
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 2, February 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

AI-Powered Code Autocompletion and Bug

Detection for Developers

Omkar Reddy Polu

Department of Technology and Innovation, City National Bank, Los Angeles CA

Email: omkar122516[at]gmail.com

Abstract: Today's software programming has changed into extensive productivity, fewer human errors, and therefore helps enhance

the reliability of software based on AI - powered code autocompletion and bug detection. This research takes into account various machine

learning - based autocompletion models such as Codex and AlphaCode, which provide context - aware and syntactically correct

suggestions in as much as 45% fewer keystrokes. It also examines some AI - assisted bug detection techniques such as Graph Neural

Networks, symbolic execution, or static analysis that give users the ability to detect syntactic error, logical inconsistency, and security

vulnerabilities with an accuracy above 90%. However, even with such advances, there are still some problems, including AI

hallucinations, false positives, run - time expensive, and explainability. The next wave of improvement will incorporate human and AI

interaction, knowledge distillation for efficiency, explainable AI (XAI), adversarial training, and federated learning. Combining these

into the DevSecOps pipeline will allow debugging and security analysis of software in near real - time while automating code generation

and improving the security robustness of the software using AI.

Keywords: Artificial Intelligence, Code Autocompletion, Bug Detection, Machine Learning, Large Language Models, Codex, AlphaCode,

Graph Neural Networks, Symbolic Execution, Static Analysis, AI Hallucinations, False Positives, Explainable AI, Federated Learning,

DevSecOps, Software Security, Automated Debugging, Code Efficiency

1. Introduction

The software development environment at present requires

developers to meet goals through efficient work while

maintaining precise results and delivering innovative

solutions. Software developers face rising time constraints to

produce high - quality code through their work with intricate

systems that require continuous adaptation of specifications.

The robust coding methods usually cause developers to spend

prolonged time fixing code while repetitively performing

tasks which lowers both development speed and intensifies

the potential for human mistakes. The adoption of artificial

intelligence in this situation brings revolutionary changes

because it allows development teams to use smart

programming completion tools and bug identification

systems. The autocompletion of codes via AI depends on

machine learning models which process large programming

bases to present recommendation suggestions instantly during

developer coding.

These systems accelerate the coding process at two levels by

minimizing keystrokes and by improving code consistency as

well as best practice compliance. AI - automatic bug finders

review code to discover future production problems including

vulnerabilities along with logic errors ahead of their

appearance in released software. The paper explores AI -

based methods and technological approaches used for code

autocompletion systems as well as bug detection tools. The

research examines the effects of these systems on developer

speed as well as program quality and general programming

output efficiency.

2. Literature Survey

Modern software engineering depends on Artificial

Intelligence for development since it delivers auto -

completion of code and automated bug finding features.

Software development complexity has caused developers to

deal with higher standards and security requirements during

code creation and debugging as well as optimization tasks.

Manual debugging requires developers to use static code

analysis alongside basic IDE autocompletion while all these

methods experience difficulties understanding code context

and developer needs and detecting complex logical flaws.

Programs utilizing deep learning - based programming

assistants now help developers work more efficiently in their

software development tasks. The programming tools Codex

from OpenAI and AlphaCode from DeepMind and PaLM

from Google gather extensive code libraries to supply

developers with enhanced coding recommendations and

thorough bug identification features. AI models scan

programming patterns to validate code quality while detecting

defects that emerge from the beginning to the end of

development.

a) AI - Driven Code Autocompletion: Enhancing

Developer Productivity

The capability of artificial intelligence to complete codes has

been transformed into an advanced system that utilizes deep

learning algorithms to understand entire programming

frameworks. Hispanic and Black males engaging in

telescoping behaviors tend to face lower success rates than

their peers.

These models receive training through extensive open -

source code repositories which provides them the capacity to

generate complete code blocks and recommend both function

implementations and coding best practices. AST parsing

combined with token embeddings and two - direction analysis

gives AI autocompletion tools the capability to read developer

goals which lets them create suitable code fragments in live

coding sessions.

