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1. Introduction 
 

Obesity is well recognized as a risk factor for cardiometabolic 

diseases. The development of obesity is a dynamic process 

that can be described as a multistate process with an emphasis 

on transitions between weight states. However, it is still 

unclear what convenient biomarkers predict transitions 

between weight states. The aim of this study was to show the 

dynamic nature of weight status in adults stratified by age and 

sex and to explore blood markers of metabolic syndrome 

(MetS) that predict transitions between weight states. 
𝛼 −Brownian motion is a stochastic process that generalizes 

the standard Brownian motion by introducing a parameter α, 

which controls the roughness or smoothness of the paths. 
𝛼 −Brownian motion is a type of fractional Brownian motion 

that uses the parameter 𝛼 to control the scale of the motion. It 

is a non-Markovian and non-stable self-similar process.  

 

1.1 Brownian Motion 

 

Definition of Brownian motion: Brownian motion is closely 

linked to the normal distribution. Recall that a random 

variable X is normally distributed with mean µ and variance 

𝜎2 if 

ℙ{𝑋 > 𝑥} =
1

√2𝜋𝜎2
∫ 𝑒

−(𝑢−𝜇)2

2𝜎2∞

𝑥
 𝑑𝑢,        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ . 

 

Definition 1.1. A real-valued stochastic process {B(t) : t ≥ 

0} is called a (linear) Brownian motion with start in 𝑥 ∈ ℝ  
if the following holds:  

• B(0) = 𝑥, 

• The process has independent increments, i.e. for all times 

0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛  the increments B(𝑡𝑛)−B(𝑡𝑛−1), 

B(𝑡𝑛−1)−B(𝑡𝑛−2), . . . , B(𝑡2)−B(𝑡1) are independent 

random variables. 

• For all t ≥ 0 and h > 0, the increments B(t + h) − B(t) are 

normally distributed with expectation zero and variance h. 

• Almost surely, the function t → B(t) is continuous. 

 

We say that {B(t): t ≥ 0} is a standard Brownian motion if x 

= 0.  

 

Let us step back and look at some technical points.  

 

We have defined Brownian motion as a stochastic process 

{B(t) : t ≥ 0} which is just a family of (uncountably many) 

random variables  ω → B(t, ω) defined on a single probability 

space (Ω, A, P). At the same time, a stochastic process can 

also be interpreted as a random function with the sample 

functions defined by t → B(t, ω). 

 

 
Graphs of five sampled Brownian motion 

 

By the marginal distributions of a stochastic process {B(t): t 

≥ 0} we mean the laws of all the finite dimensional random 

vectors (B (𝑡1), B(𝑡2), . . . , B(𝑡𝑛) ) , for all 0 ≤ 𝑡1 ≤ 𝑡2 ≤
⋯ ≤ 𝑡𝑛.  

 

To describe these joint laws it suffices to describe the joint 

law of B (0) and all the increments  
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B(𝑡1) − B(0), B(𝑡2) − B(𝑡1), . . . , B(𝑡𝑛) − B(𝑡𝑛−1) ) , for all 

0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛. 
 

This is what we have done in the first three items of the 

definition, which specify the marginal distributions of 

Brownian motion. However, the last item, almost sure 

continuity, is also crucial, and this is information which goes 

beyond the marginal distributions of the process in the sense 

above, technically because the set, 

{ω ∈ Ω : t → B(t, ω) continuous}  

 

is in general not in the σ-algebra generated by the random 

vectors  

(B(𝑡1), B(𝑡2), . . . , B(𝑡𝑛) )n ∈ N.  

 

Example 1.1. Suppose that B is a Brownian motion and U is 

an independent random variable, which is uniformly 

distributed on [0, 1]. Then the process {𝐵̃ (t) : t ≥ 0} defined 

by 

𝐵̃(𝑡) = {
𝐵(𝑡),  𝑖𝑓 𝑡 ≠ 𝑈

0, 𝑖𝑓 𝑡 = 𝑈
 

has the same marginal distributions as a Brownian motion, but 

is discontinuous if B(U) ≠ 0,  i.e. with probability one, and 

hence this process is not a Brownian motion.  

 

2. Itô's Formula: The Essence 
 

At its core, Itô's formula is a generalization of the chain rule 

from ordinary calculus to the realm of stochastic processes. It 

allows us to find the differential of a function of a stochastic 

process. 

 

Theorem 2.1 (Itô's formula).  

𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝑓 𝑖𝑠 𝑎 𝐶2  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐵𝑡  𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 

 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛. 𝑇ℎ𝑒𝑛 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡, 
𝑓(𝐵𝑡)
= 𝑓(𝐵0)

+ ∫ 𝑓′(𝐵𝑠)𝑑𝐵𝑠

𝑡

0

+
1

2
∫ 𝑓′′(𝐵𝑠)𝑑𝑠,

𝑡

0

 𝑜𝑟, 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑖𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑚, 

                      𝑑𝑓(𝐵𝑡) = 𝑓′(𝐵𝑡)𝑑𝐵𝑡 +
1

2
𝑓′′(𝐵𝑡)𝑑𝑡. 

 𝑷𝒓𝒐𝒐𝒇.  Let {Π𝑛} 𝑏𝑒 𝑎  sequence of partitions 

                               0 = 𝑡0,𝑛 < 𝑡1,𝑛 < ⋯ < 𝑡𝑘𝑛,𝑛 = 𝑡, 

Such that  

∑ ||

∞

𝑛=1

Π𝑛|| < ∞,    ||Π𝑛||  =  max
1≤𝑗≤𝑘𝑛

{𝑡𝑗,𝑛 − 𝑡𝑗−1,𝑛}. 

