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Abstract: DDoS attacks are considered one of the most severe security risks to the cloud computing environment by the fact that it is
capable of overloading resources, affecting the service availability. The dimensionality, redundancy, and time constraints of cloud network
traffic are quite high, which complicates the use of traditional intrusion detection systems. To resolve these problems, the proposed paper
will propose an effective DDoS attack detection model, which combines autoencoder-based feature selection and an optimized Long Short-
Term Memory (LSTM) model. The autoencoder is used to learn in an automatic manner compact and discriminative feature
representations of high-dimensional traffic data, and thus eliminate redundancy and enhance learning efficiency. In order to improve the
performance of detection, the LSTM network is optimized by an Improved Firefly Algorithm (IFA), which is augmented by Partial
Opposition-Based Learning (POBL). Diversification of the population is enhanced by the use of POBL, which also speeds up convergence,
allowing a good tuning of hyperparameters without premature convergence. The optimized LSTM is very effective in capturing long-term
temporal dependencies in the network traffic, which are necessary in the correct differentiation of DDoS attacks and normal cloud traffic.
The proposed framework is tested on benchmark DDoS datasets frequently utilised in cloud security studies, and the performance of the
framework is compared with traditional LSTM and alternative metaheuristic-optimised LSTM frameworks. The experimental findings
indicate that the suggested method has high accuracy, precision, recall, and F-score, as well as a faster and more stable convergence rate.
The results substantiate that the autoencoder-selected features, combined with IFA, POBL-optimized LSTM, give a solid, efficient, and
scalable algorithm to detect DDoS attacks in real time in the context of cloud computing.

Keywords: DDoS attack detection; hyperparameters optimization; firefly algorithm; long short-term memory; partial opposition-based
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1. Introduction

Cloud computing has been an element of modern information
technology by allowing computing resources and services to
be accessed via the Internet and on a scale and on-demand. Its
extensive implementation in fields like finance, healthcare,
education, and e-commerce has greatly enhanced the
efficiency and flexibility of operation. Nevertheless, the
openness and shared environment of cloud infrastructures
also predetermine their high vulnerability to cyber threats,
including the ones that can be destructive, such as DDoS
attacks. DDoS attacks aim at overwhelming cloud resources
by causing massive amounts of malicious traffic, which
causes degradation of services, denying the legit user access,
and causing enormous financial losses. The growing
complexity, diversification, and time sensitivity of DDoS
attack patterns are very challenging to conventional detection
controls.

The traditional DDoS detection methods, such as signature
detection and classical machine learning methods, are not
usually compatible with the dynamic and high-dimensional
nature of cloud network traffic. The recent developments in
deep learning have demonstrated encouraging outcomes in
intrusion detection because they can learn complex data
representations automatically. Nevertheless, deep learning
models are extremely sensitive to superfluous and
inappropriate features of raw traffic data that raise the
computational load and adversely impact the accuracy of the

detection. The use of autoencoders to select features has thus
become a beneficial remedy to obtain compact and
discriminative feature representations that are easy to reduce
dimensionality, whilst maintaining important traffic
properties.

The DDoS detection in the cloud environment is best
achieved by LSTM networks as they are capable of obtaining
long-term temporal dependencies and sequential patterns in
network traffic flows. However, the effectiveness of LSTM
models is determined by the choices of hyperparameters. Poor
tuning may also result in a slow convergence, early stagnation
in local optima, and low generalization ability. To solve this
problem, optimization algorithms based on metaheuristics
have been extensively used, and it is possible to mention the
Firefly Algorithm due to its simple nature and global search
capability. Nevertheless, traditional Firefly-based
optimization algorithms might continue to exhibit low
exploration and early convergence in high-dimensional,
complex search spaces.

In order to address these shortcomings, the present study
suggests an effective DDoS attack detecting framework that
combines autoencoder-driven feature selection and an
optimized LSTM model by use of an IFA with POBL. The
partial opposition-based learning process enhances the
diversity of the population and speeds up the convergence
process as it takes into account partially opposite solutions in
the process of optimization, resulting in more robust and
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stable hyperparameter tuning. The main objective of this
study is to create an effective and scalable cloud computing-
based DDoS attack detection framework through an
integration of autoencoder-based feature selection and an
Improved Firefly Algorithm-based LSTM framework with
Partial Opposition-Based Learning to improve the detection
accuracy, convergence speed, and computational efficiency.
This study will be important in the context of offering a
powerful, precise, and computationally optimal DDoS
identification solution specific to cloud computing
appliances. Through the incorporation of an autoencoder-
based selection of features with an IFA-LSTM model, the
proposed framework will help solve problems associated with
high-dimensional data, premature convergence, and temporal
traffic analysis. The convergence behavior and the
performance of the proposed approach are better, which
makes it appropriate to real-time and large-scale deployments
in clouds. Moreover, the suggested framework can be applied
to additional intrusion detection applications and
cybersecurity tools, which will result in the emergence of
smart and secure cloud security systems. The main
contributions of this work can be outlined in the following
way:

e A viable autoencoder-based feature selection
methodology is presented to remove redundant and
irrelevant network traffic characteristics to achieve
dimensional reduction and low complexity.

