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Abstract: DDoS attacks are considered one of the most severe security risks to the cloud computing environment by the fact that it is 

capable of overloading resources, affecting the service availability. The dimensionality, redundancy, and time constraints of cloud network 

traffic are quite high, which complicates the use of traditional intrusion detection systems. To resolve these problems, the proposed paper 

will propose an effective DDoS attack detection model, which combines autoencoder-based feature selection and an optimized Long Short-

Term Memory (LSTM) model. The autoencoder is used to learn in an automatic manner compact and discriminative feature 

representations of high-dimensional traffic data, and thus eliminate redundancy and enhance learning efficiency. In order to improve the 

performance of detection, the LSTM network is optimized by an Improved Firefly Algorithm (IFA), which is augmented by Partial 

Opposition-Based Learning (POBL). Diversification of the population is enhanced by the use of POBL, which also speeds up convergence, 

allowing a good tuning of hyperparameters without premature convergence. The optimized LSTM is very effective in capturing long-term 

temporal dependencies in the network traffic, which are necessary in the correct differentiation of DDoS attacks and normal cloud traffic. 

The proposed framework is tested on benchmark DDoS datasets frequently utilised in cloud security studies, and the performance of the 

framework is compared with traditional LSTM and alternative metaheuristic-optimised LSTM frameworks. The experimental findings 

indicate that the suggested method has high accuracy, precision, recall, and F-score, as well as a faster and more stable convergence rate. 

The results substantiate that the autoencoder-selected features, combined with IFA, POBL-optimized LSTM, give a solid, efficient, and 

scalable algorithm to detect DDoS attacks in real time in the context of cloud computing. 

 

Keywords: DDoS attack detection; hyperparameters optimization; firefly algorithm; long short-term memory; partial opposition-based 
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1. Introduction  
 

Cloud computing has been an element of modern information 

technology by allowing computing resources and services to 

be accessed via the Internet and on a scale and on-demand. Its 

extensive implementation in fields like finance, healthcare, 

education, and e-commerce has greatly enhanced the 

efficiency and flexibility of operation. Nevertheless, the 

openness and shared environment of cloud infrastructures 

also predetermine their high vulnerability to cyber threats, 

including the ones that can be destructive, such as DDoS 

attacks. DDoS attacks aim at overwhelming cloud resources 

by causing massive amounts of malicious traffic, which 

causes degradation of services, denying the legit user access, 

and causing enormous financial losses. The growing 

complexity, diversification, and time sensitivity of DDoS 

attack patterns are very challenging to conventional detection 

controls. 

 

The traditional DDoS detection methods, such as signature 

detection and classical machine learning methods, are not 

usually compatible with the dynamic and high-dimensional 

nature of cloud network traffic. The recent developments in 

deep learning have demonstrated encouraging outcomes in 

intrusion detection because they can learn complex data 

representations automatically. Nevertheless, deep learning 

models are extremely sensitive to superfluous and 

inappropriate features of raw traffic data that raise the 

computational load and adversely impact the accuracy of the 

detection. The use of autoencoders to select features has thus 

become a beneficial remedy to obtain compact and 

discriminative feature representations that are easy to reduce 

dimensionality, whilst maintaining important traffic 

properties. 

 

The DDoS detection in the cloud environment is best 

achieved by LSTM networks as they are capable of obtaining 

long-term temporal dependencies and sequential patterns in 

network traffic flows. However, the effectiveness of LSTM 

models is determined by the choices of hyperparameters. Poor 

tuning may also result in a slow convergence, early stagnation 

in local optima, and low generalization ability. To solve this 

problem, optimization algorithms based on metaheuristics 

have been extensively used, and it is possible to mention the 

Firefly Algorithm due to its simple nature and global search 

capability. Nevertheless, traditional Firefly-based 

optimization algorithms might continue to exhibit low 

exploration and early convergence in high-dimensional, 

complex search spaces. 