For any n, we can write the telescoping sum (denoting 

𝐵𝑡  𝑎𝑠 𝐵(𝑡) 𝑎𝑛𝑑  𝑡𝑗,𝑛 𝑎𝑠 𝑡𝑗), 

𝑓((𝐵𝑡)) − 𝑓((𝐵0)) =  ∑[𝑓 (𝐵(𝑡𝑗)) − 𝑓(𝐵(

𝑘𝑛

𝑗=1

𝑡𝑗−1))] 

Let m (j, n) and M (j, n) be the minimum and maximum, 

respectively, of f′′(x) for B(𝑡𝑗−1)) ≤ x ≤ B(tj ).  

By Taylor’s theorem, 

𝑓 (𝐵(𝑡𝑗)) − 𝑓 (𝐵(𝑡𝑗−1))

= 𝑓′ (𝐵(𝑡𝑗−1)) [𝐵(𝑡𝑗) − 𝐵(𝑡𝑗−1)] + 𝜉𝑛 , 

Where,  

𝑚(𝑗, 𝑛)

2
[𝐵(𝑡𝑗) − 𝐵(𝑡𝑗−1)]2 ≤ 𝜉𝑗,𝑛

≤
𝑀(𝑗, 𝑛)

2
{𝐵(𝑡𝑗) −  𝐵(𝑡𝑗−1)]2 

Hence if we let 

 𝑄1(Π𝑛) = ∑ 𝑓′ (𝐵(𝑡𝑗−1)) [𝐵(𝑡𝑗) − 𝐵(𝑡𝑗−1)]

𝑘𝑛

𝑗=1

, 

 𝑄2 − (Π𝑛) = ∑
𝑀(𝑗, 𝑛)

2
{𝐵(𝑡𝑗) −  𝐵(𝑡𝑗−1)]2,

𝑘𝑛

𝑗=1

 

 𝑄2 + (Π𝑛) = ∑
𝑀(𝑗, 𝑛)

2
{𝐵(𝑡𝑗) −  𝐵(𝑡𝑗−1)]2,

𝑘𝑛

𝑗=1

 

Then we have  

𝑄2 − (Π𝑛) ≤ 𝑓(𝐵(𝑡)) − 𝑓(𝐵(0)) − 𝑄1(Π𝑛) ≤ 𝑄2 + (Π𝑛)                                    

 (2.1)            

 

First, we will try to understand 𝑄2. 

 

We know that  

" 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 𝐵(𝑡)𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 

 {𝛱𝑛} 𝑖𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  
𝑜𝑛[0, 𝑡] 𝑤𝑖𝑡ℎ||𝛱𝑛|| → 0. 𝑇ℎ𝑒𝑛 𝑄(𝑡; 𝛱𝑛) →
𝑡 𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑖𝑠, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜖 > 0 ′′ 
 

With Probability one, for all 0 < 𝑞 < 𝑟 < 𝑡, 

Lim
𝑛→∞

∑ [𝐵(𝑡𝑗,𝑛) − 𝐵(𝑡𝑗−1,𝑛)

𝑞≤𝑡𝑗,𝑛<𝑟

]2 = 𝑞 − 𝑟 

 

On the event that this is true, by the continuity of 𝐵𝑡  and 𝑓′′, 
 

We have, 

Lim
𝑛→∞

 𝑄2 − (Π𝑛)=Lim
𝑛→∞

𝑄2 + (Π𝑛) =
1

2
∫ 𝑓′′(𝐵(𝑠))𝑑𝑠

𝑡

0
 

 

Now we will try to understand 𝑄1.We will prove the theorem 

under the additional assumption that there exits 𝐾 > ∞ such 

that |𝑓′′′(𝑥)| ≤ 𝐾 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 
 

By the Mean value theorem, 

  |𝑓′(𝐵(𝑠)) − 𝑓′′ (𝐵(𝑡𝑗−1,𝑛)) |≤ 𝐾|𝐵(𝑠) − 𝐵(𝑡𝑗−1,𝑛)|. 

 

Let the simple process 

𝐴(𝑛)(𝑠) = 𝑓′𝐵(𝑡𝑗−1,𝑛),      (𝑡𝑗−1,𝑛) < 𝑠 < 𝐵(𝑡𝑗,𝑛). 

 

For s∈ [𝑡𝑗−1,𝑛, 𝑡𝑗,𝑛], 

𝔼[𝑓′(𝐵(𝑠)) − 𝐴(𝑛)(𝑠)|2] ≤ 𝐾2𝔼|≤ 𝐾[|𝐵(𝑠) − 𝐵(𝑡𝑗−1,𝑛)|2] 

                                                         

=𝐾2𝑉𝑎𝑟[𝐵(𝑠) −B(𝑡𝑗−1,𝑛)] 

                                                         =𝐾2[𝑠 − 𝑡𝑗−1,𝑛] ≤

 𝐾2||Π𝑛|| 
 

Therefore, 

                   0 ≤ lim
𝑛→∞

∫ 𝔼[𝑓′(𝐵(𝑠)) − 𝐴(𝑛)(𝑠)|2𝑑𝑠 ≤
𝑡

0

lim
𝑛→∞

𝑡 𝐾2||Π𝑛||=0 

So 

                       ∫ 𝑓′(𝐵(𝑠))𝑑𝑠 =
𝑡

0
 lim

𝑛→∞
𝐴(𝑛)(𝑠)|2𝑑𝑠 = 

lim
𝑛→∞

𝑄1(Π𝑛) 
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So, by taking limits in equation (2.1), we see that 

𝑓(𝐵(𝑡)) − 𝑓(𝐵(0)) = ∫ 𝑓′(𝐵(𝑠))𝑑𝑠 =
𝑡

0
 
1

2
∫ 𝑓′′(𝐵(𝑠))𝑑𝑠

𝑡

0
. 