e The combination of Partial Opposition-Based Learning
and the Improved Firefly Algorithm is used to come up
with a novel optimization strategy that optimizes the
hyperparameters of LSTM.

e A more streamlined LSTM-based DDoS detection model
is suggested to capture the temporal relationships in the
cloud network traffic.

o Intensive experimental tests are applied to benchmark
datasets, and the suggested model is contrasted with
classical and optimization-based LSTM methodologies in
terms of standard performance measures.

o Convergence analysis is made to show that the proposed
optimization framework is stable and efficient.

The other sections of the paper are organized in the following
way: Section 2 presents and discusses the recent associated
works related to detecting DDoS attacks in cloud computing
with references to deep learning and optimization-based
methods. Section 3 contains the proposed research
methodology, optimized LSTM model and Improved Firefly
Algorithm with Partial Opposition-Based Learning. Section 4
explains the experimental design and the performance
analysis and the discussion of the results obtained in detail.
Lastly, Section 5 of the paper closes the paper by providing
summative information of the major findings of the research
work and providing possible future research directions.

2. Related works

Over the last few years, deep learning and metaheuristic
optimization methods have been actively used in the field of
overcoming the escalating menace of the Distributed Denial-
of-Service (DDoS) attacks in the cloud, Internet of Things
(IoT), and edge computing systems. In general, the literature
overview shows that although deep learning and
metaheuristic optimization are important in DDoS detection,
most of the solutions have limitations like suboptimal
hyperparameter optimization, premature convergence, or
excessive computation. Furthermore, few studies have been
able to apply opposition-based learning techniques to LSTM
models to detect DDoS in the cloud environment. Such
constraints serve as the driving force behind the suggested
study that presents an optimized LSTM model with an IFA-
LSTM to attain a better detection rate, a faster rate of
convergence, and a better tolerance to cloud computing
conditions.

Table 1: Comparison of recent related papers

1}\?; Author (Year) Method Dataset Merits Limitations
Edge-cCNN + Cuckoo Lightweight, high accuracy, No temporal modelling,
[1] | Gupta etal. (2023) Search IoT traffic dataset edge-friendly limited cloud validation
2] Subramanian et al. | NDCS (Multi-objective Google Cluster Secure VM migration, reduced Not focused on DDoS
(2022) Cuckoo Search) & Y energy, and makespan detection
[3] Hu et al. (2024) Survey (I\I]ell)tLér)e—msplred Multiple datasets Comprehensn;::e;edvslew, identifies No experimental results
[4] | Preethi et al. (2023) CS-GWO + IVM Benchmark IDS Effective feqture selection Static classifier, 11.m1ted
datasets handles imbalance temporal learning
[5] |Parkash et al. (2022) CuCkO(;itS;:Sr;)h (New KDD Cup 99  |Improved optimization efficiency| Uses an outdated dataset
[6] Senthilkumar et al. IRAEN + MCSO Network traffic A ttention-based feature extraction High computgtlonal
(2025) dataset complexity
[7] Abed et al. (2023) Cuckoigjgf]?—based SDN environment |Reduced latency and routing cost Not an IDS model
[8] Ganne (2023) Al/lzg“r;lza‘fszIDs CIADA, Packet | Predictive security framework |No optimization validation
[9] |Sumathi ctal. (2024)] ANN+GWO+SOM | UNSW-NBI5 |Low false alarms, fast prediction | ATV 18 Weak in long-term
dependencies
[10] |Hashemi et al. (2022)| Multi-objective GWO Fog scenarios Reduce\(liig& Egggs& SLA No attack classification
[11] Nkor(lzg(())é(;)et al. Ensemble ML + GA UGRansome1819 Strong zero-day detection High computational cost
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Sughanthini et al. NSL-KDD, Captures temporal patterns Convergence overhead in
[12] (2024) POEHO-LSTM ISCXIDS-2012 effectively large data
[13] Al'Kl(l;ggzg ctal HAFSO-DSAE Android APKs  |[High malware detection accuracy| ~ Not DDoS-focused