 

In order to address these shortcomings, the present study 

suggests an effective DDoS attack detecting framework that 

combines autoencoder-driven feature selection and an 

optimized LSTM model by use of an IFA with POBL. The 

partial opposition-based learning process enhances the 

diversity of the population and speeds up the convergence 

process as it takes into account partially opposite solutions in 

the process of optimization, resulting in more robust and 
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stable hyperparameter tuning.  The main objective of this 

study is to create an effective and scalable cloud computing-

based DDoS attack detection framework through an 

integration of autoencoder-based feature selection and an 

Improved Firefly Algorithm-based LSTM framework with 

Partial Opposition-Based Learning to improve the detection 

accuracy, convergence speed, and computational efficiency.  

This study will be important in the context of offering a 

powerful, precise, and computationally optimal DDoS 

identification solution specific to cloud computing 

appliances. Through the incorporation of an autoencoder-

based selection of features with an IFA-LSTM model, the 

proposed framework will help solve problems associated with 

high-dimensional data, premature convergence, and temporal 

traffic analysis. The convergence behavior and the 

performance of the proposed approach are better, which 

makes it appropriate to real-time and large-scale deployments 

in clouds. Moreover, the suggested framework can be applied 

to additional intrusion detection applications and 

cybersecurity tools, which will result in the emergence of 

smart and secure cloud security systems.  The main 

contributions of this work can be outlined in the following 

way: 

• A viable autoencoder-based feature selection 

methodology is presented to remove redundant and 

irrelevant network traffic characteristics to achieve 

dimensional reduction and low complexity. 

• The combination of Partial Opposition-Based Learning 

and the Improved Firefly Algorithm is used to come up 

with a novel optimization strategy that optimizes the 

hyperparameters of LSTM. 

• A more streamlined LSTM-based DDoS detection model 

is suggested to capture the temporal relationships in the 

cloud network traffic. 

• Intensive experimental tests are applied to benchmark 

datasets, and the suggested model is contrasted with 

classical and optimization-based LSTM methodologies in 

terms of standard performance measures. 

• Convergence analysis is made to show that the proposed 

optimization framework is stable and efficient. 

 

The other sections of the paper are organized in the following 

way: Section 2 presents and discusses the recent associated 

works related to detecting DDoS attacks in cloud computing 

with references to deep learning and optimization-based 

methods. Section 3 contains the proposed research 

methodology, optimized LSTM model and Improved Firefly 

Algorithm with Partial Opposition-Based Learning. Section 4 

explains the experimental design and the performance 

analysis and the discussion of the results obtained in detail. 

Lastly, Section 5 of the paper closes the paper by providing 

summative information of the major findings of the research 

work and providing possible future research directions. 

 

2. Related works  
 

Over the last few years, deep learning and metaheuristic 

optimization methods have been actively used in the field of 

overcoming the escalating menace of the Distributed Denial-

of-Service (DDoS) attacks in the cloud, Internet of Things 

(IoT), and edge computing systems.  In general, the literature 

overview shows that although deep learning and 

metaheuristic optimization are important in DDoS detection, 

most of the solutions have limitations like suboptimal 

hyperparameter optimization, premature convergence, or 

excessive computation. Furthermore, few studies have been 

able to apply opposition-based learning techniques to LSTM 

models to detect DDoS in the cloud environment. Such 

constraints serve as the driving force behind the suggested 

study that presents an optimized LSTM model with an IFA-

LSTM to attain a better detection rate, a faster rate of 

convergence, and a better tolerance to cloud computing 

conditions. 

 

Table 1: Comparison of recent related papers 
Ref. 

No 
Author (Year) Method Dataset Merits Limitations 

[1] Gupta et al. (2023) 
Edge-cCNN + Cuckoo 

Search 
IoT traffic dataset 

Lightweight, high accuracy, 

edge-friendly 

No temporal modelling, 

limited cloud validation 

[2] 
Subramanian et al. 

(2022) 

NDCS (Multi-objective 

Cuckoo Search) 
Google Cluster 

Secure VM migration, reduced 

energy, and makespan 

Not focused on DDoS 

detection 

[3] Hu et al. (2024) 
Survey (Nature-inspired 

IDS) 
Multiple datasets 

Comprehensive review, identifies 

trends 
No experimental results 

[4] Preethi et al. (2023) CS-GWO + IVM 
Benchmark IDS 

datasets 

Effective feature selection 

handles imbalance 

Static classifier, limited 

temporal learning 

[5] Parkash et al. (2022) 
Cuckoo Search (New 

fitness) 
KDD Cup 99 Improved optimization efficiency Uses an outdated dataset 

[6] 
Senthilkumar et al. 