 

Example 2.2  

𝑊𝑒 𝑐𝑎𝑛 𝑢𝑠𝑒 Itô′s formula to solve stochastic integrals  

such as ∫ 𝐵𝑠𝑑𝐵𝑠.
𝑡

0

 

 𝐼𝑓 𝑤𝑒 𝑙𝑒𝑡 𝑓(𝑥) = 𝑥2, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑓𝑖𝑛𝑑 𝑡ℎ𝑎𝑡 

                   𝐵𝑡
2 = 𝑓(𝐵𝑡) = 𝑓(𝐵0) + ∫ 𝑓′(

𝑡

0
𝐵𝑠)𝑑𝐵𝑠 +

1

2
∫ 𝑓′′(𝐵(𝑠))𝑑𝑠

𝑡

0
 

                                  =𝐵0
2 + 2 ∫ 𝐵𝑠𝑑𝐵𝑠 + 𝑡.

𝑡

0
 

Therefore, 

                               ∫ 𝐵𝑠𝑑𝐵𝑠 =
1

2
[

𝑡

0
𝐵𝑡

2 − 𝑡]. 

 

 

3. The Girsanov Theorem 
 

Let {𝜃𝑡} be an adapted process satisfying the hypotheses of 

Novikov’s Proposition. 

 

Let  

                             Z(t)=exp{∫ 𝜃𝑠𝑑𝑊𝑠 −
1

2
∫ 𝜃𝑠

2𝑑𝑠
𝑡

0

𝑡

0
} 

 

For each T>0 the random variable Z(t) is a likelihood ratio: 

That is, the formula 

                             𝑄(𝐹) = 𝐸𝑝(𝑍(𝑇)1𝐹) 

 

Defines a new probability measure on (𝛺, ℱ) 

 

Girsanov’s theorem describes the distribution of the 

stochastic process {W(t)}𝑡≥0 under this new probability 

measure. 

Define 

                                      𝑤̃(𝑡) = 𝑊(𝑡) − ∫ 𝜃𝑠𝑑𝑠
𝑡

0
             

 

 

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟑. 𝟏 (𝑮𝒊𝒓𝒔𝒂𝒏𝒐𝒗)   𝑈𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝒬, 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

 {𝑤̃(𝑡)}0≤𝑡≤𝑇 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑊𝑖𝑒𝑛𝑒𝑟 𝑝𝑟𝑜𝑐𝑒𝑠𝑠. 
We know that the Novikov theorem ,  

      "  𝐼𝑓 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ≥ 0, 𝐸 𝑒𝑥𝑝{ 
1

2
∫ 𝜃𝑠

2 𝑑𝑠/2} < ∞
𝑡

0
, 

𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ≥ 0, 𝐸𝑍(𝑡) = 1 

𝐼𝑓 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 {𝑍(𝑡)}𝑡≥0 𝑖𝑠𝑎 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑚𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒 " 

 

The Girsanov theorem is nothing more than a routine 

calculation. To show that the process 𝑤̃𝑡, under Q, is a 

standard Wiener process, it suffices to show that it has 

independent, normally distributed increments with the correct 

variances. For this, it suffices to show that the joint moment 

generating function (under Q) of the increments 

 

𝑤̃(𝑡1), 𝑤̃(𝑡2) − 𝑤̃(𝑡1), … … , 𝑤̃(𝑡𝑛) − 𝑤̃(𝑡𝑛−1) 

Where 0 < 𝑡1< 𝑡2 < · · · < 𝑡𝑛, is the same as that of n 

independent, normally distributed random 

 

variables with expectations 0 and variances 𝑡1, 𝑡2 − 𝑡1, . . . ,  

that is, 

Ε𝑄exp {∑ 𝛼𝑘
𝑛
𝑘=1 (𝑤̃(𝑡𝑛) − 𝑤̃(𝑡𝑛−1))} = ∏ exp{𝛼𝑘

2(𝑡𝑘 −𝑛
𝑘=1

𝑡𝑘−1)} .                  

 (3.1) 

We shall do only the case n = 1, leaving the rest to the 

industrious reader as an exercise. To evaluate the expectation 

𝐸𝑄 on the left side of (25), we rewrite as an expectation under 

using the basic likelihood ratio identity relating the two 

expectation operators: 

Ε𝑄 exp{𝛼𝑤̃(𝑡)} = Ε𝑄 exp {𝛼𝑤(𝑡) − 𝛼 ∫ 𝜃𝑠𝑑𝑠
𝑡

0

} 

                                       = Ε𝑄 exp {𝛼 𝑤(𝑡) −

𝛼 ∫ 𝜃𝑠𝑑𝑠
𝑡

0
} exp {∫ 𝜃𝑠𝑑𝑊𝑠

𝑡

0
−

∫ 𝜃𝑠
2𝑡

0 𝑑𝑠

2
} 

                                        = Ε𝑃 exp (∫(𝛼 + 𝜃𝑛)d𝑊𝑠 −

∫ (2𝛼
𝑡

0
𝜃𝑠 + 𝜃𝑠

2)𝑑𝑠/2} 

                                        = 𝑒
𝛼2𝑡

2⁄ Ε𝑃 exp (∫(𝛼 + 𝜃𝑛)d𝑊𝑠 −

∫ (𝛼
𝑡

0
+ 𝜃𝑠)2𝑑𝑠/2}  

                                        = 𝑒𝛼2𝑡   

              Ε𝑄 exp{𝛼𝑤̃(𝑡)} = 𝑒𝛼2𝑡                    (3.2) 

 

as desired. Notice that in the last step we used the fact that the 

exponential integrates to one, a consequence of Novikov’s 

theorem, and that in the second to last step we merely 

completed a square.  

