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Abstract: The separation of the control plane (CP) from the data plane (DP) facilitates in Software Defined Networking (SDN) 

centralizing the network management. SDN is an innovative network design. This separation will help in the configuration of the network, 

management of the network and optimization of the network. This separation also contributes more programmable and adaptable control 

over the network activities. Here, adjusting to high-dimensional (HD) state-action (S-A) spaces and quickly shifting network conditions 

are not contributed by the conventional Routing Protocols (RP). For the purpose of overcoming those limitations in SDN network routing, 

the (MA) Multi-Agent (DDPG) Deep Deterministic Policy Gradient (MADDPG) algorithm was suggested in this study. Decentralized 

agents were enabled by this MADDPG, and network nodes are stimulated by these agents for learning the Optimal Routing Policies (ORP) 

collaboratively. During training, the global network state is considered. Then, a scalable, and adaptive Decision Making (DM) was 

facilitated by this approach, as it integrates centralized training and decentralized execution. Important objectives are optimized by this 

model, as it attains minimizing latency, balancing network loads, and maximizing throughput. Adapting to dynamic traffic patterns and 

faults were facilitated by the MADDPG-based routing with the Reinforcement Learning (RL). This integration will also support in 

ensuring the robust and Real-Time (RT) operation. Simulation was conducted, and the outcomes of the simulation indicates that the 

suggested MADDPG performs better than the current RP by delay, Packet Loss (PL), and throughput (T). MADDPG became an effective 

method for future SDN settings. 

 

Keywords: Software Defined Networking (SDN), Network routing, Optimal Routing Policies (ORP), Multi-Agent Deep Deterministic 

Policy Gradient (MADDPG) procedure 

 

1. Introduction 
 

The separation of the CP from the DP facilitates in SDN 

centralizing the network management. SDN is an innovative 

network design [1]. This separation also contributes more 

programmable and adaptable control over the network 

activities. Here, the network operators can use the technology 

in modifying the network behavior dynamically, and it was 

facilitated by the decoupling of DP and CP. This separation 

also enhances the ability in responding to several needs and 

settings. Global perspective of the network was provided by 

the centralized ability of SDN. Then, network resource 

optimization, and overall performance was optimized by the 

centralized nature of the SDN. The Traffic Engineering (TE) 

and Network virtualization have advanced significantly by 

this architectural shift. For the purpose of managing large-

scale networks, a robust framework was offered by this 

architectural shift. Conventional RP in SDN has several 

difficulties despite its benefits. Dynamic and complex nature 

of modern networks are not effectively handled by the 

conventional RP in SDN. The static nature of these algorithms 

thus limits their performance in backgrounds with rapidly 

changing traffic patterns and network topologies. 

Conventional methods often face difficulties in attaining key 

performance objectives like minimizing delay, balancing 

network loads, and maximizing T. These conventional 

methods have the following drawbacks, such as resilience of 

the network to failures and ability of the conventional 

methods in make RT decisions. Responding to dynamic and 

heterogeneous network backgrounds are not facilitated by the 

conventional algorithms, because these conventional methods 

often depend on static configurations and pre-defined rules. 

This will lead to inefficient resource utilization, degraded 

quality of service (QoS), and bottlenecks result from the 

inability of these conventional methods in swiftly adapting to 

dynamic networks. In case of unpredictable traffic patterns, 

adapting to the increasing intricacy and size of modern 

networks are not managed by these algorithms because these 

algorithms are static in nature. 

 

Then, the incorporation of RL in SDN routing helps in 

overcoming those limitations, RL is a type of Machine 

Learning (ML). So, this integration has gained attention 

nowadays [2]. The adaptability and smarter routing decisions 

are then enhanced by the RL methods like MADDPG 

algorithm. These MADDPG algorithm have the potential for 

enhancing adaptability and smarter routing decisions. The 

metwork’s current state is considered by the MADDPG, and 

this consideration enables the MA in learning and DM. 

Finally, a more responsive and efficient routing mechanism 

was also offered by this MADDPG method. 

 

The Deep RL (DRL) are presented for revolutionizing TE in 

SDN. The advantages of Deep (NN) Neural Networks 

(DNN) and conventional RL are combined. Thus, more 

effective handling of complex network situations is also 

facilitated by this integration. When comparing the suggested 

DRL-based routing solutions, like the DDPG with other 

conventional methods, the suggested method effectively 

manages the dynamic traffic patterns and HD state-action 

spaces, and it was stated by Kim et al. (2022) [3].  

 

In this study, the application of MADDPG in SDN 

backgrounds are presented for the purpose of resolving those 
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issues. This suggested method may offer a more adaptive and 

novel technique, and these novel methods will aim to improve 

the routing efficiency and network performance [4]. This 

method utilizes the decentralized nature of MADDPG, a 

collaborative learning and performing optimal RP in RT was 

then facilitated by this decentralized nature of MADDPG 

[5,6]. This suggested method is capable of handling dynamic 

traffic patterns effectively. It also improves the resource 

utilization, and resilience of the network. It is clear that the 

crucial metrics like latency, T, and PL were improved. Thus, 

a more robust and effective SDN background was attained. 