(2025) 
IRAEN + MCSO 

Network traffic 

dataset 
Attention-based feature extraction 

High computational 

complexity 

[7] Abed et al. (2023) 
Cuckoo Search-based 

routing 
SDN environment Reduced latency and routing cost Not an IDS model 

[8] Ganne (2023) 
AI/ML-based IDS 

framework 
CIADA, Packet Predictive security framework No optimization validation 

[9] Sumathi et al. (2024) ANN + GWO + SOM UNSW-NB15 Low false alarms, fast prediction 
ANN is weak in long-term 

dependencies 

[10] Hashemi et al. (2022) Multi-objective GWO Fog scenarios 
Reduced energy & SLA 

violations 
No attack classification 

[11] 
Nkongolo et al. 

(2022) 
Ensemble ML + GA UGRansome1819 Strong zero-day detection High computational cost 
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[12] 
Sughanthini et al. 

(2024) 
POEHO-LSTM 

NSL-KDD, 

ISCXIDS-2012 

Captures temporal patterns 

effectively 

Convergence overhead in 

large data 

[13] 
Al-Khayyat et al. 

(2024) 
HAFSO-DSAE Android APKs High malware detection accuracy Not DDoS-focused 

[14] Bakro et al. (2024) GOA-GA + RF 
UNSW-NB15, 

CIC-DDoS2019 
Handles imbalance & redundancy 

RF ignores sequential 

behavior 

[15] Sumathi et al. (2023) HHO-PSO + BPN/MLP NSL-KDD Improved parameter tuning Limited scalability 

[16] Jain et al. (2023) PSO & Firefly Cloud environment Improved threat analysis No DL-based IDS 

[17] Benni et al. (2024) PSO & ACO Network traffic Optimized routing & mitigation Not a full IDS 

[18] 
Shrivastava et al. 

(2023) 
Ensemble FS + DT NSL-KDD Significant feature reduction Overfitting risk 

[19] Reddy et al. (2024) 
GA-AOA + Ensemble 

Voting 
Cloud traffic High mitigation rate Complex architecture 

[20] Srilatha et al. (2022) PSO + DNN CICIDS2017 Very high accuracy High training cost 

[21] 
Arunadevi et al. 

(2022) 
APO-BPNN IDS benchmarks Faster convergence Weak temporal modelling 

[22] Ali et al. (2024) PSO-ML Hybrid UNSW-NB15 High accuracy across datasets Increased processing time 

[23] Naiem et al. (2022) Survey on DDoS defense — Identifies research gaps No implementation 

Based on the detailed overview of the recent literature on the 

topic of DDoS attack detection in cloud, IoT, and edge 

computing platforms, it is possible to define several research 

gaps that are particularly critical. Despite the high detection 

rate of most of the established methods based on deep 

learning and machine learning models, a number of them 

utilize fixed type classifiers or shallow neural networks, 

which cannot be effective in identifying long term temporal 

structures of network traffic data. This consequently leads to 

poor performance in responding to the changing and low-rate 

patterns of DDoS attacks.  

 

A number of studies use metaheuristic optimization schemes 

like PSO, GA, GWO, Cuckoo Search, and their hybrids to 

select features or perform parameter optimization. But the 

majority of these algorithms have poor premature 

convergence and exploration behavior, particularly when 

dealing with high-dimensional cloud traffic data. As a result, 

the optimization models can end up with suboptimal 

solutions, which bring about instability and poor 

generalization. Though some of the studies unify opposition-

based learning with optimization methods, its application is 

still scarce and is usually confined to full opposition 

strategies, which can come at a higher computational cost. 