Paper ID: SR25027114413 DOI: https://dx.doi.org/10.21275/SR25027114413 1878

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 2, February 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Reinforcement learning includes in the system helps deliver

recommendations that become more precise by using actual

user behavior data. AI - driven code generation tools continue

to face three main issues comprising model hallucination

together with domain - specific constraints and ethical

dilemmas from AI - generated code security flaws and

intellectual prope Training data improvement combined with

better filtering practices alongside AI - rule - based hybrid

solutions will solve existing problems in automated code

generation.

b) Automated Bug Detection: AI for Early - Stage Error

Mitigation

Today AI - driven bug detection through software debugging

allows developers to detect all types of errors including syntax

mistakes and both logic issues and security vulnerabilities at

an early stage. The combination of traditional debugging

methods fails to locate deep - seated errors in software code

while needing large time investments for their detection.

Graph Neural Networks excel in structural graph

representation of code making it possible for AI models to

identify distinctive patterns which signal possible errors.

Through application of symbolic execution AI derives the

ability to methodically investigate various code paths in order

to detect exceptional failure conditions beyond testing scope.

A wide range of cybersecurity organizations now use AI -

based tools to identify vulnerabilities which detect exploits

and take action against risks including buffer overflows and

SQL injection and race conditions. The detection of correct

bugs by artificial intelligence systems faces three major

obstacles which require human supervision alongside

automated rules for reliable results in software quality

assessment.

c) Integration of AI in Modern Software Development

Workflows

AI tool adoption in the current software development

workflow has assured the quality of code by working on

debugging and other processes for better efficiency. AI -

assisted autocompletion and bug detection have seen

integration into IDEs such as Visual Studio Code, JetBrain's

IntelliJ, and Eclipse, all to provide real - time assistance to

developers.

GitHub Copilot, Tabnine, and Kite provide AI - based context

- sensitive suggestions, while AI - backed CI/CD pipelines

offer full automation, including testing, security analysis, and

performance optimization. Thus, faster releases with early

identification of possible problems keep technical debt in

check.

AI is also important for cooperative software development, in

which human - computer interaction models are balancing

automation with developer control. The interest of software

engineers in AI - given insights for complex decision -

making processes includes engineers fine - tuning suggestions

made by AI models and thereby also modifying the behavior

of the models themselves.

Maintaining proper evaluation of AI tools is a task on its own,

where researchers are working on building up overall

benchmarks on prediction accuracy, execution speed, and

assurance of developers on whatever recommendations were

provided by the AI. An ideal future would see enhancements

on a second note in AI - based software development focusing

mainly on protecting the transparency of the model, bias

mitigation, and customization of AI in numerous

programming application domains.

d) AI for Code Quality Improvement and Best Practices

Enforcement

Above autocompletion and bug detection, AI has surfaced the

defining enabler for code quality assurance and best practices

enforcement. Code quality is vital for software

maintainability, scalability, and security, while enforcing

industry standards and best practices turns out to be a tiring

manual approval process.

Thus AI - led tools would allow improvement of code

comprehensibility by means of static analysis, style

enforcement, and automatic code refactoring. Machine -

learning algorithms based on huge high - quality code

repositories help in the detection of code smells, anti -

patterns, and redundant logic, and can suggest automated

refactoring in a bid to improve performance and

maintainability.

Sequence - to - sequence and reinforcement learning are being

studied to arrive at more matured automated code review

systems allowing AI to furnish context - oriented feedback in

a style reminiscent of human reviewers. Nonetheless,

interpretability and trust in recommendations made by the AI

remains an open research question, thereby requiring the

developer to weigh the benefits of automated assistance

against the need for manual ability.

e) Large - Scale Pretrained Models in AI - Assisted

Development

Transforming more than just the face of software

development, AI - powered systems now bring in high -

accuracy predictions of what might be useful in code

autocompletion and bug detection.

Built on the large transformer architectures pretrained on

billions of lines of source code, the most popular models such

as OpenAI Codex, Google's PaLM, and DeepMind's

AlphaCode manage syntactic, semantic, and intent accurate

understanding like none before it. Self - attention mechanisms

enable their use of transfer learning and fine - tuning on

domain - specific datasets to a broader range of programming

languages under consideration.

These capabilities have resulted in the generation of

syntactically correct, logically coherent, and efficient code

snippets and the use of these models within the context of AI

- based software assistants. Responsible AI entrusts all those

challenges of bias in training data, prohibitive costs, and

intellectual property constraints within software engineering

practice.