 

The remaining study is systematized as follows: Section 2 

examines some of the most recent methods of the SDN RP.  

For effective routing, the suggested MADDPG method and 

SDN systems are thoroughly explained in Section 3. The 

result and discussion are presented in section 4. The 

conclusion of the study is summarized in section 5. 

 

2. Literature Review 
 

A novel MADDPG integrated MA framework in SDN was 

introduced by Dake et al. [2021] [7]. These frameworks are 

used for the purpose of detecting and preventing malicious 

DDoS traffic in the network and optimizing Multipath 

Routing (MR). Here, 2 agents of the MARL are collaborated 

in a similar background for completing the network 

optimization task faster. To mathematically represent the 

State (S), Action (A), and Reward (R) of the suggested 

method, the Markov Decision Process (MDP) was utilized. In 

these models, the MADDPG algorithm was then updated. The 

following network metrics like intrusion detection (ID), jitter, 

PL Rate (PLR), delay, and bandwidth (BW) utilisation were 

employed for assessing the effectiveness of the methods. For 

assessing purpose, the suggested MADDPG-based 

framework was contrasted with DDPG. From the outcomes 

of the analysis, significantly improved network metrics was 

attained by the 2 agents. 

 

The Decentralised Execution with DE-MADDPG algorithm 

framework was adopted by Ke et al. [2024] [8]. According to 

local network data, the protocols and protocols parameters are 

directly adjusted by the unmanned aerial vehicles (UAVs), 

and it was facilitated by this framework. The transmission 

delay of control signals is not considered for optimizing the 

network structure and overall performance. Then, the ns3-

gym simulation platform was employed for conducting the 

performance evaluation. Comparing the suggested method to 

other methods like MADDPG and deep Q-network (DQN) for 

evaluation. 

 

A MA RL framework in SDN-IoT (Internet of Things) was 

suggested by Dake et al [2021] [9]. This framework helps in 

effectively detects and mitigate DDoS attacks and managing 

rapid traffic events without compromising benign traffic. In 

the framework, a MADDPG algorithm was built, then 

researchers used Mininet to simulate a 200-node topology 

with increased BW and transmission rate. The simulation was 

conducted, and from the outcomes of simulation, it is clear 

that the recommended system executes superior when 

compared to the DDPG algorithm by the following network 

parameters: PL, ID, jitter, latency, and BW utilisation of 

network flows. 

The MADDPG-based Traffic Control and Multi-Channel 

Reassignment (TCCA-MADDPG) algorithm was suggested 

by Wu et al. [2020] [10]. This framework was suggested for 

optimizing the objection function (OF) , accomplishing traffic 

control and channel reassignment. As a part of channel state 

data, the dynamic and complexity of core backbone networks 

are managed by the traffic prediction. For effectively utilize 

the time continuity of the channel S, the LSTM layer is added 

to the NN (Neural Network) in this study. Form the outcomes 

of the simulation, the suggested method performs superior 

when compared to the current approaches. 

 

For multi-path TCP (MPTCP) in heterogeneous wireless 

networks, an Energy-Efficient (EE) scheduling strategy Was 

suggested by Arain et al. [2023] [11].  Minimum delay, high 

T, and less Energy Consumption (EC) was ensured by this 

approach. An agent may cooperate with other agents, and 

agents can control every sub-flow of the MPTCP by using the 

MADDPG algorithm. The decentralized policies are learnt by 

this method through the centralized training and decentralized 

execution. Then, the scheduling problem is modelled using a 

MA DM tasks.  When comparing the suggested EE 

scheduling scheme with current scheduling methods, notable 

energy conservation and preserving lower delay and higher T 

was demonstrated by the suggested method. 

 

3. Proposed Methodology 
 

The suggested methodology leverages the MADDPG 

algorithm for efficient SDN routing. In this approach, 

decentralized agents represent network nodes and 

collaboratively learn optimal routing policies through 

reinforcement learning. Centralized training ensures that the 

agents are aware of the global network state, while 

decentralized execution enables scalable and adaptive 

decision-making. Optimising important network goals like 

maximising T, balancing traffic loads, and reducing latency is 

the main focus of the MADDPG framework. This algorithm 

may be adjusted to dynamic traffic patterns and network 

failures, and it was facilitated by the integration of RL. It 

ensures robust and efficient operation. Figure 1 shows the 

general flow of the suggested approach. 
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Figure 1: Overall Process of Proposed System 

 

3.1 System Model 

 

Examine a backbone network that consists of switches with 

SDN capabilities. Many servers or clients are among the 

traffic sources connected to the edge switches. [12]. In this 

case, every edge switch is assumed to represent the backbone 

network's source or destination. The SDN-based network 

contains N switches. The expression 𝑉 = [𝑣1, … , 𝑣𝑁]𝑇  

represents each switch. 𝜇𝑛 represents the nth switch's service 

rate. The traffic routing within a single autonomous system is 

the main topic. The expression for a communication 

network 𝐺 is 𝐺 = (𝑉, 𝐸). Then, the set of links e between the 

switches are denoted as 𝐸.  

