, 𝛾 >
0)                                                               (1.5.1.1)                   

Let ‘m’ is change point in the observation which breaks the 

distribution in two sequences as ( 𝑥1, 𝑥2, … … … . . 𝑥𝑚)   & 

(𝑥(𝑚+1),𝑥(𝑚+2), … … . 𝑥𝑛).  

The probability density functions of the above sequences are 

𝑓1(𝑥) = 𝛼1𝛽1
𝛾1𝛾1𝑥(α1−1)(𝛽1 + 𝑥𝛼1)−( 𝛾1+1)                                                                                                

(1.5.1.2) 

                                                        Where   𝑥1 , … , 𝑥𝑚 >
0; 𝛼1,𝛽1, 𝛾1 > 0 

𝑓2(𝑥) =  𝛼2𝛽2
𝛾2𝛾2𝑥(α2−1)(𝛽2 + 𝑥𝛼2)−( 𝛾2+1)                                                                                                

(1.5.1.3)   

Where (𝑥𝑚+1 , … , 𝑥𝑛;  𝛼2, 𝛽2, 𝛾2 > 0 

 

The likelihood functions of probability density function of the 

sequence are  

𝐿1(𝑥|𝛼1, 𝛽1, 𝛾1) = ∏ 𝑓(𝑥𝑗|𝛼1, 𝛽1, 𝛾1)

𝑚

𝑗=1

 

𝐿1(𝑥|𝛼1, 𝛽1, 𝛾1) = (𝛼1𝛾1)𝑚𝑈1𝑒−𝛾1𝑇1𝑚         (1.5.1.4) 

Where  

 𝑈1 = ∏
𝑥𝑗

(𝛼1−1)

𝛽1 + 𝑥𝑗
𝛼1

𝑚

𝑗=1

  

  𝑇1𝑚 = ∑ log (1 +
𝑥𝑗

𝛼1

𝛽1
)𝑚

𝑗=1                    

 𝐿2(𝑥|𝛼2, 𝛽2, 𝛾2) = ∏ 𝑓(𝑥𝑗|𝛼2, 𝛽2 ,𝛾2)𝑛
𝑗=(𝑚+1)                                                                                                                                                                                   

𝐿2(𝑥|𝛼2, 𝛽2, 𝛾2) = (𝛼2𝛾2)(𝑛−𝑚)𝑈2𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚  )                                                                                     

(1.5.1.5)     

 

Where 

𝑈2 = ∏
𝑥𝑗

(𝛼2−1)

(𝛽2+𝑥𝑗
𝛼2)

𝑛
𝑗=𝑚+1      

  and        𝑇1𝑛 − 𝑇1𝑚 = ∑ log (1 +
𝑥𝑗

𝛼2

𝛽2
)𝑛

𝑗=(𝑚+1)                       

The joint likelihood function is given by 

𝐿(𝛾1 ,𝛾2|x)  ∝

(𝛼1𝛾1)𝑚𝑈1 𝑒
−𝛾1𝑇1𝑚(𝛼2𝛾2)𝑛−𝑚𝑈2 𝑒

−𝛾2(𝑇1𝑛−𝑇1𝑚  )                                                                  

(1.5.1.6) 
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Suppose the marginal prior distribution of 𝛾1 and 𝛾2 are   

natural conjugate prior    

𝜋1(𝛾1, x) =
𝑏1

𝑎1

Γ𝑎1
𝛾1

(𝑎1−1)
𝑒−𝛾1𝑏1;             𝑎1, 𝑏1 > 0, 𝛾1 > 0                                                                           

(1.5.1.7)           

𝜋2(𝛾2, x) =
𝑏2

𝑎2

Γ𝑎2
𝛾2

(𝑎2−1)
𝑒−𝛾2𝑏2 ;            𝑎2, 𝑏2 > 0, 𝛾2 > 0                                                                            

(1.5.1.8)           