The possibility of partial opposition-based learning in terms 

of population diversity increase, convergence acceleration, 

and optimization efficiency improvement has not been 

adequately studied in the light of LSTM-based DDoS 

detection in the cloud environment. Moreover, much of the 

current methods is aimed at obtaining large accuracy with 

little concern on the convergence behavior, the computer 

complexity and scalability, which are very vital conditions in 

real-time cloud intrusion detection systems. Moreover, the 

absence of a standard assessment among benchmark datasets 

includes UNSW-NB15 and CICIDS2017, means that it is 

hard to compare fairly and practice the deployment of the 

research. In order to overcome these drawbacks, it is evident 

that a more efficient, time-conscious, and optimization-based 

deep learning model is required that can be capable of high 

detection accuracy and produce quicker convergence, 

robustness, and scalability. This study is expected to fill this 

gap by suggesting an optimized LSTM-based DDoS detection 

model using Improved Firefly Alcohol with Partial 

Opposition-Based Learning that would be specifically 

provided within cloud computing environments. 

3. Research Methods  

 
The following subsections are discussed about the research 

methods which are used in this research work. 

 

3.1 Autoencoder  

 

Autoencoders (AEs) are made up of a decoder and an encoder, 

which were trained to minimize the reconstruction error as 

they reproduce their input. As the decoder uses the learned 

features in a bid to make an attempt to replicate the same 

input, the encoder extracts the salient features of the input 

vector. Considering an input matrix 𝑥𝑖
𝑚×𝑛 with 𝑚 samples, 

and 𝑛.  The dimensionality of the learned feature space (the 

number of hidden units) may be denoted as 𝑙, which is less 

than 𝑛, and thus the number of hidden layers between the 

encoder and decoder levels may be more than one. In the case 

of using more than one of these layers, the construct is known 

as a deep autoencoder. The encoder compares the input vector 

x i through a nonlinear mapping to a hidden representation 

ℎ𝑗  (𝑗 = 1, … . , 𝑙) denoted by. 

ℎ𝑗  = 𝜎(∑ 𝑊𝑖𝑗
𝑛
𝑖=1 × 𝑥𝑖 + 𝑏𝑗 )                        (1) 

Where 𝜎 is the nonlinear activation function.  𝑊𝑖𝑗  is the 

weight and 𝑏𝑗 is the bias term.  The decoder then maps the 

hidden representation to its original representation. 

Reconstruction of the image of the ith element is as follows: 

𝑥𝑖̃ = 𝜎(∑ 𝑊̂𝑖𝑗 × ℎ𝑗   
𝑙
𝑗=1 + 𝑏̂𝑗                            (2) 

 

The average reconstruction error (MSE) of the original and 

reconstructed input is used to optimize the hyperparameters 

of the autoencoder and reduce the reconstruction loss between 

x and the reconstruction, and the loss functional is given as,  

𝑀𝑆𝐸 =
1

𝑛
∑ ‖𝑥𝑖 − 𝑥𝑖̃‖

2𝑛
𝑖=1                          (3) 

 

3.2 Long short-term memory (LSTM) 

 

Long-term dependencies can be learnt in LSTM, a special 

RNN architecture invented by Hochreiter and Schmidhuber 

[24]. As indicated, various gates that control the cell at any 

given point in time t may maintain the value or reconfigure it 

based on the state of the gates. Three gates (i.e. forget gate 

(𝑓𝑡), input gate (𝑖𝑡), and output gate(𝑜𝑡)) are applied to the 

cell. Also, there is a candidate value entrance modulation 

gate. The gates may be described as follows: 
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𝑖𝑡 = 𝜎(𝑊𝑥,𝑖𝑥𝑡 + 𝑊𝑖,ℎℎ𝑡−1 + 𝑏𝑖)

                

(1)

                                       

 

𝑓𝑡 = 𝜎(𝑊𝑓,𝑖𝑥𝑡 + 𝑊𝑓,ℎℎ𝑡−1 + 𝑏𝑓)

              

(2)

                                                          

 

𝑜𝑡 = 𝜎(𝑊𝑜,𝑖𝑥𝑡 + 𝑊𝑜,ℎℎ𝑡−1 + 𝑏𝑜)

                

(3) 

                                              

 

𝑐𝑡
′ = 𝑡𝑎𝑛ℎ( 𝑊𝑐′,𝑖𝑥𝑡 + 𝑊𝑐′,ℎℎ𝑡−1 + 𝑏𝑐′)

            

(4)

                                                 

 

 