 

If 𝑣𝑖 , 𝑣𝑗, are any 2 switches  𝑉 (𝑖 ≠  𝑗),it assumes that there 

exists at least one path forwarding (PF) 𝑝𝑖,𝑗 = {𝑒1, 𝑒2, … , 𝑒|𝑝|}   

that can send the traffic from 𝑣𝑖to 𝑣𝑗. The formula 𝑝𝑖,𝑗
∗ =

{𝑒1, 𝑒2, … , 𝑒|𝑝∗|} indicates the Shortest Path (SP) among the 

paths. In this case, a weighted SP algorithm on G is used to 

determine the SP. Here 𝑤𝑚(0 ≤ 𝑚 ≤ |𝐸|) represents the 

weight value for link 𝑒𝑚. as 𝑝𝑖,𝑗
∗ = {𝑣1

𝑖,𝑗
, 𝑣2

𝑖,𝑗
 , … . , 𝑣|𝑝|

𝑖,𝑗
} is 

another method to describe this path, when transmitted across 

the SP, 𝑣𝑙
𝑖,𝑗

 denotes the lth switch. Then,  𝑣𝑖  𝑎𝑛𝑑  𝑣𝑗 are 

equivalent to 𝑣1
𝑖,𝑗

and 𝑣|𝑝∗|
𝑖,𝑗

. Since 𝑀𝑡is the flow count in the 

network at time t, let 𝑓𝑡
𝑘 (0 ≤ ≤ 𝑀𝑡)  represent the kth traffic 

flow at t.  

 

In this context, a flow is a pair of source and destination. As 

the flow passes via switches along the route, there are delays 

in the Data transmission (DT)and processing of data. 

 Based on the estimated SP, 𝑓𝑡
𝑘 is routed through specific 

switches in the network routing system. 

 

Assume that the Poisson arrivals have exponentially 

distributed service times and a rate of 𝜆𝑡
𝑘. Here, all switch has 

a restricted system dimension, and the data processing and DT 

delay can be represented as an M/M/1/K queue. Next, the 

following can be used to determine the anticipated delay in 𝑣𝑛 

at t equation 1, 

 

𝐸[𝑑𝑛(𝑡)] =
𝐸[𝑁𝑛(𝑡)]

𝜆𝑛(𝑡)(1−𝑃𝑏
𝑛(𝑡))

                                (1) 

 

Here, the total arrival rate into 𝑣𝑛 at 𝑡 is denoted by 𝜆𝑛(𝑡).Due  

to a buffer overflow in 𝑣𝑛 , a packet is lost at 𝑡 and its 

probability is denoted as 𝑃𝑏
𝑛(𝑡). The switch's packet count at 

t is represented by the queue occupation, 𝑁𝑛(𝑡). In this case, 

𝑃𝑏
𝑛(𝑡)can be found in this way at below equation 2, 

 

𝑃𝑏
𝑛(𝑡)  =

(1−𝜌𝑛(𝑡))(𝜌𝑛(𝑡))
𝐾𝑛

(1−𝜌𝑛(𝑡))
𝐾𝑛+1                                (2) 

 

Here, 𝜌𝑛(𝑡) =  𝜆𝑛(𝑡)/𝜇𝑛.  The traffic intensity at switch n 

and the switch's overall potential of the model are indicated 

by 𝐾𝑛. Additionally, the following illustrates a way to 

determine the predicted queue task in equation 3, 

 

𝐸[𝑁𝑛(𝑡)]  = {

𝜌𝑛(𝑡)

1−𝜌𝑛(𝑡)
−

(𝐾𝑛+1)(𝜌𝑛(𝑡))
𝐾𝑛+1

1−(𝜌𝑛(𝑡))
𝐾𝑛+1  𝑖𝑓𝜌𝑛(𝑡) < 1

𝐾𝑛

2
 𝑖𝑓𝜌𝑛(𝑡) = 1

     

 (3) 

 

The following equation 4 is the E2ED of 𝑓𝑡
𝑘 sent over 𝑝𝑖,𝑗

∗ , 

with a consideration that the link's propagation delay is 

extremely small [15]. 