UNSW-NBI5, . RF ignores sequential

[14] | Bakro et al. (2024) GOA-GA +RF CIC-DD0S2019 Handles imbalance & redundancy behavior
[15] |Sumathi et al. (2023)| HHO-PSO + BPN/MLP NSL-KDD Improved parameter tuning Limited scalability
[16] Jain et al. (2023) PSO & Firefly Cloud environment Improved threat analysis No DL-based IDS
[17] | Benni et al. (2024) PSO & ACO Network traffic | Optimized routing & mitigation Not a full IDS
[18] Shrlv(azsg;\;a; ctal. Ensemble FS + DT NSL-KDD Significant feature reduction Overfitting risk
[19] | Reddy et al. (2024) GA-AO\I?O;IIEgnsemble Cloud traffic High mitigation rate Complex architecture
[20] |Srilatha et al. (2022) PSO + DNN CICIDS2017 Very high accuracy High training cost
[21] Arun(e;c})ez\g)et al. APO-BPNN IDS benchmarks Faster convergence Weak temporal modelling
[22] Ali et al. (2024) PSO-ML Hybrid UNSW-NB15 High accuracy across datasets | Increased processing time
[23] | Naiem et al. (2022) | Survey on DDoS defense — Identifies research gaps No implementation

Based on the detailed overview of the recent literature on the
topic of DDoS attack detection in cloud, IoT, and edge
computing platforms, it is possible to define several research
gaps that are particularly critical. Despite the high detection
rate of most of the established methods based on deep
learning and machine learning models, a number of them
utilize fixed type classifiers or shallow neural networks,
which cannot be effective in identifying long term temporal
structures of network traffic data. This consequently leads to
poor performance in responding to the changing and low-rate
patterns of DDoS attacks.

A number of studies use metaheuristic optimization schemes
like PSO, GA, GWO, Cuckoo Search, and their hybrids to
select features or perform parameter optimization. But the
majority of these algorithms have poor premature
convergence and exploration behavior, particularly when
dealing with high-dimensional cloud traffic data. As a result,
the optimization models can end up with suboptimal
solutions, which bring about instability and poor
generalization. Though some of the studies unify opposition-
based learning with optimization methods, its application is
still scarce and is usually confined to full opposition
strategies, which can come at a higher computational cost.
The possibility of partial opposition-based learning in terms
of population diversity increase, convergence acceleration,
and optimization efficiency improvement has not been
adequately studied in the light of LSTM-based DDoS
detection in the cloud environment. Moreover, much of the
current methods is aimed at obtaining large accuracy with
little concern on the convergence behavior, the computer
complexity and scalability, which are very vital conditions in
real-time cloud intrusion detection systems. Moreover, the
absence of a standard assessment among benchmark datasets
includes UNSW-NBI15 and CICIDS2017, means that it is
hard to compare fairly and practice the deployment of the
research. In order to overcome these drawbacks, it is evident
that a more efficient, time-conscious, and optimization-based
deep learning model is required that can be capable of high
detection accuracy and produce quicker convergence,
robustness, and scalability. This study is expected to fill this
gap by suggesting an optimized LSTM-based DDoS detection
model using Improved Firefly Alcohol with Partial
Opposition-Based Learning that would be specifically
provided within cloud computing environments.

3. Research Methods

The following subsections are discussed about the research
methods which are used in this research work.
3.1 Autoencoder
Autoencoders (AEs) are made up of a decoder and an encoder,
which were trained to minimize the reconstruction error as
they reproduce their input. As the decoder uses the learned
features in a bid to make an attempt to replicate the same
input, the encoder extracts the salient features of the input
vector. Considering an input matrix x]™*™ with m samples,
and n. The dimensionality of the learned feature space (the
number of hidden units) may be denoted as [, which is less
than n, and thus the number of hidden layers between the
encoder and decoder levels may be more than one. In the case
of using more than one of these layers, the construct is known
as a deep autoencoder. The encoder compares the input vector
x 1 through a nonlinear mapping to a hidden representation
hj j =1, ....,1) denoted by.
h; =o(X, Wi; X x; + by) (1)

Where o is the nonlinear activation function. W;;is the
weight and b; is the bias term. The decoder then maps the
hidden representation to its original representation.
Reconstruction of the image of the ith element is as follows:

X = 0'(25’:1 Wi x h; + Bj 2

The average reconstruction error (MSE) of the original and
reconstructed input is used to optimize the hyperparameters
of the autoencoder and reduce the reconstruction loss between
x and the reconstruction, and the loss functional is given as,

1 ~
MSE =231, lIx; - %I 3)
3.2 Long short-term memory (LSTM)

Long-term dependencies can be learnt in LSTM, a special
RNN architecture invented by Hochreiter and Schmidhuber
[24]. As indicated, various gates that control the cell at any
given point in time t may maintain the value or reconfigure it
based on the state of the gates. Three gates (i.e. forget gate
(f¢), input gate (i;), and output gate(o,)) are applied to the
cell. Also, there is a candidate value entrance modulation
gate. The gates may be described as follows:
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iy = o(Wyixe + Winhe—y + by) (1)

fe= U(Wf,ixt + M/f,hht—l + bf) 2

0 = o(Wyixe + Wophe_1 + by) (3)