The joint prior distribution of  𝛾1 ,𝛾2 and change point ‘m’ is      

 π(𝛾1, 𝛾2, 𝑚)  ∝  
𝑏1

𝑎1

Γ𝑎1

𝑏2
𝑎2

Γ𝑎2
𝛾1

(𝑎1−1)
𝑒−𝛾1𝑏1𝛾2

(𝑎2−1)
𝑒−𝛾2𝑏2                                                                                 

(1.5.1.9) 

where    𝛾1, 𝛾2 > 0 & 𝑚 = 1,2, … … … . . (𝑛 − 1) 

 

 

The joint posterior density of  𝛾1, 𝛾2and m say 𝜌(𝛾1, 𝛾2, 𝑚/𝑥) is obtained by using equations (1.5.1.6) & (1.5.1.9) 

𝜌(𝛾1, 𝛾2, 𝑚|𝑥) =
L(𝛾1 ,𝛾2 𝑥 ⁄ )π(𝛾1,𝛾2,𝑚) 

∑ ∬ L(𝛾1 ,𝛾2 𝑥 ⁄ )π(𝛾1,𝛾2,𝑚)𝑑𝛾1𝑑𝛾2𝛾1,𝛾2𝑚

                                                                                  (1.5.1.10) 

=
𝛾1

(𝑚+𝑎1−1)  𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2)

∑ ∫ 𝛾1
(𝑚+𝑎1−1)  𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝑑𝛾1  ∫ 𝛾2

(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) 𝑑𝛾2
∞

0

∞

0𝑚

 

 

Assuming  

𝛾1(𝑇1𝑚 + 𝑏1) = 𝑥                 & 

𝛾2(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2) = 𝑦 

𝛾1 =
𝑥

(𝑇1𝑚 + 𝑏1)
                           & 

𝛾2 =
𝑦

(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2)
 

𝑑𝛾1 =  
𝑑𝑥

(𝑇1𝑚 + 𝑏1)
 & 

d𝛾2 =
𝑑𝑦

(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2)
 

 𝜌 (𝛾1, 𝛾2,
𝑚

𝑥
)

=
𝛾1

(𝑚+𝑎1−1) 𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2)

𝜉(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑚, 𝑛)
  

(1.5.1.11)  

where  

𝜉(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑚, 𝑛) =
Γ(𝑛−𝑚+𝑎2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2) (1.5.1.12)  

 

 

The Marginal posterior distribution of change point ‘m’ using the equations (1.5.1.6), (1.5.1.7) & (1.5.1.8) 

𝜌(𝑚|𝑥) =  
L(𝛾1 ,𝛾2 𝑥 ⁄ ) π(γ1) π(γ2)

∑ L(𝛾1 ,𝛾2 𝑥 ⁄ ) π(γ1) π(γ2)𝑚
 (1.5.1.13) 

𝜌(𝑚|𝑥) =
∫ 𝛾1

(𝑚+𝑎1−1) 𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝑑𝛾1  ∫ 𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) 𝑑𝛾2

∞

0

∞

0

∑ ∫ 𝛾1
(𝑚+𝑎1−1) 𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝑑𝛾1  ∫ 𝛾2

(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) 𝑑𝛾2
∞

0

∞

0𝑚

 

 

Assuming 

𝛾1(𝑇1𝑚 + 𝑏1) = 𝑦 &  
 𝛾2(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2) = 𝑧 

𝛾1 =
𝑦

(𝑇1𝑚 + 𝑏1)
 & 𝛾2 =  

𝑧

(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2)
 

𝑑𝛾1 =  
𝑑𝑦

(𝑇1𝑚 + 𝑏1)
 & 𝑑𝛾2 =  

𝑑𝑧

(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2)
  

 

 

then  

𝜌(𝑚|𝑥) =  

Γ(m+a1)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2) 

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
 (1.5.1.14) 