In this case, 𝑊 synaptic weight matrix, 𝑥𝑡- actual input, 𝑏 - 

the bias vectors, the vector 𝑐 t is fresh candidates that might 

be inserted into the current state of the cell. ℎ𝑡−1- is the 

previous output of the LSTM at time t-1. The activation 

functions that are analogous to sigmoid and tangent 

hyperbolic activation functions are s𝜎(. )and 𝑡𝑎𝑛ℎ().  The 

first step of the LSTM algorithm is to choose the percentage 

of the previous memory rate that will be deducted from the 

state of the cell. This is the decision of the forget gate. The 

input gate will decide the extent of the fresh information to be 

stored in the next stage. Subsequently, the state of the cell can 

be determined by using the following phrase: 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐′𝑡                       (5)                                                  

Where, ⊙ is the elementwise product, ℎ𝑡 the defined LSTM 

output height can be defined as follows, 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝑐𝑡)                               (6)  

 

The disappearance of gradient is a problem with traditional 

RNNs. In particular, the slopes of the loss function tend to 

zero, the number of layers with the same activation function 

is used, and it becomes difficult to teach the network with the 

help of backpropagation of errors. The LSTM uses memory 

cells, in which each cell stores a cell state and a hidden cell 

state, and applies three gates (to be specific, input gate, output 

gate, and forget gate) to control the information flowing into 

or out of the memory cell to eliminate the vanishing gradient 

problem.

   

                                              

 

3.3 Firefly algorithm  

 

The change in the intensity of light and the setting up of 

attractiveness is what is actually the main concept of the 

firefly optimization algorithm [25]. The objective function is 

associated with brightness, and we consider it to determine 

the attractiveness of a firefly. Suppose, then, that we have a 

swarm of fireflies with each 𝑥𝑖 the possible solution of a given 

firefly 𝑖. The brightness is optimally selected to demonstrate 

that this current position (𝑥) has a fitness value 𝑓(𝑥𝑖) 

𝐼𝑖 = 𝑓(𝑥𝑖),1 ≤ 𝑖 ≤ 𝑛                        (8)                                               

 

The attractiveness is determined by the intensity of light that 

the surrounding fireflies observe. Each firefly possesses its 

attraction parameter, which is represented by the value of 𝛽 

This value defines the ability of the firefly to effectively 

attract other members of the swarm. This appeal varies 

depending on the distance between fireflies 𝑖 and 𝑗  and in 

positions 𝑎 and 𝑏, which can be stated as follows. 

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖                               (9)                                                  

 

The firefly's attractiveness was considered below 

𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟2

                         
(10)

        
Where,  𝛽0 

is the reflection of attractiveness.  𝛾
 
is the Light 

absorption coefficient. A firefly position is attracted to an 

alternative expressed by  

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛽0𝑒−𝛾𝑟2
(𝑥𝑖 − 𝑥𝑗)

                 
(11) 

 

 

3.3 Partial opposition-based learning (POBL) 

Z. Hu et al. (2014) established POBL [26]  and an opposite 

point [
𝑥1 𝑥2́ 𝑥3́

𝑥1́ 𝑥2 𝑥3́
] has opposite values of the original. The 

partial opposing points of a given point 𝑋  can be described 

as follows   

𝑝𝜒́1 = [

𝑝𝜒́1
1

𝑝𝜒́2
1

. . .
𝑝𝜒́𝑑

1

]

𝐷×1

= [

𝑥1 𝑥2́ 𝑥3́ … 𝑥𝐷́

𝑥1́ 𝑥2 𝑥3́ … 𝑥𝐷́

⋮ ⋮ ⋮
𝑥1́ 𝑥2́ 𝑥3́

⋱ …
… 𝑥𝐷

]

𝐷×𝐷

      (11) 

 

The position of each firefly is initialized as follows, 

  𝑋𝑗
1(𝑡)|(𝑡=0) = 𝑋𝑗

𝑚𝑖𝑛 + (𝑋𝑗
𝑚𝑎𝑥 − 𝑋𝑗

𝑚𝑖𝑛). 𝑟𝑖𝑗
𝑢(𝑡)|(𝑡=0)    (12) 

𝑟𝑖𝑗
𝑢(𝑡)|(𝑡=0) is a randomly uniformly dispersed number with a 

range between 0 and 1.  The random and its opposite positions 

are chosen based on their fitness for the best initial position 

of the firefly.  The opposite location 𝑜𝑓 firefly is updated in 

the search space as follows: 

𝑥𝑖𝑗́ (𝑡) = 𝑎𝑗(𝑡) + 𝑏𝑗(𝑡) − 𝛼𝑖𝑗(𝑡). 𝑥𝑖𝑗(𝑡)                         (13)    

Where [𝑎𝑗(𝑡), 𝑏𝑗(𝑡)] is the dynamic search space with a range 

of 0 and 1.   