¢t = tanh( Werixe + Weryheq +b,r) @)

In this case, W synaptic weight matrix, x;- actual input, b -
the bias vectors, the vector c t is fresh candidates that might
be inserted into the current state of the cell. h,_;- is the
previous output of the LSTM at time t-1. The activation
functions that are analogous to sigmoid and tangent
hyperbolic activation functions are so(.)and tanh(). The
first step of the LSTM algorithm is to choose the percentage
of the previous memory rate that will be deducted from the
state of the cell. This is the decision of the forget gate. The
input gate will decide the extent of the fresh information to be
stored in the next stage. Subsequently, the state of the cell can
be determined by using the following phrase:

a=fiOc1+i,Oc (5)
Where, © is the elementwise product, h; the defined LSTM
output height can be defined as follows,

hy = o, © tanh(c;) 6)

The disappearance of gradient is a problem with traditional
RNNs. In particular, the slopes of the loss function tend to
zero, the number of layers with the same activation function
is used, and it becomes difficult to teach the network with the
help of backpropagation of errors. The LSTM uses memory
cells, in which each cell stores a cell state and a hidden cell
state, and applies three gates (to be specific, input gate, output
gate, and forget gate) to control the information flowing into
or out of the memory cell to eliminate the vanishing gradient
problem.

3.3 Firefly algorithm

The change in the intensity of light and the setting up of
attractiveness is what is actually the main concept of the
firefly optimization algorithm [25]. The objective function is
associated with brightness, and we consider it to determine
the attractiveness of a firefly. Suppose, then, that we have a
swarm of fireflies with each x; the possible solution of a given
firefly i. The brightness is optimally selected to demonstrate
that this current position (x) has a fitness value f(x;)
L=f(x)l1<i<n (3

The attractiveness is determined by the intensity of light that
the surrounding fireflies observe. Each firefly possesses its
attraction parameter, which is represented by the value of
This value defines the ability of the firefly to effectively
attract other members of the swarm. This appeal varies
depending on the distance between fireflies i and j and in
positions a and b, which can be stated as follows.

ry = [l — ] ©)

The firefly's attractiveness was considered below

B(r) = Poe ™™ (10)
Where, [, is the reflection of attractiveness. y is the Light
absorption coefficient. A firefly position is attracted to an
alternative expressed by

xi(t+1) = x,(t) + Boe ™" (x; — %)) (11)

3.3 Partial opposition-based learning (POBL)
Z. Hu et al. (2014) established POBL [26] and an opposite
. X1
point [x,l
partial opposing points of a given point X can be described
as follows

xz x’3] has opposite values of the original. The
2 3

pit X A Ay Ap
, 51 X1 Xy Xz . X
pxl =|PX2 =" "z 73 o D

(11

p)fé Dx1 x,1 xlz x,3 Xp DXD
The position of each firefly is initialized as follows,
le(t)l(t=0) = ijm + (ijax - ijm)'ri?(t)l(t=0) (12)
1{i(®)| (=0 s a randomly uniformly dispersed number with a
range between 0 and 1. The random and its opposite positions
are chosen based on their fitness for the best initial position
of the firefly. The opposite location of firefly is updated in
the search space as follows:
X, (6) = a;(t) + bj(t) — a;;(£). x;;(t) (13)
Where [a;(t), b;(t)] is the dynamic search space with a range
of 0 and 1.

3.4 POBL-based FA

In fact, POBL is a fairly clever trick, which enables the Firefly
Algorithm to overcome some of its major flaws, such as
overconvergence and lack of diversity. In the traditional FA,
we have fireflies only in pursuit of the more brilliant ones, and
this promotes much exploitation, though at the price,
generally, of exploration of new regions. POBL gets around
this by generating half-opposite solutions and providing the
swarm with new diversity without discarding the good
solutions they already discovered. Rather than flipping all the
dimensions as is the case with full opposition-based learning,
POBL flips a selected part of the coordinates. In this manner,
we get the benefit of the valuable information in the
untouched dimensions, and we also get to explore additional
areas of the search space. A more controlled exploration is the
consequence of this, which makes the algorithm more
powerful when dealing with complex, high-dimensional
problems.