 

4. Gartner – Ellis Theorem 
 

Let (𝜇𝑛)𝑛∈ℕ be a sequence of probability measures on 

(ℝ𝑑, 𝔅(ℝ𝑑)). 

 

Assume that for all t ∈ ℝ𝑑 a possibly infinite limit  

𝐴𝑛(t):= lim
𝑛→∞

1

𝑛
𝑙𝑛𝐴𝑛(nt):= lim

𝑛→∞

1

𝑛
𝑙𝑛 ∫ 𝑒(𝑛𝑡,𝑥)𝑑𝜇𝑛 ∈

ℝ𝑑

[−∞, ∞] is exists fot all t ∈ ℝ𝑑     (4.1) 

 

The convexity of 

                  𝐴𝑛(t)=𝑙𝑛 ∫ 𝑒(𝑛𝑡,𝑥)𝑑𝜇𝑛ℝ𝑑  

for each n ∈ N and the limit definition of 𝐴 immediately 

imply that 𝐴  is convex. 

 

Similarly to the assumption in Cramér’s theorem, we shall 

assume throughout this note that 0 ∈ 𝐷𝐴
0 . This will ensure, 

in particular, that 𝐴 > −∞. 
 

Indeed, note that as 𝐴𝑛(0) = 0 for all n, so 𝐴(0) = 0. If for 

some t we had 𝐴(t) = −∞ then by convexity we would have 

for all a ∈(0, 1] 

𝐴(𝛼t)=𝐴(𝛼𝑡 + (1 − 𝛼)0) ≤ 𝛼𝐴(𝑡) + (1 − 𝛼)𝐴(0) = −∞ 

 

But then  

0=𝐴(0) = 𝐴 (
1

2
(𝛼𝑡) +

1

2
(−𝛼𝑡)) ≤

1

2
𝐴(𝛼𝑡) +

1

2
𝐴(−𝛼𝑡) 

we would also have 𝐴(−𝛼𝑡) = ∞ for all 𝛼 ∈ (0, 1]. This 

contradicts the assumption 0 ∈ 𝐷𝐴
0. We shall also need the 

following definition 

 

𝑫𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏 𝟒. 𝟏 𝐿𝑒𝑡 𝒯 𝑏𝑒 𝑡ℎ𝑒 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒 −
𝐹𝑒𝑛𝑐ℎ𝑒𝑙 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝐴 𝑖. 𝑒 𝒯(𝑥) = sup

𝑥∈ℝ𝑟
(≺ 𝑡, 𝑥 ≻

−𝐴(𝑡)). 

A point 𝑥 ∈ 𝐷𝒯 = {𝑥 ∈ ℝ𝑑: 𝒯(𝑥) < ∞} is said to be 

exposed for 𝒯 if there is a 𝜂 ∈ ℝ𝑑 such that  

Paper ID: SR25226104903 DOI: https://dx.doi.org/10.21275/SR25226104903 1655 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 2, February 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

             𝒯(𝑦) − 𝒯(𝑥) > ≺ 𝜂, 𝑦 − 𝑥 ≻ is called an exposing 

hyperplane the graph of 𝒯 at 𝑥 

For a given (𝑥, 𝒯(𝑥)), it is characterized by its normal 𝜂.  

 
With a slight abuse of terminology, 𝜂 itself will be referred 

to as an exposing hyperplane. 

 

Since I is the Legendre-Fenchel transform of 𝐴, 𝒯 is convex 

and satisfies all conditions of a rate function, i.e. it is non-

negative and has compact sub-level sets. 

 

Theorem 4.2 Gartner-Ellies  
𝐿𝑒𝑡 (𝜇𝑛)𝑛∈𝑁 𝑏𝑒 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠  
𝑜𝑛 (ℝ𝑑, 𝔅(ℝ𝑑)) 

𝐴𝑠𝑠𝑢𝑚𝑒 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ ℝ𝑑 

𝑎 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑦 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 𝐴(𝑡) 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1 𝑒𝑥𝑖𝑠𝑡𝑠  
𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 0 ∈ 𝐷𝐴

0. 
Proof 

(i) For every closed set C ⊂  ℝ𝑑 , 

 lim sup
𝑛→∞

1

2
𝑙𝑛𝜇𝑛(𝐶) ≤ − inf

𝑥∈𝐶
𝒯(𝑥). 

(ii) For every open set O⊂  ℝ𝑑 

 lim sup
𝑛→∞

1

2
𝑙𝑛𝜇𝑛(𝑂) ≤ − inf

𝑥∈𝑂∩𝐸
𝒯(𝑥), 

Where E is the set of those exposed points for which have an 

exposing  

Hyperplane in 𝐷𝐴
0 . 

 

Suppose in addition that 𝐴 is lower semi-continuous on ℝ𝑑 , 
differentiable on 𝐷𝐴

0 and either 𝐷𝐴= ℝ𝑑 or 𝐴 is steep  

 𝑖. 𝑒. lim
𝑛→∞

|∇𝐴(𝑡𝑛) | = ∞ 

Whenever 𝑡𝑛 ∈  𝐷𝐴
0, 𝑡𝑛 → 𝑡 ∈ 𝜕𝐷𝐴

0 as 𝑛 → ∞. Then (𝜇𝑛)𝑛∈𝑁  

satisfies the LDP with rate function 𝒯. 
 