 

𝐷𝑒2𝑒
𝑘 (𝑡)  = ∑ 𝐸[𝑑𝑛(𝑡)]𝑛∈𝑝𝑎𝑡ℎ(𝑝𝑖,𝑗

∗ )                      (4) 

 

Here,  𝑝𝑎𝑡ℎ(𝑝𝑖,𝑗
∗ ) represents the collection of switches that 

create the forwarding path from 𝑣𝑖  to 𝑣𝑗. The average E2ED 

of the network's flows may then be determined by applying 

the following equation 5, 

 

𝐷𝑒2𝑒
𝑎𝑣𝑔

(𝑡)  =
1

𝑀𝑡
∑ 𝐷𝑒2𝑒

𝑘 (𝑡)
𝑀𝑡
𝑘=1                                (5) 

 

Additionally, the following techniques can be used to 

ascertain the expected network loss traffic at t as well as the 

expected loss traffic of switch n in equation 6 and equation 7, 

 

𝐸[𝐿𝑛(𝑡)]  = 𝜆𝑛(𝑡)𝑃𝑏
𝑛(𝑡)                                    (6) 

 

𝐸[𝐿𝑡𝑜𝑡(𝑡)]  = ∑ 𝜆𝑛(𝑡)𝑃𝑏
𝑛(𝑡)𝑁

𝑘=1                          (7) 

 

Without sacrificing the data network's performance, the 

network modelling approach helps the learning agent create a 

neural model that is well-trained. The method can be easily 

expanded to multi-path routing (MPR), but current work 

assumes Single-Path Routing (SPR), like OSPF. According to 

the RP, the DN's S and R can change for the same set of Link 

Weights (LW). When the training is properly redone, the RL 

agent can adapt to various surroundings since the RP is seen 

as a component of the background under the RL framework. 
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3.2 MDP Framework for LW Allocation 

 

From one switch to the next in line, the Aggregated Traffic 

Volume Matrix (ATVM) shows the traffic rate. With 𝑡𝑖,𝑗 

being the quantity of traffic from the ith switch to the jth 

switch, let 𝑇 = [𝑡𝑖,𝑗]
𝑁,𝑁

 represent the ATVM of the DN. The 

TD of data flows and their network routing patterns determine 

the network's ATVM for a certain network design. Because it 

depicts both the network's link utilisation and the connectivity 

architecture among its switches, the agent can comprehend 

the dependency among the links by this representation of 

network S. The DRL agent and the SDN controller fail to 

interact during the training phase in the suggested modeling-

based approach [13]. This indicates that during the learning 

phase, the agent fails to evaluate the total traffic volume at 

switches. The DN model and routing path decisions are 

exploited to compute ATVM. A RP and the LW from the 

previous A in determine ATVM. The value determined for 

the deployed link weight allocation (WA) and TD in the fine 

modeling-based learning environment in the suggested 

technique is identical to the aggregated traffic volume value 

that each switch in the actual network observes [13]. The DRL 

agent can use this consistency to train a neural model that can 

be applied to the DN. Then, without affecting network 

performance, the agent was allowed to implement 

unconstrained routing policies. These significant S-R pairs 

are also used during the experience replay process and are 

kept in the off-policy DRL agent's replay buffer. 

 

S and A SPACE: 

  

The observation for every switch 𝑣𝑛 at t can be expressed as 

𝑜𝑛(𝑡) using equation 8. 

 

𝑜𝑡
𝑛  = [𝑡, 𝐾𝑛 , 𝑁𝑛(𝑡), 𝜆𝑛(𝑡), 𝐿𝑛(𝑡), 𝜌𝑛(𝑡), 𝑑𝑛(𝑡)]     (8) 

 

Here, timestep is denoted as t. The switch's index is denoted 

by n. N is the number of switches, and k is the flow index. 

The flows count is denoted as 𝑀𝑘. The nth switch is 𝑣𝑛. The 

nth switch's service rate is denoted by 𝜇𝑛. The kth traffic flow 

at t is denoted by 𝑓𝑡
𝑘. The PL probability in 𝑣𝑛 at t is 𝑃𝑏

𝑛(𝑡). 

The overall system capacity of 𝑣𝑛is denoted by 𝐾𝑛. The 

Queue occupation at t is 𝑁𝑛(𝑡). The total arrival rate into 𝑣𝑛 at 

t is denoted by 𝜆𝑛(𝑡). The expected loss traffic 𝑣𝑛 at t is 

denoted by𝐿𝑛(𝑡). The use of 𝑣𝑛  at t is denoted by 𝜌𝑛(𝑡). The 

expected delay in 𝑣𝑛 at t is denoted by 𝑑𝑛(𝑡). In the suggested 

approach, these observations are derived from the agent's 

modelled network rather than measurements on every switch 

in the DP.  

 

The SDN controller reports network information, including 

switch specifications and network topology, which is used to 

build the modelled network.The SP of flows is computed in 

the modelled network at every t based on the LW assigned by 

the previous A. The network S at t, is represented as 𝑆𝑡. 