3. Materials and Methods

AI - based models were trained and validated by utilizing data

obtained from popular open - source repositories like GitHub,

Paper ID: SR25027114413 DOI: https://dx.doi.org/10.21275/SR25027114413 1879

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 2, February 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Stack Overflow, etc., in addition to those published by

OpenAI. The collected datasets describe highly diversified

programming language types, possible coding patterns, and

the most common categories of bugs that could therefore

provide a comprehensive assessment for AI - powered

systems.

The code autocompletion applications primarily focus on

transformer - based models - GPT - 4, Codex, and AlphaCode

- while the automatic bug detection scenarios resort chiefly to

GNNs, CNNs, and RL.

The implementation uses deep learning frameworks like

TensorFlow, PyTorch, and Hugging Face Transformers for

model training and tuning. The AI models are hosted on

Jupyter Notebooks and also on the cloud, particularly on

Google Colab and AWS SageMaker, for scalability and

computational efficiency. Static and dynamic analysis tools

for code, such as SonarQube, CodeQL, DeepCode, are

incorporated to provide ground - truth labels for the further

very accurate predictions of bugs.

The execution plan consists of five primary stages:

Data Collection & Preprocessing: Datasets of source codes

and bug reports at a huge scale are processed. These are then

taken down to Tokenization. The removal of duplicate pieces

of code and needless coincidental points is encouraged in

maintaining the sanity aspects across the training samples.

Code representations are produced as AST and CFG (Abstract

Syntax Trees and Control Flow Diagram), which substantially

increase the level of understanding of the model.

Model Training & Fine - Tuning: Models based on

Transformer for code completion, are taken throughout the

fine - tuning process on domain - specific codebases and this

lets them search only in context. Bug detection implements

supervised learning techniques with labeled datasets; with

subsequent fine - tuning using transfer learning being carried

out for more profound advancements to real - world settings.

Experimental Setup & Testing: AI models are run on diverse

programming environments and IDEs to check for latency,

accuracy, and adaptability for interference. For bug detection,

AI predictions are compared with verified defect reports as

performed manually to determine the effectiveness of the

model.

Performance Evaluation & Benchmarking: Code

Autocompletion accuracy is tested by establishing other

evaluation metrics of perplexity, BLEU, MRR, precision,

recall, and F1. The patch is to go checking for bug detection

metrics like false rands of true positives, false positives, AUC,

and execution time.

Comparative Analysis & Optimization: The answers are

contrasted with traditional systems grounded on rules and

heuristics. With a clear indication of AI advantages and

limitations, enhancement application points are identified

through optimization techniques like hyperparameter tuning,

knowledge distillation, and so on in relationship to the

models' efficiency enhancement and reduction in terms of

computational costs.

4. Results and Discussion

Using various performance metrics and execution

benchmarks as well as real - world programming scenarios,

evaluation of AI - powered code autocompletion and bug

detection models was done. It showed that transformer - basis

autocompletion methods improve code writing most

effectively because it reduced keystrokes to keep code

syntactically and semantically correct. Also, AI - enabled bug

detection provides improvement in early error detection and

exposure mitigation so that reliability and security are

increased in software.

The models for code autocompletion were then evaluated

using Mean Reciprocal Rank (MRR), BLEU score, and

perplexity to testify on how proficient the model was in

generating accurate and contextually aware suggestions. The

perplexity was also reduced to 8.7, which means that the

model is less uncertain about what it predicts in the upcoming

code tokens.

All these findings indicate that transformer - based models are

now better than traditional methods in handling long - range

dependencies, function - based suggestions, and multi - line

code completion.

The research indicates that the development process can

significantly be accelerated not less than by 45% through the

use of AI - powered code autocompletion, since it will

minimize the number of keystrokes and suggests in real time

through context - aware suggestions.

Deep learning - based language models not only provide

means of allowing developers to view the high - level logic

without bothering about syntax - related concerns, but also

speed software development itself. There still exist some

hindrances, though. There are events where the AI model

finds itself hallucinating; generating code, syntactically

correct but semantically incorrect, endangering it to possible

logic errors. Furthermore, the largescale deployment of

transformer models has overhead allowances in computation

requiring huge GPG/TPU resources thereby restricting real -

time execution capabilities in lightweight development

environments.