 

3.4 POBL-based FA 

 
In fact, POBL is a fairly clever trick, which enables the Firefly 

Algorithm to overcome some of its major flaws, such as 

overconvergence and lack of diversity. In the traditional FA, 

we have fireflies only in pursuit of the more brilliant ones, and 

this promotes much exploitation, though at the price, 

generally, of exploration of new regions. POBL gets around 

this by generating half-opposite solutions and providing the 

swarm with new diversity without discarding the good 

solutions they already discovered.  Rather than flipping all the 

dimensions as is the case with full opposition-based learning, 

POBL flips a selected part of the coordinates. In this manner, 

we get the benefit of the valuable information in the 

untouched dimensions, and we also get to explore additional 

areas of the search space. A more controlled exploration is the 

consequence of this, which makes the algorithm more 

powerful when dealing with complex, high-dimensional 

problems. 

 

The other major advantage of POBL is that it accelerates 

convergence. Our chances of reaching a point nearer to the 

global optimum are higher by considering both the original 

positions and their partial opposites, and, in particular, in the 

initial stages. The dual-view system reduces unwarranted 

movements and increases efficiency.  POBL is also used to 

get FA out of local traps. As the attracting nature of certain 

positions of the fireflies may cause them to linger in a local 

optimum, adding partial opposites allows the algorithm to 

jump to new places that it has not explored before, or at least, 

visited less frequently. That is highly important when 

multimodal optimization is required, and there are multiple 

local peaks.  An incorporation of POBL into FA helps to make 

the approach stronger and more stable. This results in higher-

quality solutions being pulled off by the POBL-improved FA 

since it better balances exploration and exploitation, and is 

also known to converge more quickly and produce consistent 

results across successive runs.  
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3.5 Proposed optimized LSTM 

 
The hyperparameter optimization of the LSTM model with 

(FA-POBL) is a minimization problem with Mean Squared 

Error (MSE) as the fitness function. The fireflies are 

candidates of the LSTM hyperparameter vectors in this 

framework, and they contain the following parameters: the 

number of hidden neurons, the number of LSTM layers, 

learning rate, batch size, dropout rate, and the number of 

epochs. Each hyperparameter has appropriate lower and 

upper limits that are used to make a search space that is 

feasible and well-constrained.  Once the process of 

initializing the fireflies is completed, the intensity of each 

firefly can be evaluated by training the LSTM model using 

the specified hyperparameters and computing the MSE on the 

validation set. MSE being the mean of the squared difference 

between the predicted and the actual value, the lower the 

MSE, the higher the accuracy of the prediction, hence the 

brighter. MSE is particularly appropriate as a guide to 

metaheuristic optimization when applied to regression and 

time series prediction problems. N The fireflies that have 

greater MSE values in the optimization process are attracted 

to bright fireflies with lower MSE values based on the 

attraction rule of the Firefly Algorithm. The movement 

maximizes the hyperparameter settings that have promising 

values and supports the exploration of high-quality regions in 

the search space. Concurrently, a randomization parameter 

helps in making sure that exploration is sufficiently large, so 

that the algorithm is not prematurely drawn to suboptimal 

LSTM hyperparameters.  The definition of the objective 

function is as follows: 

𝑀𝑆𝐸 =
1

𝑁
(𝑦𝑖 − 𝑦𝑖̂)

2                              (23) 

where 𝑦𝑖 is the forecast value and 𝑦𝑖̂ is the actual value.   