The other major advantage of POBL is that it accelerates
convergence. Our chances of reaching a point nearer to the
global optimum are higher by considering both the original
positions and their partial opposites, and, in particular, in the
initial stages. The dual-view system reduces unwarranted
movements and increases efficiency. POBL is also used to
get FA out of local traps. As the attracting nature of certain
positions of the fireflies may cause them to linger in a local
optimum, adding partial opposites allows the algorithm to
jump to new places that it has not explored before, or at least,
visited less frequently. That is highly important when
multimodal optimization is required, and there are multiple
local peaks. An incorporation of POBL into FA helps to make
the approach stronger and more stable. This results in higher-
quality solutions being pulled off by the POBL-improved FA
since it better balances exploration and exploitation, and is
also known to converge more quickly and produce consistent
results across successive runs.
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3.5 Proposed optimized LSTM

The hyperparameter optimization of the LSTM model with
(FA-POBL) is a minimization problem with Mean Squared
Error (MSE) as the fitness function. The fireflies are
candidates of the LSTM hyperparameter vectors in this
framework, and they contain the following parameters: the
number of hidden neurons, the number of LSTM layers,
learning rate, batch size, dropout rate, and the number of
epochs. Each hyperparameter has appropriate lower and
upper limits that are used to make a search space that is
feasible and well-constrained. = Once the process of
initializing the fireflies is completed, the intensity of each
firefly can be evaluated by training the LSTM model using
the specified hyperparameters and computing the MSE on the
validation set. MSE being the mean of the squared difference
between the predicted and the actual value, the lower the
MSE, the higher the accuracy of the prediction, hence the
brighter. MSE is particularly appropriate as a guide to
metaheuristic optimization when applied to regression and
time series prediction problems. N The fireflies that have
greater MSE values in the optimization process are attracted
to bright fireflies with lower MSE values based on the
attraction rule of the Firefly Algorithm. The movement
maximizes the hyperparameter settings that have promising
values and supports the exploration of high-quality regions in
the search space. Concurrently, a randomization parameter
helps in making sure that exploration is sufficiently large, so
that the algorithm is not prematurely drawn to suboptimal
LSTM hyperparameters. The definition of the objective
function is as follows:

MSE =~ (y; = 5,)? (23)
where y; is the forecast value and ¥, is the actual value.
POBL is further added to improve convergence and avoid
local minima. Rather than generating an entirely different
hyperparameter array, POBL only opposes a few dimensions,
including the number of hidden units or the learning rate. The
original and partial opposite solution of the firefly is tested
with the MSE criterion, and a configuration with the lowest
MSE is retained. The approach increases the chance of
finding improved hyperparameter settings without wiping out
useful parameter values. The process of optimizing FA-
POBL is repeated until a stopping criterion is reached (e.g.
sufficient generations or insignificant reduction in MSE. The
resultant output is the hyperparameter setting that leads to the
smallest validation MSE. The POBL-enhanced FA enables
the LSTM model to produce a higher accuracy in prediction,
a quicker convergence, and more consistent generalization
behavior, which makes it very effective in prediction
problems that are nonlinear and complex.

4. Experimental results and analysis

To check the effectiveness and reliability of the proposed
model, the analysis and experimental results are necessary.
They offer objective data on performance gains made with the
help of autoencoder-based feature selection and FA-based
LSTM, based on measuring accuracy, precision, recall, F-
score, and convergence behaviour. The analysis can be made
more detailed to have meaningful comparison with baseline
and current methods, learn stability and optimization
efficiency, as well as strengths and limitations of the

approach. All in all, the practical applicability, robustness,
and scalability of the suggested intrusion detection
framework in real-world network settings are supported by
the experimental findings and the analysis. The
MATLAB2022R was used to implement the detection
method.

4.1 Datasets details

UNSW-NBIS5 dataset [27] is subset of 257,673 examples and
2,540,044 examples of 48 features are used. The sample sizes
of the training (175,341) and testing (82,332) sets are 175,341
and 82,332, respectively. There are nine types of attacks,
namely: worms, backdoors, exploits, fuzzers, shell-code, and
DDoS. CIC-IDS2017 dataset [28] are five days of traffic
between Monday and Friday, and it is detailed. During the
other days, there are attacks and usual exist, but only normal
samples on Monday. The data is of eight different types of
attacks: Botnet, Bruteforce, DDoS, DoS, Heartbleed,
Infiltration, Portscan, and Web. The number of examples is
2,491,689, the average is 2,273,097, and 218,592 are attacked
with 78 structures.

Table 2 : Feature importance score for UNSW NB-15
dataset using Auto Encoder

Feature Name Importance score Rank
dload 0.000000 0
spkts 0.151811 1

ct src_dport ltm 0.269702 2
ct dst Itm 0.346930 3
sinpkt 0.480108 4
dwin 0.518893 5
sload 0.526516 6
teprtt 0.557248 7
smean 0.567718 8
dttl 0.586537 9
trans_depth 0.594095 10
is_ftp login 0.618666 11
dur 0.627868 12
dtcpb 0.638538 13

sttl 0.684201 14
dpkts 0.691070 15

sjit 0.706511 16

ct dst src Itm 0.713066 17
ct srv_src 0.727549 18
service 0.738994 19
ackdat 0.745012 20
djit 0.817505 21
dmean 0.826080 22
swin 0.826722 23
ct_state ttl 0.845147 24
state 0.866092 25
dloss 0.901294 26
sloss 0.902183 27

rate 0.903689 28
proto 0.909601 29
dbytes 0.928522 30
stcpb 0.932013 31

ct ftp emd 0.934829 32
sbytes 0.935932 33
response body len 0.949827 34
synack 0.958242 35
dinpkt 0.987970 36

ct dst sport Itm 1.000000 37
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4.2 Data preprocessing