The marginal posterior distribution of 𝛾1using equation 

(1.5.1.6) & (1.5.1.7) is given by  

𝜌(𝛾1|𝑥)  =  
L(𝛾1 ,𝛾2  x⁄ ) π(γ1)

∫ L(𝛾1 ,𝛾2  x⁄ )π(γ1)dγ1
∞

0

 (1.5.1.15)  

 

 𝜌(𝛾1|𝑥) =
∑ 𝛾1

(𝑚+𝑎1−1) 𝑒−𝛾1(𝑇1𝑚+𝑏1)  ∫ 𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) 𝑑𝛾2

∞

0𝑚

∑ ∫ 𝛾1
(𝑚+𝑎1−1) 𝑒−𝛾1(𝑇1𝑚+𝑏1)∞

0𝑚  𝑑𝛾1  ∫ 𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) 𝑑𝛾2

∞

0

  

Assuming 𝛾2(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2) = 𝑦 , & 𝛾2 =
𝑦

(𝑇1𝑛−𝑡1𝑚+𝑏2)
  

then 

𝜌(𝛾1|𝑥) =
∑ 𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝛾1

(𝑚+𝑎1−1)  
Γ(𝑛−𝑚+𝑎2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2)m

𝜉(𝛼1,𝛼2,𝛽1,𝛽2,𝑚,𝑛)
 (1.5.1.16) 

The marginal posterior distribution of 𝛾2, using the equation (1.5.1.6) & (1.5.1.8) is given by  

 𝜌(𝛾2|𝑥) =  
L(𝛾1 ,𝛾2  x⁄ ) π(γ2)

∫ L(𝛾1 ,𝛾2  x⁄ ) π(γ2) dγ2
∞

0

 (1.5.1.17)  

 𝜌(𝛾2|𝑥) =
∑ ∫ 𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝛾1

(𝑚+𝑎1−1)  [𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) ]𝑑𝛾1

∞

0𝑚

∑ ∫ 𝛾1
(𝑚+𝑎1−1) 𝑒−𝛾1(𝑇1𝑚+𝑏1)∞

0𝑚  𝑑𝛾1  ∫ 𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) 𝑑𝛾2

∞

0

 

 Assuming 𝛾1(𝑇1𝑚 + 𝑏1) = 𝑦 , 𝛾1 =  
𝑦

(𝑇1𝑚+𝑏1)
 

 𝜌(𝛾2 ∕ 𝑥) =  
∑ ⌊

Γ(m+a1)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1)⌋ 𝛾2
(𝑛−𝑚+𝑎2−1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2)

𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
              (1.5.1.18) 
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1.5.2 Bayes Estimators under Precautionary Loss 

Function (PLF)  

The Precautionary loss function is given by 

  𝐿3(�̂�, 𝜃) =        
(�̂�−𝜃)

2

�̂�
                    (1.5.2.1) 

 

The Bayes estimator of 𝜃 under precautionary Loss Function 

is obtain by solving the equation; 

 
𝜕

𝜕�̂�
𝐸𝜌[  𝐿3(�̂�, 𝜃)] = 0  

 ⇒  �̂�𝐵𝑃 =  [𝐸𝜌(𝜃2)]
1∕2

 

 

The Bayes estimate �̂�𝐵𝑃 of m using the marginal posterior 

from equation (1.5.1.14) is 

  �̂�𝐵𝑃 =  [𝐸𝜌(𝑚2)]
1∕2

 

 �̂�𝐵𝑃 = [
∑ 𝑚2 

Γ(m+a1)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2) 𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

     

(1.5.2.2) 

 

The Bayes estimator 𝛾1𝐵𝑃 of 𝛾1 under PLF using the marginal 

posterior from equation (1.5.1.15) is  

 𝛾1𝐵𝑃 =  [𝐸𝜌(𝛾1
2)]

1∕2
                      (1.5.2.3)                           