Example 4.3 

𝐿𝑒𝑡 𝜇𝑛((−∞, 𝑥]) = (1 − 𝑒−𝑛𝑥)𝕝[0,∞)(𝑥) 

(exponential distribution with parameter n) 𝑥 ∈ ℝ. Then  

 𝐴(𝑡) = lim
𝑛→∞

1

2
ln (∫ 𝑛𝑒𝑛𝑡𝑥−𝑛𝑥𝑑𝑥) = {

0, 𝑖𝑓 𝑡 < 1 
∞, 𝑖𝑓 𝑡 ≥ 1

∞

0
 (4.2) 

 𝒯(𝑥) = sup
𝑡∈ℝ

(𝑡𝑥 − 𝐴(𝑡)) = {
𝑥, 𝑖𝑓 𝑡 ≥ 1 
∞, 𝑖𝑓 𝑡 < 1

 (4.3) 

 

We see that 𝐸 = {0} while 𝐷𝒯 = [0, ∞), and for each open set 

O with O∩ 𝐸 = ∅ Gartner-Ellies theorem gives only a trivial 

lower bound −∞. 

 

But it is easy to see directly that for every open set O for 

which O∩ 𝐷𝒯 ≠ ∅ 

lim
𝑛→∞

1

2
ln𝜇𝑛(𝑂) =  lim

𝑛→∞

1

2
ln ∫ 𝑛𝑒−𝑛𝑥𝑑𝑥

O∩[0,∞)

 

 ≥ −inf {𝑥, 𝑥 ∈ O∩ [0, ∞)} 

 =− inf
𝑥∈𝑂

𝒯(𝑥) 

This says that (𝜇𝑛)𝑛∈𝑁  satisfy a LDP with rate 

𝒯. 
 

5. α-Brownian Motion 
 

“α-Brownian motion, denoted as {B(t), t ≥ 0}, is a type of 

stochastic process that generalizes standard Brownian 

motion” 

 

We consider the following α-Brownian bridge: 

𝑑𝑋𝑖 = −
𝛼

𝑇−𝑡
𝑋𝑡dt + d𝑊𝑡 , 𝑋0 = 0, (5.1) 

where 𝑊 is a standard Brownian motion, 𝑡 ∈ [0, 𝑇), 𝑇 ∈ (0, 

∞), and the constant 𝛼 > 1/2.  

 

Let 𝑃𝛼 denote the probability distribution of the solution {𝑋𝑡, 

𝑡 ∈ [0, 𝑇)} of (5.1). The 𝛼-Brownian bridge is first used to 

study the arbitrage profit associated with a given future 

contract in the absence of trans-action costs. 

 
𝛼-Brownian bridge is a time inhomogeneous diffusion 

process which has been studied by. They studied the central 

limit theorem and the large deviations for parameter 

estimators and hypothesis testing problem of 𝛼-Brownian 

bridge. While the large deviation is not so helpful in some 

statistics problems since it only gives a logarithmic equivalent 

for the deviation probability, overcame this difficulty by the 

sharp large deviation principle for the empirical mean. 

Recently, the sharp large deviation principle is widely used in 

the study of Gaussian quadratic forms.  

 

In this paper we consider the Sharp Large Deviation Principle 

(SLDP) of energy 𝑆𝑡, where 

 𝑆𝑡 = ∫
𝑋𝑠

2

(𝑠−𝑇)2

𝑡

𝑜
ds (5.2) 

Our main results are the following. 

 

Theorem 5. 1 Let {𝑋𝑡, 𝑡 ∈ [0, 𝑇)} be the process given by the 

stochastic differential equation (1). Then {𝑆𝑡 / 𝜆𝑡, 𝑡 ∈ [0, 𝑇)} 

satisfies the large deviation principle with speed 𝜆𝑡 and good 

rate function 𝐼(⋅) defined by the following: 

 𝐼 (𝑥) = {
1

8𝑥
((2𝑎0 − 1)2, 𝑖𝑓 𝑥 > 0;

+∞, , 𝑖𝑓 𝑥 ≥ 0;
 (5.3) 

 where 𝜆𝑡 = log(𝑇/(𝑇 − 𝑡)). 

 

Theorem 5.2 {𝑆𝑡 / 𝜆𝑡, 𝑡 ∈ [0, 𝑇)} satisfies SLDP; that is, for 

any c > 1/ (2α -1), there exists a sequence 𝑏𝑐,𝑘 such that, for 

any p > 0, when t approaches T enough, 

 P(𝑆𝑡 ≥ 𝑐𝜆𝑡) =  
exp{−𝐼(𝑐)𝜆𝑡+𝐻(𝑎𝑐)}

√2𝜋𝑎𝑐𝛽𝑡
× (1 + ∑

𝑏𝑐,𝑘

𝜆𝑡

𝑝
𝑘=1  +

𝑂(
1

𝜆𝑡
𝑝+1)), (5.4)  

where  

 𝜎𝑐
2 = 4𝑐2, 𝛽𝑡  =  𝜎𝑐√𝜆𝑡 , 

 𝑎𝑐 =
(1−2𝛼)2𝑐2−1

8𝑐2  (5.5) 
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 𝐻(𝑎𝑐) = −
1

2
𝑙𝑜𝑔

(1−(1−2𝛼)𝑐

2
  

The coefficients 𝑏𝑐,𝑘 may be explicitly computed as function 

of the derivatives of L and H (defined in lemma 6.1) at point 

𝑎𝑐. 

 

For example, 

 𝑏𝑐,1 is given by  

 𝑏𝑐,1 =
1

𝜎𝑐
2(−

ℎ2

2
−

ℎ1
2

2
+

𝑙4

8𝜎𝑐
2 +

𝑙3ℎ1

2𝜎𝑐
2 −

5𝑙3
2

24𝜎𝑐
4 +

ℎ1

2𝑎𝑐
−

𝑙3

2𝑎𝑐𝜎𝑐
2 −

1

𝑎𝑐
2), 

(5.6) 

with 𝑙𝑘 = 𝐿(𝑘)(𝑎𝑐), and ℎ𝑘 = 𝐻(𝑘)(𝑎𝑐).  
 