Raw network traffic data is then cleansed by deleting
duplicate records, treating missing values, and deleting
irrelevant and inconsistent records. Appropriate encoding of
categorical attributes is done to represent them in a numerical
form, and numerical features are normalized or standardized
so that they have equal scale. Rapid resampling methods are
used in order to deal with the imbalance of classes. Lastly, the
processed data are divided into training and testing data and
run through an autoencoder to discover small representations,
which allow the selection of the best features at the expense
of classification. Data is normalized by the Min- Max [29,
30] scaling method to bring all the numerical variables to a
common range [0,1]. This is done to make sure that features
that have higher numeric values do not take over during the
learning process and enhance the convergence of the LSTM
model. The original data distribution is not lost with this
normalization, which allows the optimization-based IFA-
LSTM model to train faster and achieve better results.
x—min(x)

7= (24)

max(x)—min(x)

Where, x is the present value, and max( x) and min(x) are
its upper and lower bounds. The trained example is
represented by the composed dataset (70%), and the testing
example is represented by the other 30 %. Tables 2 and 3
(Figures 1 and 2) discuss the feature importance score of
UNSWNB-15 and CICIDS-2017 datasets, respectively.

4.3 Parameters settings

The hyperparameter optimization is conducted to increase the
learning ability and the generalization performance of the
LSTM model. This paper uses the IFA to auto-tune very
important LSTM hyperparameters that include learning rate,
hidden neurons, batch size, dropout rates, and epochs. IFA
can intelligently balance exploration and exploitation and
therefore is able to efficiently search the best parameter space,
prevent local optima, and speed up the convergence. This
optimization procedure leads to better accuracy and stability
and less time to train than manually adjusted and traditional
optimization-based LSTM models.

The effectiveness of hyperparameter optimization is
dependent on the parameters of the Firefly Algorithm (FA).

Table 3: Feature importance for CICIDS-2017 dataset using Auto Encoder

Feature Name Importance score | Rank Feature Name Importance score | Rank
Bwd PSH Flags 0 0 Bwd Packet Length Min 0.652004 39
Fwd Avg Bytes/Bulk 0 1 Down/Up Ratio 0.653023 40
Fwd Avg Packets/Bulk 0 2 min_seg size forward 0.677089 41
Bwd Avg Bytes/Bulk 0 3 SYN Flag Count 0.677513 42
CWE Flag Count 0 4 Fwd PSH Flags 0.678352 43
Bwd Avg Packets/Bulk 0 5 Active Max 0.75508 44
Bwd Avg Bulk Rate 0 6 Fwd Packet Length Mean 0.760739 45
Bwd URG Flags 0 7 Avg Fwd Segment Size 0.760746 46
Fwd URG Flags 0 8 Fwd Packet Length Max 0.764629 47
Fwd Avg Bulk Rate 0 9 Fwd Packet Length Std 0.771227 48
Bwd IAT Total 0.411608 10 Active Mean 0.771499 49
PSH Flag Count 0.421377 11 Bwd IAT Min 0.782112 50
Bwd IAT Max 0.424993 12 Fwd IAT Min 0.810281 51
Bwd IAT Std 0.441984 13 Active Min 0.818087 52
FIN Flag Count 0.475182 14 Active Std 0.83311 53
Fwd IAT Std 0.48549 15 URG Flag Count 0.93475 54
Idle Mean 0.490261 16 Total Length of Fwd Packets 0.94501 55
Idle Max 0.491562 17 Subflow Fwd Bytes 0.945324 56
Fwd IAT Max 0.492962 18 Bwd Header Length 0.985889 57
Flow IAT Max 0.493276 19 Fwd Header Length 0.985928 58
Flow IAT Std 0.508462 20 Fwd Header Length.1 0.985949 59
Bwd Packet Length Mean 0.517305 21 Subflow Bwd Packets 0.985952 60
Avg Bwd Segment Size 0.517306 22 Total Backward Packets 0.985968 61
Init Win bytes forward 0.527807 23 Subflow Fwd Packets 0.986026 62
Fwd IAT Total 0.535289 24 Total Fwd Packets 0.986032 63
Packet Length Std 0.53544 25 Total Length of Bwd Packets 0.986109 64
Flow Duration 0.535892 26 Subflow Bwd Bytes 0.986171 65
Packet Length Mean 0.540261 27 act data pkt fwd 0.986222 66
Average Packet Size 0.547044 28 Idle Std 0.996599 67
Flow Packets/s 0.558854 29 Fwd Packet Length Min 1 68
Bwd Packet Length Max 0.56605 30 Min Packet Length 1 69
Bwd Packet Length Std 0.574081 31 Bwd Packets/s 1 70
Max Packet Length 0.583778 32 Flow IAT Min 1 71
ACK Flag Count 0.587196 33 Fwd Packets/s 1 72
Bwd IAT Mean 0.616234 34 ECE Flag Count 1 73
Flow IAT Mean 0.616721 35 Init Win_bytes backward 1 74
Fwd IAT Mean 0.629436 36 Flow Bytes/s 1 75
Packet Length Variance 0.630707 37 RST Flag Count 1 76