 𝛾1𝐵𝑃 =

[
∑ ∫ 𝑒−𝛾1(𝑇1𝑚+𝑏1) 𝛾1

(𝑚+𝑎1+1)  𝑑𝛾1 
Γ(𝑛−𝑚+𝑎2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2)
∞

0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

 

 

Assuming   𝛾1(𝑇1𝑚 + 𝑏1) = 𝑦      &       𝛾1 =  
𝑦

(𝑇1𝑚+𝛽1)
 

𝛾1𝐵𝑃 =

[
∑ ∫ 𝑒−𝑦  

𝑦(𝑚+𝑎1+1)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1+1) 
 

𝑑𝑦
(𝑇1𝑚+𝑏1)

 
Γ(𝑛−𝑚+𝑎2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2)
∞ 

0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1
2⁄

         

 𝛾1𝐵𝑃 = [
∑

Γ(m+a1+2)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1+2) 
Γ(𝑛−𝑚+𝑎2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

 

 𝛾1𝐵𝑃 = [
𝜉[(𝑎1+2),𝑎2,𝑏1,𝑏2,𝑚,𝑛]

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

       (1.5.2.4) 

 

The bayes estimate 𝛾2𝐵𝑃 of 𝛾2 under PLF using the marginal 

posterior from equation (1.5.1.16)  

   𝛾2𝐵𝑃 = [𝐸𝜌(𝛾2
2)]

1∕2
                                     (1.5.2.5)          

   𝛾2𝐵𝑃 =

[
∑

Γ(m+a1)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1)  ∫ 𝛾2
(𝑛−𝑚+𝑎2+1)  𝑒−𝛾2(𝑇1𝑛−𝑇1𝑚+𝑏2) 𝑑𝛾2  

∞
0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

 

 

Assuming   

𝛾2(𝑇1𝑛 − 𝑇1𝑚 + 𝑏2) = 𝑦   &   𝛾2 =
𝑦

𝑇1𝑛 − 𝑇1𝑚 + 𝑏2

 

 𝛾2𝐵𝑃= 

[
∑

Γ(m+a1)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1)  ∫  𝑒−𝑦  𝑦(𝑛−𝑚+𝑎2+1)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2+1) 
𝑑𝑦

(𝑇1𝑛−𝑇1𝑚+𝑏2) 
 

∞
0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

 

 𝛾2𝐵𝑃= [
∑

Γ(m+a1)

(𝑇1𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2+2)

(𝑇1𝑛−𝑇1𝑚+𝑏2)(𝑛−𝑚+𝑎2+2) 𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

 

 𝛾2𝐵𝑃 = [
𝜉[(𝑎1,(𝑎2+2),𝑏1,𝑏2 ,𝑚,𝑛]

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

1∕2

                  (1.5.2.6) 

 

 

Numerical Comparison for Generalized Compound 

Rayleigh Sequences 

In this paper, we have generated 20 random observations from 

Generalized Compound Rayleigh distribution with parameter 

𝛼 = 2, 𝛽 = 0.5 and 𝛾 = 2 .The observed data mean is 0.9639 

and variance is 2.3071. Let  the change in sequence is at 11th  

observation, so the means of both sequences (x1,x2,…,xm) and 

(x(m+1), x(m+2),…, xn)  are 𝛾1 = 1.2682, 𝛾2 = 0.5920. If the target 

value of  𝛾1  is unknown, its estimating (𝛾1) is given by the 

mean of first m sample observation given m = 11,  𝛾 =1.2682.  