Lastly, 𝑠𝑡 can be found as follows equation 9 and equation 10, 

 

𝑆𝑡 = {𝑠𝑡
𝑖,𝑗

|𝑖, 𝑗 ∈ 𝑉}                                        (9) 

 

𝑠𝑡
𝑖,𝑗

= min (1,
1

𝜇𝑚𝑎𝑥
∑ 𝜆𝑡

𝑘(𝑖)
𝑥𝑖𝑗

𝑘𝑀𝑡
𝑘=1 (𝑡) )        (10) 

 

Here, 𝜆𝑡
𝑘(𝑖)

= ∏ (1 − 𝑃𝑏
𝑙 (𝑡))𝑙∈𝑝𝑎𝑡ℎ(𝑠𝑟𝑐(𝑘)→𝑖) . 𝜆𝑡

𝑘 and 𝑥𝑖𝑗
𝑘 (𝑡) 

provide the binary indicator that shows whether the 

connection from 𝑣𝑖 to 𝑣𝑗 is a component of the way that the 

kth flow is transmitted according to the SP.  

 

The switches with maximum service rate are denoted by 

𝜇𝑚𝑎𝑥, and the component range of state is adjusted to [0, 1] 

using the 𝑚𝑖𝑛(. )function. Consider that the component 𝑡𝑖,𝑗 of 

ATVM normalised by 𝜇𝑚𝑎𝑥corresponds to the state 𝑠𝑡
𝑖,𝑗

. In 

the meantime, the DRL agent decides how to distribute the 

LW based on the 𝑠𝑡 at each t. The following is the definition 

of the action space on below equation 11, 

 

𝑎𝑡  = 𝑎𝑡
1 × 𝑎𝑡

2 × … .× 𝑎𝑡
|𝐸|

                 (11) 

 

Here, the weight value given to the mth link at t is indicated 

by 𝑎𝑡
𝑚(0 ≤  𝑚 ≤ |𝐸|). Every weight has a range defined as 

𝑎𝑡
𝑚 ∈ [𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥]. The LW minimum and maximum values 

are represented by the symbols 𝑤𝑚𝑖𝑛and 𝑤𝑚𝑎𝑥 . Since the 

weighted SP method determines packet forwarding, the DRL 

agent's action shows the LW, and LW allocation indicates the 

network's routing policy. Figure 2 provides a simple 

illustration of how to use a modeling-based environment to 

compute the S and the associated delay and loss deprived of 

having an impact on the data network. There are 2 TD on the 

network, which consists of six switches. 

 

 The SDN controller delivers DN to the learning agent and 

controls packet forwarding in accordance with its routing 

policy [14]. Without interfering with the DN, the DRL agent 

trains the NN for a definite topology of the network. The 

modelled network is used to compute the DRL data, including 

the network state, average E2ED, and expected total PL. 

 

Paper ID: SR25305141609 DOI: https://dx.doi.org/10.21275/SR25305141609 582 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 3, March 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 
Figure 2: Basic Instance of Modeling-Based Procedure 

 

ℙ𝑠𝑎: (𝑠, 𝑎) → 𝑠𝑡+1 is a representation of the probability, when 

action 𝑎𝑡 is performed, the network RP will change from state 

𝑠𝑡 to state 𝑠𝑡+1. The probability of choosing an 

𝑎𝑡 , 𝑎𝑛𝑑 𝑠𝑡  given by policy π can be used to calculate the 

transition probability ℙ𝑠𝑎 then the WA to every link is 

adjusted continuously. The suggested RP aims to accomplish 

two primary objectives: (2) reducing the rise in PL at 

switches, and (3) lowering the average E2ED of flows. The 

PL reward 𝑟𝑝(𝑡)  and delay performance reward 𝑟𝑑(𝑡)  should 

be defined as follows at time step t of equation 12 and equation 

13, 

 

𝑟𝑑(t) = 1 −
𝐷𝑒2𝑒

𝑎𝑣𝑔
(𝑡)

∑
𝐾𝑛
𝜇𝑛

𝑛∈𝑝𝑎𝑡ℎ(𝑝𝑚𝑎𝑥)

                   (12) 

 

𝑟𝑝(t) = 1 −
𝐿𝑡𝑜𝑡(𝑡)

∑ 𝜆𝑛(𝑡)𝑁
𝑛=1

                              (13) 

 

The path with the greatest number of hops is presumed to be 

𝑝𝑚𝑎𝑥in this case. Let R represent the R function that yields a 

value showing whether LW are distributed in a way that 

minimises the average E2ED via the routing method while 

accounting for PL reductions caused by bottlenecks. The R is 

defined as follows when 𝑎𝑡 is performed in 𝑠𝑡: 

 

𝑅(𝑠𝑡 , 𝑎𝑡)  = 𝛼𝑟𝑑(𝑡) + (1 − 𝛼)𝑟𝑝(𝑡)       (14) 

 