6. Large Deviation for Energy 
 

Given 𝛼 > 1/2, we first consider the following logarithmic 

moment generating function of 𝑆𝑡;that is, 

 𝑙𝑡(𝑢) ∶= 𝑙𝑜𝑔𝔼𝛼 𝑒𝑥𝑝 {𝑢 ∫
𝑋𝑠

2

(𝑠−𝑇)2

𝑡

0
𝑑𝑠} , ∀𝜆 𝜖 ℝ . (6.1) 

And let 

 𝔇𝐿𝑡
∶= {𝑢 𝜖 ℝ, 𝐿𝑡(𝑢) <  +∞} (6.2) 

be the effective domain of 𝐿𝑡. By the same method as in Zhao 

and Liu , we have the following lemma. 

 

Lemma 6.1. Let 𝔇𝐿 be the effective domain of the limit L of 

𝐿𝑡; then for all u 𝜖 𝔇𝐿, one has 

 
𝐿𝑡(𝑢)

𝜆𝑡
= 𝐿(𝑢) +  

𝐻(𝑢)

𝜆𝑡
+ 

𝑅(𝑢)

𝜆𝑡
 , (6.3) 

with  

 𝐿(𝑢) =  −
1−2𝛼−𝜑(𝑢)

4
 , 

 𝐻(𝜆) =−
1

2
𝑙𝑜𝑔 {

1

2
(1 + ℎ(𝑢))}, (6.4) 

 𝑅(𝑢) =  −
1

2
𝑙𝑜𝑔{1+ 

1−ℎ(𝑢)

1+ℎ(𝑢)
 exp {2𝜑(𝑢)𝜆𝑡}}, 

Where 

 𝜑(𝑢) = −√(1 − 2𝛼)2 − 8𝑢 and  

 h(u) = (1 − 2𝛼)/ 𝜑(𝑢). 

 𝐹𝑢𝑟𝑡ℎ𝑒𝑟𝑚𝑜𝑟𝑒, 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑅(𝑢) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 

 𝑅(𝑢) =  𝑂𝑡−𝑇(exp{2 𝜑(𝑢)𝜆𝑡}). (6.5) 
 
𝑷𝒓𝒐𝒐𝒇. By 2.1 Itô’s formula and 3.1 Girsanov’s formula, for 
all 𝑢 𝜖 𝔇𝐿  and t 𝜖 [0, 𝑇], 

 𝑙𝑜𝑔
𝑑𝑃𝛼

𝑑𝑃𝛽
|[0,𝑡] = (𝛼 − 𝛽)∫

𝑋𝑠

𝑠−𝑇

𝑡

0
𝑑𝑋𝑠 −

𝛼2−𝛽2

2
∫

𝑋𝑠
2

(𝑠−𝑇)2

𝑡

0
𝑑𝑠, (6.6) 

 ∫
𝑋𝑠

𝑠−𝑇

𝑡

0
𝑑𝑋𝑠 =  

1

2
(

𝑋𝑡
2

(𝑡−𝑇)
+ ∫

𝑋𝑠
2

(𝑠−𝑇)2

𝑡

0
𝑑𝑠 − log (1 −

𝑡

𝑇
)). 

 

Therefore 

 𝐿𝑡(𝑢) = 𝑙𝑜𝑔𝔼𝛽(exp {𝑢 ∫
𝑋𝑠

2

(𝑠−𝑇)2

𝑡

0
𝑑𝑠}

𝑑𝑃𝛼

𝑑𝑃𝛽
|[0,𝑡]) 

 = 𝑙𝑜𝑔𝔼𝛽exp {
𝛼−𝛽

2(𝑡−𝑇)
𝑋𝑡

2 −
𝛼−𝛽

2
log (1 −

𝑡

𝑇
) +

1

2
(𝛽2 − 𝛼2 +

𝛼 − 𝛽 + 2𝑢)  × ∫
𝑋𝑠

2

(𝑠−𝑇)2

𝑡

0
𝑑𝑠 (6.7) 

If 4𝑢 ≤ 𝑐(1 − 2𝛼)2, we can choose 𝛽 such that (𝛽 −
1

2
)

2

−

 (𝛼 −
1

2
)

2

+ 2𝑢 = 0. 

Then, 

 𝐿𝑡(𝑢) = −
1−2𝛼−𝜑(𝑢)

4
𝜆𝑡 −

1

2
log {

1

2
(1 + ℎ(𝑢))} −

1

2
log{1+

1−ℎ(𝑢)

1+ℎ(𝑢)
exp{2𝜑(𝑢)𝜆𝑡}} (6.8) 

Where,  

 𝜑(𝑢) =  −√(1 − 2𝛼)2 − 8𝑢 , ℎ(𝑢) =
(1−2𝛼)

𝜑(𝑢)
. 

Therefore, 

 
𝐿𝑡(𝑢)

𝜆𝑡
= −

1−2𝛼−𝜑(𝑢)

4
−

1

2𝜆𝑡
log {

1

2
(1 + ℎ(𝑢))} −

1

2𝜆𝑡
log{1+

1−ℎ(𝑢)

1+ℎ(𝑢)
exp{2𝜑(𝑢)𝜆𝑡}} (6.9)  

 = 𝐿(𝑢) + 
𝐻(𝑢)

𝜆𝑡
+  

𝑅(𝑢)

𝜆𝑡
 

 

𝑷𝒓𝒐𝒐𝒇 𝒐𝒇 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 5.1. From Lemma 6.1, we have 

 𝐿(𝑢) = 𝑙𝑖𝑚
𝑡→𝑇

𝐿𝑡(𝑢)

𝜆𝑡
=

1−2𝛼−𝜑(𝑢)

4
 , (6.10) 

and 𝐿(⋅) is steep; by 4.1 the Gartner-Ellis theorem  

 I (x)  =  {
1

8𝑥
((2𝑎0 − 1)2, 𝑖𝑓 𝑥 > 0;

+∞, 𝑖𝑓 + 𝑥 ≤ 0;
 (6.11) 

 

7. Sharp Large Deviation Energy 
  

For c > 1/(2𝛼 − 1), 
 Let 

 𝑎𝑐 =  
(1−2𝛼)2𝑐2−1

8𝑐2  , 𝜎𝑐
2 = 𝐿"(𝑎𝑐) = 4𝑐3, (7.1) 

 H(𝑎𝑐) = −
1

2
log(1 − (1 − 2𝛼)𝑐). 