 

Sensitivity Analysis of Bayes Estimates 

In this section we have studied the sensitivity of the Bayes 

estimates with respect to changes in the parameters of prior 

distribution 𝑎1, 𝑏1, 𝑎2 and 𝑏2. The means and variances of the 

prior distribution are used as prior information in computing 

these parameters. Then with these parameter values we have 

computed the Bayes estimates of m, 𝛾1 and 𝛾2 under 

precationary loss function (PLF) considering different set of 

values of (𝑎1, 𝑏1) and (𝑎2, 𝑏2).We have also considered the 

different sample sizes n=10(10)30. The Bayes estimates of 

the change point ‘m’ and the parameters 𝛾1 and 𝛾2 are given 

in table-5.1 under PLF. Their respective mean squared errors 

(M.S.E’s) are calculated by repeating this process 1000 times 

and presented in same table in small parenthesis under the 

estimated values of parameters. All these values appears to be 

robust with respect to correct choice of prior parameter values 

and appropriate sample size.  From the below table we 

conclude that - 

 

The Bayes estimates of the parameters 𝛾1 and 𝛾2 of GCRD 

obtained with PLF are seems to be efficient as the numerical 

values of their mse’s are very small for γ̂1BP   and   γ̂2BP  in  

comparison with  m̂BP.The Bayes estimates of the parameters 

are robust with correct choice of prior parameters and sample 

size. This consistency is similar to the conclusions drawn by 

Norstom (1996). The Bayes estimates of the parameters are 

robust with a1 =(1.5-2.5), a2=(1.70-2.50), b1=(1.75-2.75) and 

b2=( 1.80-2.60) and all sample size.     

 

Table 1.1: Bayes Estimates of m, 𝛾1& 𝛾2for GCRD and their respective M.S.E.'s Under PLF 
(a1, b1) (a2, b2) n m̂BP γ̂1BP γ̂2BP 

(1.25,1.50) (1.50,1.60) 10 
5.5176 

(11.6965) 

1.2346 

(1.0365) 

1.2009 

(0.0311) 

  20 
10.8289 

(73.8923) 

      1.3004 

     (1.4985) 

1.1008 

(1.1359) 

  30 
19.0888 

(130.4329) 

0.9841 

(1.0896) 

1.8059 

(0.5592) 

(1.50,1.75) (1.70,1.80) 10 
      5.5699 

       (15.4609) 

0.8273 

(0.0777) 

1.1404 

(0.3608) 
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  20 
10.6470 

(78.6966) 

1.0886 

(1.3336) 

1.0502 

(0.7118) 

  30 
14.8688 

(184.2154) 

1.3806 

(0.3338) 

0.9235 

(0.2106) 

(1.75,2.0) (1.90,2.0) 10 
6.1512 

(11.6789) 

1.1171 

(0.9987) 

0.7698 

(0.9645) 

  20 
11.8304 

(68.4689) 

1.3226 

(0.2011) 

0.9097 

(0.8838) 

  30 
13.5278 

(309.3194) 

2.7306 

(0.1698) 

1.0806 

(1.4220) 

(2.0,2.25) (2.10,2.20) 10 
5.8345 

(13.2841) 

1.0169 

(0.4677) 

0.7269 

(0.3727) 

  20 
11.2005 

(110.1872) 

1.0131 

(0.6190) 

0.9691 

(0.0959) 

  30 
17.1008 

(142.6928) 

1.1904 

(1.3678) 

0.8261 

(0.6356) 

(2.25,2.50) (2.30,2.40) 10 
5.8881 

(14.4218) 

1.1255 

(0.6255) 

2.1762 

(0.2816) 

  20 
      12.4921 

      (86.6281) 

      1.0542 

      (1.2386) 

0.7108 

(1.0935) 

  30 
16.2239 

(233.1022) 

       1.2375 

       (1.0212) 

      0.8891 

      (0.8500) 

(2.50,2.75) (2.50,2.60) 10 
       5.5949 

       (17.2371) 

1.4788 

(0.5259) 

       1.1997 

       (1.2209) 

  20 
        12.6544 

        (86.2272) 

1.2963 

(0.3734) 

0.9591 

(1.4638) 

  30 
16.4856 

    (243.5786) 

      1.0601 

       (0.5777) 

1.0525 

   (0.5583) 
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