Destination Port 0.633958 38
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Direct impact on search diversity is the population size, in
which a larger size enhances global exploration, but it adds to
the computational load. The convergence speed is determined
by the first attractiveness, which determines the magnitude to
which fireflies approach superior solutions. Light absorption
coefficient (y) balances both global and local search, with low
vy values promoting broader searching, whereas higher values
promote finer exploitation around promising areas.
Practically, the randomization parameter ( o ) aids the
algorithm to get out of local optima as the algorithm creates
stochastic movements, especially during initial iterations. The
combination of these two parameters allows faster
convergence and better quality of solutions and ensures stable
optimization and, as a result, better performance of the IFA-
LSTM intrusion detection model. Table 4 shows the
parameter settings of the FA and LSTM methods.

4.4 Performance measures
Performance analyzers are used to assess the ability of ML.

The accuracy, precision, recall, and f-measures are four
pointers used as follows,

e The accuracy of classification is measured by the
proportion of correctly identified samples and the total

number of samples.
TP+TN

TP+FP+TN+FN (22)
e  Precision is defined as the ratio of accurately categorized

samples to projected positive samples.

Accuracy =

Precision = (23)
FP+TP

e The Recall is defined as the ratio of probable positives to

the sum of genuine positives and false negatives.
TP

TP+FN (24)

e F-measures represent the harmonic mean of recall and
precision as follows
2 XRecall X Precision

F — Measures = (25)

Recall+ Precision
False positive (FP) means a mistakenly expected regular,

whereas false negative (FN) indicates an incorrectly predicted

Recall =
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Figure 1: Feature importance score for UNSW NB-15 dataset using Auto Encoder
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Figure 2: Feature importance score for CICIDS2017 dataset using AE

DDoS attack. True positive (TP) indicates a successfully
predicted DDoS attack, whereas true negative (TN) indicates
a properly recognized normal.

4.5 Results analysis

The analysis of the results is important in supporting the
effectiveness of the proposed model through the systematic
comparison of its performance with the base and current
methods based on the conventional evaluation mechanisms.
It aids the illustration of the effect of the hyperparameter
optimization and the autoencoder-driven selection of features
on the accuracy, the stability, and the convergence behavior.
The results analysis is the empirical evidence of the
robustness, generalization capability, and the efficiency of the
computations of the implementation through detailed analysis
of the performance measures and convergence trends, which
justifies the appropriateness of the suggested approach to real-
life applications of intrusion detection.

Table 5 and Figure 3 show the performance and convergence
analysis of the UNSW-NBI15 dataset without feature
selection. In Table 5, it can be seen that all the optimization-
based LSTM models are significantly better than the baseline

LSTM in terms of accuracy, recall, precision, and F-score.
The proposed IFA-LSTM has the best performance in all
measures, which proves that it has a great ability to learn the
complicated intrusion patterns. This finding is also supported
by Figure 3, which demonstrates that IFA-LSTM reaches an
optimal solution with fewer iterations and stabilizes, showing
that it is an effective way of learning and prevents the
existence of local optima. The outcomes of the CICIDS2017
dataset before feature selection are explained in Table 6 and
Figure 4. As indicated in Table 6, IFA-LSTM once again
achieves the highest accuracy and F-score with respect to FA-
LSTM, IPSO-LSTM, PSO-LSTM, GA-LSTM, and the
conventional LSTM model. This dataset has better
improvement as it is highly dimensional and diverse in traffic.
The convergence curve of the IFA-LSTM model achieves the
lowest fitness value sooner than the rest of the models, as
shown in Figure 4, which indicates that it converges more
quickly and is more stable at training. Table 7 and Figure 5
show the effects of the feature selection on the UNSW-NB15
data post-selection. In Table 7, a slight decrease in the
absolute accuracy is observed in all the methods, but even in
all the evaluation metrics, the proposed IFA-LSTM remains
in higher performance.
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Table 4: Parameter Settings