In order to balance the weights of network packet loss (PL) 

and delay in equation 14, α is utilized as the weight factor and 

𝑅(𝑠𝑡 , 𝑎𝑡  )  has a range of [0, 1]. R seeks to minimise a 

weighted linear combination of PL and network 

delay performance metrics, as indicated in (14). Different 

definitions of the R, such as maximising T or minimising 

maximum link utilisation, can be applied based on the 

requirements of network operation. Define the total expected 

discounted R under policyπ as follows, it considers the effect 

of present action on future R: 

 

𝑅𝑡
𝜋 = 𝑅(𝑠𝑡 , 𝑎𝑡) + ∑ 𝛾𝑖 . 𝑅(𝑠𝑡+𝑖 , 𝑎𝑡+𝑖)

∞
𝑖=1  (15) 

 

Here, equation 15 is the relevance of future R is determined 

by the discount factor 𝛾 ∈  [0, 1]  from t+ 1 to the infinite t. 

The total of the present R at t and the discounted R from t+ 1 

to the infinite t is known as 𝑅𝑡
𝜋. 

 

3.3 MADDPG Algorithm for Network Routing Process 

 

The MADDPG algorithm applied to SDN optimizes routing 

decisions across multiple agents, each representing an SDN 

controller. Each agent learns a deterministic policy in a 

MA environment using MADDPG, which is an extension of 

the DPG method [15]. The algorithm uses decentralised 

execution and centralised training.  

 

All agents have access to the global S data during training, but 

they make their decisions on their local observations when 

they are really in A. The network model used in this study 

consists of multiple SDN controllers managing different 

sections of the network. Each controller is treated as an agent 

within the MADDPG framework.  

 

The training process involves simulating various network 

scenarios to expose the agents to a wide range of conditions. 

In this SDN-based environment, the SDN controller handles 

the global network state and provides real-time updates to the 

agents, which are individual network devices (e.g., switches, 

routers).Agents are network elements that make decisions on 

routing, traffic management, or other network parameters 

based on local observations and feedback from the SDN 

controller, and it optimizes the total network performance by 

adjusting configurations and directing the actions of agents 

using a global view. In the figure 3 described the MADDPG 

model, here O represents the observations made by the agents, 

including network state information like traffic and node load. 

a and aᵐ represent the actions taken by the agents during 

execution and training phases, respectively, for routing and 

policy optimization. 

 

Exploration and Initialization: Each agent's actor network 

(AN)and critic networks are initialised to start the learning 

process. The agent's action at t is elected by the AN, while the 

critic evaluates the action taken. The exploration strategy is 

based on the noise process to ensure sufficient exploration 

during the training phase. At every t, the agent chooses A at 
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based on its current policy μ(st) (from the AN), along with an 

exploration noise Nt as equation 16, 

 

𝑎𝑡 = 𝜇(𝑠𝑡) + 𝑁𝑡                               (16) 

 

Given the 𝑠𝑡, the AN predicts an action denoted by 𝜇(𝑠𝑡). 𝑁𝑡 

represents exploration noise, which encourages the agent to 

explore different actions. 

 

Critic Network Update: The loss function (LF) is minimised 

in order to update the critic network. This critic network 

contrasts the target value yi with the Q-function's predicted 

value. The R obtained at time step i and the future Q-value 

predicted by the target critic network are used to calculate this 

target value in below equation 17 and equation 18.The L is 

minimised in order to update the critic network: 

 

𝐿(𝜃𝑄) =
1

𝐻
∑ (𝑦𝑖

𝐻

𝑖=1
− 𝑄(𝑆𝑖, 𝑎𝑖|𝜃𝑄))2               (17) 

 

where:           

 

𝑦𝑖 = 𝛾𝑖 + 𝑄′(𝑠𝑖 + 1, 𝜇′(𝑠𝑖 + 1|𝜃μ
′ )|𝜃𝑄

′          (18) 

 

Where, 𝑄′(𝑠𝑖 + 1, 𝜇′(𝑠𝑖 + 1|𝜃μ
′ )|𝜃𝑄

′ are the target critic and 

actor networks, respectively and  is the discount factor, and 

H is the number of experiences in the replay buffer. 

 

 
Figure 3: MADDPG System Flow 

 

Actor Network Update: The Policy Gradient (PG) approach 

is used for updating the AN. The objective of PG in relation 

to the AN parameter is calculated. The expected R can be 

maximized and also facilitates the agent in making 

actions.The PG is used to update the actor network as equation 

19, 

 

𝛻𝜃𝜇 𝐽(𝜇) ≈
1

𝐻
∑ 𝛻𝑎𝑄𝐻

𝑖=1 (𝑆, 𝑎|𝜃𝑎)𝛻𝜃𝜇(𝑠𝑖|𝜃𝜇)    (19) 

 

The gradient of the AN with respect to the A is 𝛻𝑎𝑄(𝑆, 𝑎|𝜃𝑎). 

The gradient of the critic network with respect to the A is 

𝛻𝜃𝜇(𝑠𝑖|𝜃𝜇). The AN's OF is 𝑗(𝜇), and the AN's parameters are 

θμ. 