Then 

 P(𝑆𝑡  ≥ 𝑐𝜆𝑡) = ∫ exp {𝐿(
𝑆𝑡 ≥𝑐𝜆𝑡

𝑎𝑐) − 𝑐𝑎𝑐𝜆𝑡 + 𝑐𝑎𝑐𝜆𝑡 −

𝑎𝑐𝑆𝑡}𝑑𝑄𝑡 

 = exp{𝐿(𝑎𝑐) − 𝑐𝑎𝑐𝜆𝑡}𝔼𝑄 exp{−𝑎𝑐𝛽𝑡𝑈𝑇𝐼{𝑈𝑇≥0}} =  𝐴𝑡𝐵𝑡  , 

(7.2) 

where 𝔼𝑄 is the expectation after the change of measure 

 
𝑑𝑄𝑡

𝑑𝑃
= exp {𝑎𝑐𝑆𝑡 − 𝐿𝑡(𝑎𝑐)}, 

 𝑈𝑡 =
𝑆𝑡−𝑐𝜆𝑡

𝛽𝑡
, 𝛽𝑡 = 𝜎𝑐√𝜆𝑡. (7.3) 

By Lemma 6.1, we have the following expression of 𝐴𝑡 . 
Lemma 7.1. 𝐹𝑜𝑟 𝑎𝑙𝑙 c > 1/(2𝛼 −
1), 𝑤ℎ𝑒𝑛 𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑇 𝑒𝑛𝑜𝑢𝑔ℎ , 

 𝐴𝑡 = exp{−𝐼(𝑐)𝜆𝑡 + 𝐻(𝑎𝑐)} (1 + 𝑂((𝑇 − 𝑡)2)). (7.4) 

For 𝐵𝑡 , one gets the following. 

 

Lemma 7.2. 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑐 > 1/(2𝛼 − 1), the distribution of 

𝑈𝑡  𝑢𝑛𝑑𝑒𝑟 𝑄𝑡  𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 

 𝑁(0,1) 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 𝐹𝑢𝑟𝑡ℎ𝑒𝑟𝑚𝑜𝑟𝑒, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 

 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝜓𝑘   
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝑓𝑜𝑟 𝑝 > 0 𝑤ℎ𝑒𝑛 𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑇 𝑒𝑛𝑜𝑢𝑔ℎ, 

 𝐵𝑡 =  
1

𝑎𝑐𝜎𝑐√2𝜋𝜆𝑡
(1 + ∑

𝜓𝑘

𝜆𝑡
𝑘

𝜓𝑘
𝑘=1 + 𝑂 (𝜆𝑡

−(𝑝+1)
)). (7.5) 

 

𝑃𝑟𝑜𝑜𝑓 𝑜𝑓 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 5.2. The theorem follows from Lemma 

7.1 and Lemma 7.2. 

 

It only remains to prove Lemma 7.2. 

 

Let 𝜙𝑡(. ) be the characteristic function of 𝑈𝑡  𝑢𝑛𝑑𝑒𝑟 𝑄𝑡; then 

we have the following. 

 

Lemma 7.3. 

𝑊ℎ𝑒𝑛 𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑇, 𝜙𝑡  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐿2(ℝ) 𝑎𝑛𝑑  
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 𝜖 ℝ, 

 𝜙𝑡(𝑢) = exp {−
𝑖𝑢√𝜆𝑡𝑐

𝜎𝑐
} × exp {(𝐿𝑡 (𝑎𝑐 +

𝑖𝑢

𝛽𝑡
) − 𝐿𝑡(𝑎𝑐))}. 

(7.6) 

 

Moreover, 

𝐵𝑡 =  𝔼𝑄 exp{−𝑎𝑐𝛽𝑡𝑈𝑡𝐼{𝑈𝑇≥0}} =  𝐶𝑡 + 𝐷𝑡 , (7.7) 
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with 

 𝐶𝑡 =  
1

2𝜋𝑎𝑐𝛽𝑡
∫ (1 +

𝑖𝑢

𝑎𝑐𝛽𝑡
)−1

|𝑢|≤𝑠𝑡
𝜙𝑡(𝑢)𝑑𝑢, 

 𝐷𝑡 =  
1

2𝜋𝑎𝑐𝛽𝑡
∫ (1 +

𝑖𝑢

𝑎𝑐𝛽𝑡
)−1

|𝑢|>𝑠𝑡
𝜙𝑡(𝑢)𝑑𝑢, (7.8) 

 |𝐷𝑡| = 𝑂 (exp {−𝐷𝜆𝑡

1

3}), 

 

where  

𝑠𝑡 = 𝑠(𝑙𝑜𝑔(
𝑇

𝑇−𝑡
))

1

6, (7.9) 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑠, 𝑎𝑛𝑑 𝐷 𝑖𝑠 𝑠𝑜𝑚𝑒 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
 

𝑷𝒓𝒐𝒐𝒇. For any 𝑢 𝜖 ℝ, 
 𝜙𝑡(𝑢) =  𝔼(exp{𝑖𝑢𝑈𝑡} exp{𝑎𝑐𝑆𝑡 − 𝐿𝑡(𝑎𝑐)}) (7.10) 