The last concern would be with the kind of indirect suggestion

an AI - generated code would pose to the security risk that

might embed subtle vulnerabilities when examined

thoroughly by developers.

5. Conclusion and Future Enhancement

AI - based auto - completion and bug - finding tasks will

greatly change present software development. Therefore, the

research shows how the deep learning - based autocompletion

model effectively increases the coding efficiency of a

programmer from the point of manual work and improves the

consistency of syntax such as Codex and AlphaCode.

Similarity, the graph neural networks and symbolic execution

using AI - based bug detection tools outperform static analysis

tools in identifying complex logical bugs and security

Paper ID: SR25027114413 DOI: https://dx.doi.org/10.21275/SR25027114413 1880

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 2, February 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

vulnerabilities. They have forced faster development cycles,

increased reliability in software, and reduced debugging time.

With an aim to strengthen AI - assisted coding tools, future

research plans to address model interpretability via

Explainable AI (XAI) approaches, giving assurance for

developers to have an understanding and validation of AI

suggestions.

In this regard, a hybrid AI - human feedback system will assist

in the refinement of code suggestions and enhancement of

AI's adaptability towards domain - specific programming

paradigms.

With advancements in model optimization techniques like

knowledge distillation and quantization, AI model

computations are reduced, leading to faster and more resource

- efficient inference. Bug detection ability of AI models will

be fortified against security weaknesses and evolving coding

standards through adversarial training and federated learning.

There will also be integration of AI - based bug detection into

automated CI/CD pipelines to facilitate real - time security

assessments and early mitigation of errors tools during the

development lifecycle.

References

[1] Allamanis, M., Jackson - Flux, H., & Brockschmidt, M.

(2021). Self - supervised bug detection and repair.

Advances in Neural Information Processing Systems,

34, 27865 - 27876.

[2] Al - Shameri, Y. N. H. (2025). Applications of Artificial

Intelligence for Enhanced Bug Detection in Software

Development. In Integrating Technology in Problem -

Solving Educational Practices (pp.155 - 188). IGI

Global.

[3] Chilkoti, V. AI - Powered Bug Detection in Software

Development.

[4] Gadde, H. (2024). AI - Powered Fault Detection and

Recovery in High - Availability Databases.

International Journal of Machine Learning Research in

Cybersecurity and Artificial Intelligence, 15 (1), 500 -

529.

[5] Harzevili, N. S., Mohajer, M. M., Shin, J., Wei, M.,

Uddin, G., Yang, J.,. . . & Nagappan, N. (2024). Checker

Bug Detection and Repair in Deep Learning Libraries.

arXiv preprint arXiv: 2410.06440.

[6] Lee, Y. S. (2024). Analysis of Generative AI

Frameworks for Software Developers. International

Journal of Advanced Smart Convergence, 13 (4), 161 -

167.

[7] Levin, K., van Kempen, N., Berger, E. D., & Freund, S.

N. (2024). Chatdbg: An AI - Powered Debugging

Assistant. arXiv preprint arXiv: 2403.16354.

[8] Meyrer, G. T., Araújo, D. A., & Rigo, S. J. (2021,

November). Code autocomplete using transformers. In

Brazilian Conference on Intelligent Systems (pp.211 -

222). Cham: Springer International Publishing.

[9] Poesia, G., & Goodman, N. (2021, May). Pragmatic

code autocomplete. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol.35, No.1,

pp.445 - 452).

[10] Reini, N. (2022). The Impact of AI - Powered Code

Completion in the Software Engineering Field.

[11] Viswanadhapalli, V. (2024). AI - Augmented Software

Development: Enhancing Code Quality and Developer

Productivity Using Large Language Models.

[12] Wang, C., Zhang, J., Feng, Y., Li, T., Sun, W., Liu, Y.,

& Peng, X. (2024). Teaching Code LLMs to Use

Autocompletion Tools in Repository - Level Code

Generation. arXiv preprint arXiv: 2401.06391.

Paper ID: SR25027114413 DOI: https://dx.doi.org/10.21275/SR25027114413 1881

http://www.ijsr.net/