 

Target Network (TN) Update: Both the TN of actor and 

critic are updated using a soft update technique. This 

technique gradually shifts the TN' weights towards the 

weights of the existing networks in order to guarantee stable 

learning. The following updates are made to the TN: 

 

𝜃𝑄
′ ⇐ 𝑇𝜃μ + (1 − 𝑇)𝜃𝑄

′                                    (20) 

 

𝜃μ
′ ⇐ 𝑇𝜃μ + (1 − 𝑇)𝜃μ

′                                     (21) 

 

Where, equation 20 and equation 21 is the current critic and 

AN parameter are denoted by 𝜃𝑄 and θμ, the parameters of the 

AN are 𝜃μ
′  and the target critic is 𝜃𝑄

′ , T is the soft update 

parameter, typically set between 0 and 1, controlling the rate 

of updating. 

 

Reward Function: Both network performance and resource 

consumption, including BW utilisation, latency, congestion, 

and EC (if applicable), must be considered by the reward 

function. Actions that improve network performance, lessen 

congestion, and raise the general QoS should be rewarded by 

the reward function. At t, the reward for every agent (network 

element) is specified as follows equation 22, 

 

𝑅(𝑠𝑡 , 𝑎𝑡) = −(𝛼 ⋅ 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝑠𝑡) + 𝛽 ⋅ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑠𝑡) + 𝛾 ⋅
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑎𝑡))                

 (22) 

 

Where, 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 (𝑠𝑡): A penalty term for network 

congestion at state 𝑠𝑡 , 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑠𝑡 : A penalty term for network 

latency at state 𝑠𝑡, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑎𝑡): A term to 

encourage efficient use of available bandwidth given the 

action 𝑎𝑡, 𝛼, 𝛽, 𝛾: Weights that balance the importance of 

congestion, latency, and bandwidth efficiency in the reward 

function. 

 

Centralized Control (SDN) and Distributed Execution: 

Global optimisations like as load balancing, resource 

allocation (RA), and routing decisions are made possible by 

the SDN controller. This SDN controller offers a centralised 

outlook of the overall network. 

 

Following decentralised execution, the agents (network 

elements) use the SDN controller's global insights to make 

decisions on their own, based on their local states. 

 

Through this integration, the network's overall performance 

can be optimised while dynamically adapting to shifting 

traffic conditions. Every agent receives feedback from the 

centralised controller while using its local state data, such as 

traffic load and BW availability. It enhanced RT's decisions 

about network management. 

 

MADDPG Algorithm for SDN-based Routing 

Optimization 

 

Step 1: For every agent, Set the AN and critic networks 

Step 2: Given the same weights as the original networks, Set 

the AN and critic networks  

Step 3: Set the replay buffer DD to store experiences. 

Step 4: Set the update rate beta for the TN. 
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Step 5: Repeat for each episode from 1 to N: 

Step 6: For each agent pp: 

Step 7: Select an action using the AN and add exploration 

noise to encourage exploration. 

Step 8: Execute the selected action, observe the reward rr, and 

the next state s′s'. 

Step 9: Store the transition (s,a,r,s′)(s, a, r, s') in the replay 

buffer DD. 

Step 10: Update the current state ss to the next state s′s'. 

Step 11: End the loop for each agent. 

Step 12: If the episode is a multiple of the update interval: 

Step 13: For each agent pp: 

Step 14: Sample a random minibatch of experiences from the 

replay buffer DD. 

Step 15: Compute the target value yiy_i using the target critic 

and AN:  equation 18 

Step 16: Update the critic network by minimizing the loss 

function: equation 17 

Step 17: Update the AN using the PG: equation 19 

Step 18: Perform a soft update of the TN for stability: equation 

20 and 21 

Step 19: End the loop for each agent. 

Step 20: End the episode loop. 

 

By combining centralized training with decentralized 

execution, the framework ensures scalability and robustness 

against network failures. 

 

For dynamic routing in SDN, a significant advancement was 

attained by the application of MADDPG in comparison to 

conventional methods [16]. The efficiency, scalability, and 

resilience of SDN networks are enhanced by the suggested 

method, as it enables decentralized agents to learn 

collaboratively and adapt to changing the conditions of the 

network. Here, minimizing latency, reducing PL, and 

maximizing T, was attained by the suggested method. This 

suggested method ensures efficient network operation. Thus, 

scalability and robustness against network failures was 

ensured by integrating the centralized training with 

decentralized execution 

 

4. Result and Discussion 
 

In SDN-based network, the performance comparison of 

suggested RP and other protocols was evaluated by the 

simulation outcomes, and it was presented in this section. In 

the simulations, stable-baseline framework for the MADDPG 

method and MATLAB R2021b for network topology 

construction was utilized. The simulations were done on a 

server equipped with an Intel i9-10940X CPU running at 3.3 

GHz, an NVIDIA Quadro RTX 6000 with 24 GB of memory, 

and CUDA 11.1 in order to provide the numerical results. For 

evaluation purpose, the following metrics are used. 