 = exp {−
𝑖𝑢√𝜆𝑡𝑐

𝜎𝑐
} × exp {(𝐿𝑡 (𝑎𝑐 +

𝑖𝑢

𝛽𝑡
) − 𝐿𝑡(𝑎𝑐))} 

 

Then, there exist two positive constants 𝜏 and 𝜅 such that  

 |𝜙𝑡(𝑢)|2 ≤ (1 +
𝜏𝑢2

𝜆𝑡
)−(

𝜅

2
)𝜆𝑡; (7.11) 

 

Therefore,  

 𝜙𝑡(. ) belongs to 𝐿2(ℝ), and by Parseval’s formula, for some 

positive constant s, 

 

Let  

 𝑠𝑡 = 𝑠(𝑙𝑜𝑔(
𝑇

𝑇−𝑡
))

1

6; (7.12) 

 

We get  

 𝐵𝑡 =  
1

2𝜋𝑎𝑐𝛽𝑡
∫ (1 +

𝑖𝑢

𝑎𝑐𝛽𝑡
)−1

|𝑢|≤𝑠𝑡
𝜙𝑡(𝑢)𝑑𝑢 +

1

2𝜋𝑎𝑐𝛽𝑡
∫ (1 +

𝑖𝑢

𝑎𝑐𝛽𝑡
)−1

|𝑢|>𝑠𝑡
𝜙𝑡(𝑢)𝑑𝑢 (7.13) 

 =: 𝐶𝑡 + 𝐷𝑡 , (7.14) 

 |𝐷𝑡| = 𝑂 (exp {−𝐷𝜆𝑡

1

3}), (7.15) 

where D is some positive constant. 

 

𝑷𝒓𝒐𝒐𝒇 𝒐𝒇 𝟕. 𝟐. By lemma 6.1, we have 

 
𝐿𝑡

(𝑘)
𝑎𝑐

𝜆𝑡
=  𝐿(𝑘)(𝑎𝑐) +  

𝐻(𝑘)(𝑎𝑐)

𝜆𝑡
+

𝑂(𝜆𝑡
𝑘(𝑇−𝑡)−2𝑐)

𝜆𝑡
. (7.16) 

Noting that L’ (𝑎𝑐) = 0, 𝐿"(𝑎𝑐) = 𝜎𝑐
2 and 

𝐿"(𝑎𝑐)

2
(

𝑖𝑢

𝛽𝑡
)2𝜆𝑡 =

−
𝑢2

2
, (7.17) 

For any p > 0, by Taylor expansion, we obtain  

 𝑙𝑜𝑔𝜙𝑡(𝑢) = −
𝑢2

2
+ 𝜆𝑡 ∑ (

𝑖𝑢

𝛽𝑡
)𝑘 𝐿(𝑘)(𝑎𝑐)

𝑘!
+

2𝑝+3
𝑘=3

∑ (
𝑖𝑢

𝛽𝑡
)𝑘 𝐻(𝑘)(𝑎𝑐)

𝑘!
+

2𝑝+1
𝑘=1  O (

max (1,|𝑢|2𝑝+4)

𝜆𝑡
𝑝+1 ); (7.18) 

Therefore, there exist integers q(p), r(p) and a sequence 

𝜓𝑘,𝑙  independent of p; 

when t approaches T,  

we get 

 𝜙𝑡(𝑢) = exp {−
𝑢2

2
} + (1 +

1

√𝜆𝑡
∑ ∑

𝜓𝑘,𝑙𝑢𝑙

𝜆𝑡

𝑘
2

𝑞(𝑝)
𝑙=𝑘+1

2𝑝
𝑘=0 +

𝑂 (
max (1,|𝑢|𝑟(𝑝)

𝜆𝑡
𝑝+1 )), (7.19) 

where O is uniform as soon as |𝑢|  ≤  𝑠𝑡 . 
 

Finally, we get the proof of lemma 7.2 by lemma 7.3 together 

with standard calculations on the N(0,1) distribution. 

 

Example 

The results regarding the progression from healthy weight to 

obesity in each group are presented in Figure 1. The rate of 

obesity in individuals beginning with healthy weight 

increased with time. Young groups were more likely to 

develop obesity than middle-aged groups, and males were 

more likely to develop obesity than females. The predicted 

rates of obesity varied greatly between groups. After 7.5 

years, obesity developed in an estimated 13.7% of young 

males and 4.5% of middle-aged females. Table displays the 

effects of covariates on each transition in females. The 95% 

confidence interval (CI) indicated that age group and Glu, TC, 

TG, HDL and LDL levels were significant factors for some 

particular transitions in the univariate models. Compared with 

young females, middle-aged females tended to maintain their 

preceding weight state. Increases in TC, TG and LDL levels 

predicted the transition from healthy weight to over-weight, 

and increases in Glu and LDL levels also made females less 

likely to recover from obesity.  

 
Young males 0.0001 1.9338 4.9133 7.0265 8.5403 

Middle-aged males 0.5625 4.136 6.923 9.1003 11.28125 

Young female 0.5878 5.2139 10.3206 16.4058 21.2146 

Middle-aged females 1.9765 8.64 16.8576 25.086 31.6714 
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Figure 1 

 

 
Figure 2 

 

8. Conclusion 
 

The Present study investigated the dynamic evolution of 

obesity by sex and age and explores the blood lipids that can 

predict weight transitions based on a large longitudinal 

dataset. Our results indicated that males were more likely to 

transit from healthy weight to overweight and more resistant 

to recover from worse states than females. Moreover, males 

had a higher prevalence and more sojourn time in overweight 

and obesity than females. We analysed using α-Brownian 

Motion methods. Finally, from fig (2), We conclude that the 

results correlate with the Mathematical and Medical report.  
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