LSTM FA
Parameters Values Parameters Values Parameters | Values
Activation | TanH, Sigmoid Expected error 0.0005 N 50
Loss function MSE Weight range -0.5 and 0.5 Bo 1
Learning rate 0.005 Number of hidden neurons 32 A 1
Epochs 500 Dropout 0.1 T 100

Table 5: Performance analysis for the UNSW-NBI15 dataset before feature selection
Methods Accuracy (%) | Recall (%) | Precision (%) | F-Score (%)

IFA-LSTM 98.92 98.75 99.71 99.23
FA-LSTM 97.68 97.12 98.36 97.73
IPSO-LSTM 97.31 95.48 97.89 96.67
PSO-LSTM 95.86 94.21 96.44 95.31
GA-LSTM 93.72 93.10 95.68 94.37
LSTM 91.94 92.88 94.36 93.61

Table 6: Performance analysis for the CICIDS2017 dataset before feature selection
Methods Accuracy (%) | Recall (%) | Precision (%) | F-Score (%)

IFA-LSTM 99.12 99.04 99.36 99.20
FA-LSTM 98.41 98.02 98.67 98.34
IPSO-LSTM 97.63 96.88 97.94 97.40
PSO-LSTM 96.42 95.76 96.88 96.31
GA-LSTM 95.18 94.69 95.92 95.30
LSTM 93.87 94.12 93.44 93.78
100
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FA-LSTM
98 { —— IPSO-LSTM
— PSO-L5TM
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Figure 3: Convergence analysis for UNSW-NB15 dataset before feature selection
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Figure 4: Convergence analysis for the CICIDS2017 dataset before feature selection

Table 7: Performance analysis for UNSW-NBI15 dataset after feature selection

Methods Accuracy (%) | Recall (%) | Precision (%) | F-Score (%)
IFA-LSTM 97.84 97.62 98.55 98.12
FA-LSTM 96.41 95.88 97.14 96.59
IPSO-LSTM 95.92 94.37 96.48 95.52
PSO-LSTM 94.28 92.81 95.21 94.17
GA-LSTM 92.36 91.94 94.12 92.98
LSTM 90.51 91.62 92.88 91.46

Table 8: Performance analysis for

the CICIDS2017 dataset after feature selection

Methods Accuracy (%) | Recall (%) | Precision (%) | F-Score (%)
IFA-LSTM 97.96 97.84 98.21 98.02
FA-LSTM 96.88 96.41 97.12 96.73
IPSO-LSTM 95.94 95.21 96.63 95.87
PSO-LSTM 94.73 94.08 95.44 94.69
GA-LSTM 93.36 92.84 94.21 93.51
LSTM 91.88 92.14 91.63 91.92

Figure 4 demonstrates the convergence pattern to be smoother
and faster than the pre-feature selection case, which reveals
the less complexity of computation and enhanced stability
because unneeded features are dropped. Lastly, Table 8 and
Figure 6 indicate the results of various models on the
CICIDS2017 dataset following feature selection. As it is
observed in Table 7, IFA-LSTM has the highest accuracy, the
highest recall, the highest precision, and the highest F-score,

which proves the strength despite the reduced set of features.
Figure 6 provides better convergence, smoothness, and
stability of all models, with the convergence of IFA-LSTM
longest. All in all, the findings in Tables 5-8 and Figures 3-6
strongly confirm the fact that the suggested IFA-LSTM
architecture, with feature selection, is an accurate, stable, and
computationally efficient method of intrusion detection in
large-scale network settings.
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Figure 5: Convergence analysis for UNSW-NBI15 dataset after feature selection
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Figure 6: Convergence analysis for the
S. Conclusions

This paper introduced an IFA-LSTM model optimized with
IFA in conjunction with an optimal choice of features using
AE to detect intrusion in an efficient way. The autoencoder
was able to acquire compact and informative latent
representations on high-dimensional network traffic data,
thus allowing the elimination of redundant and irrelevant
features, and critical intrusion characteristics were retained.
Preliminary experimental analyses on the UNSW-NBI15 and
CICIDS2017 datasets showed that the combination of
autoencoder-based feature selection methods had significant
benefits in terms of decreasing the complexity of
computations and enhancing the stability of convergence with
no compromise on detection accuracy. IFA-LSTM was also
more accurate, precise, and had a higher recall and F-score
than the baseline LSTM and other variants of the same model
that were optimized in accuracy and speed, with or without

CICIDS2017 dataset after feature selection

feature selection. In general, the combination of the auto-
encoders-based optimal feature selection algorithm and
intelligent metaheuristic-based LSTM optimization algorithm
led to the development of a powerful, precise, and scalable
intrusion detection system applicable to large-scale and high-
dimensional network configurations. This pattern can further
be expanded to future work with hybrid strategies of feature
selection, attention, and real-time implementation of this
methodology in dynamic network contexts.
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