 

The total of the delays experienced at a series of intermediate 

nodes on the way to the destination is the E2ED of each 

packet. Each delay consists of a variable component, such as 

processing and queueing delays at the nodes, and a fixed 

component, such as transmission and propagation delays. 

 

The Packet Delivery Ratio (PDR) can be expressed as 

following as equation 23, 

 

𝑅𝑆𝑢𝑐𝑐𝑒𝑠𝑠 =
𝑃𝑠𝑢𝑐𝑐

𝑃𝑎𝑙𝑙
× 100%                 (23) 

 

where 𝑅𝑆𝑢𝑐𝑐𝑒𝑠𝑠represents the ratio of packet successful, 

𝑃𝑠𝑢𝑐𝑐denotes the total packets that successfully sent by the 

router, 𝑃𝑎𝑙𝑙  indicates the total packets that are transmitted 

through the router. 

 

The packet loss ratio can be expressed as follows equation 24, 

 

𝑅𝑑𝑟𝑜𝑝 =
𝑃𝑑𝑟𝑜𝑝

𝑃𝑎𝑙𝑙
× 100%               (24) 

 

where 𝑅𝑑𝑟𝑜𝑝represents the ratio of packet loss, 𝑃𝑑𝑟𝑜𝑝denotes 

the number of packets dropped by the router, 𝑃𝑎𝑙𝑙  indicates the 

total number of packets transmitted through the router. T is the 

amount of data that transfers across a network in a given 

period of time. Typically, it is expressed in megabits per 

second (Mbps) or bits per second (bps).  

 

These metrics collectively demonstrate the proposed 

algorithm's superiority in ensuring reliable, efficient, and 

scalable data transmission within SDN-based networks. 

 

 
Figure 4: PDR VS. Routing Protocols 

 

Figure 4 shows that the proposed DRL-MADDPG system 

achieves the highest Packet Delivery Ratio (PDR) of 94.20% 

at 200,000 iterations. Other methods, including DROM, 

ScaleDRL, and DRL-DDPG, exhibit lower PDR values of 

91.30%, 92.40%, and 93.30%, respectively.  Thus, effective 

PDR was ensured by the efficacy of the suggested method. 
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Figure 5: E2ED VS. Routing Protocols 

 

The suggested DRL-MADDPG system attains minimal E2ED 

of 2.2 seconds at 200,000 iterations, and it was presented in 

Figure 5. But, other methods like DROM, ScaleDRL, and 

DRL-DDPG attains highest delay of 3.4 seconds, 2.8 seconds, 

and 2.5 seconds. The communication delay was effectively 

reduced by the suggested method, and it was demonstrated. 

 

 
Figure 6: PLR VS. Routing Protocols 

 

Figure 6 presents the PLR VS. RP over several iterations.  

Lowest PLR of about 5% was attained by the suggested 

method at 200,000 iterations. Then 6% PLR was attained by 

the DRL-DDPG, and it holds 2nd place. Then, ScaleDRL and 

DROM have greater PLRs of about 7% and 9%. During 

communication, the PLR was minimized by the DRL-

MADDPG system minimises PLR with exceptional 

reliability, and it was highlighted in the outcomes. 

 

 
Figure 7: Throughput VS. Routing Protocols 

 

Maximum T of about 12.5 Mbps at 200,000 iterations was 

attained by the suggested DRL-MADDPG system. These 

values indicate that the suggested method performs superior 

in contrast to the conventional methods, and it was presented 

in Figure 7. DRAM and ScaleDRL attain lower T of about 8 

Mbps and 9.5 Mbps, and DRL-DDPG comes in second with a 

T of about 11 Mbps. These outcomes show how well DRL-

MADDPG performs when it comes to network throughput 

optimisation. 

 

5. Conclusion 
 

A novel technique was introduced for dynamic routing in 

SDN with the MADDPG algorithm. The centralised training 

and decentralised execution was employed by the system. By 

this application, the system enables agents to collectively 

optimise RP and dynamically adapt to network changes. The 

simulations are conducted by comparing the suggested RP to 

another RP. Then, the outcomes of the simulation indicate that 

the suggested method executes better in maximising T, 

decreasing PL, and minimising E2ED. A scalable, reliable, 

and effective network functioning was ensured by the 

suggested method even in the face of constantly shifting 

traffic patterns and problems. Then, it combines its 

decentralised DM capability with global network awareness 

during training. Tus, the adaptability and reliability was 

improved. Finally, future work emphasis on incorporating the 

robust security mechanisms for handling new risks like hostile 

attacks and DDoS attacks. An effective way for creating 

smart, adaptable, and secure SDN solutions was offered by 

this study for satisfying the demands of next-generation 

networks. 
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