POBL is further added to improve convergence and avoid 

local minima. Rather than generating an entirely different 

hyperparameter array, POBL only opposes a few dimensions, 

including the number of hidden units or the learning rate. The 

original and partial opposite solution of the firefly is tested 

with the MSE criterion, and a configuration with the lowest 

MSE is retained. The approach increases the chance of 

finding improved hyperparameter settings without wiping out 

useful parameter values.  The process of optimizing FA-

POBL is repeated until a stopping criterion is reached (e.g. 

sufficient generations or insignificant reduction in MSE. The 

resultant output is the hyperparameter setting that leads to the 

smallest validation MSE. The POBL-enhanced FA enables 

the LSTM model to produce a higher accuracy in prediction, 

a quicker convergence, and more consistent generalization 

behavior, which makes it very effective in prediction 

problems that are nonlinear and complex. 

 

4. Experimental results and analysis  

 
To check the effectiveness and reliability of the proposed 

model, the analysis and experimental results are necessary. 

They offer objective data on performance gains made with the 

help of autoencoder-based feature selection and FA-based 

LSTM, based on measuring accuracy, precision, recall, F-

score, and convergence behaviour. The analysis can be made 

more detailed to have meaningful comparison with baseline 

and current methods, learn stability and optimization 

efficiency, as well as strengths and limitations of the 

approach. All in all, the practical applicability, robustness, 

and scalability of the suggested intrusion detection 

framework in real-world network settings are supported by 

the experimental findings and the analysis.  The 

MATLAB2022R was used to implement the detection 

method.   

 

4.1 Datasets details  

 

UNSW-NB15 dataset [27] is subset of 257,673 examples and 

2,540,044 examples of 48 features are used. The sample sizes 

of the training (175,341) and testing (82,332) sets are 175,341 

and 82,332, respectively. There are nine types of attacks, 

namely: worms, backdoors, exploits, fuzzers, shell-code, and 

DDoS. CIC-IDS2017 dataset [28] are five days of traffic 

between Monday and Friday, and it is detailed. During the 

other days, there are attacks and usual exist, but only normal 

samples on Monday. The data is of eight different types of 

attacks: Botnet, Bruteforce, DDoS, DoS, Heartbleed, 

Infiltration, Portscan, and Web. The number of examples is 

2,491,689, the average is 2,273,097, and 218,592 are attacked 

with 78 structures.  

 

Table 2 : Feature importance score for UNSW NB-15 

dataset using Auto Encoder 
Feature Name Importance score Rank 

dload 0.000000 0 

spkts 0.151811 1 

ct_src_dport_ltm 0.269702 2 

ct_dst_ltm 0.346930 3 

sinpkt 0.480108 4 

dwin 0.518893 5 

sload 0.526516 6 

tcprtt 0.557248 7 

smean 0.567718 8 

dttl 0.586537 9 

trans_depth 0.594095 10 

is_ftp_login 0.618666 11 

dur 0.627868 12 

dtcpb 0.638538 13 

sttl 0.684201 14 

dpkts 0.691070 15 

sjit 0.706511 16 

ct_dst_src_ltm 0.713066 17 

ct_srv_src 0.727549 18 

service 0.738994 19 

ackdat 0.745012 20 

djit 0.817505 21 

dmean 0.826080 22 

swin 0.826722 23 

ct_state_ttl 0.845147 24 

state 0.866092 25 

dloss 0.901294 26 

sloss 0.902183 27 

rate 0.903689 28 

proto 0.909601 29 

dbytes 0.928522 30 

stcpb 0.932013 31 

ct_ftp_cmd 0.934829 32 

sbytes 0.935932 33 

response_body_len 0.949827 34 

synack 0.958242 35 

dinpkt 0.987970 36 

ct_dst_sport_ltm 1.000000 37 
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4.2 Data preprocessing  

 

Raw network traffic data is then cleansed by deleting 

duplicate records, treating missing values, and deleting 

irrelevant and inconsistent records. Appropriate encoding of 

categorical attributes is done to represent them in a numerical 

form, and numerical features are normalized or standardized 

so that they have equal scale. Rapid resampling methods are 

used in order to deal with the imbalance of classes. Lastly, the 

processed data are divided into training and testing data and 

run through an autoencoder to discover small representations, 

which allow the selection of the best features at the expense 

of classification.  Data is normalized by the Min- Max [29, 

30]  scaling method to bring all the numerical variables to a 

common range [0,1].  This is done to make sure that features 

that have higher numeric values do not take over during the 

learning process and enhance the convergence of the LSTM 

model. The original data distribution is not lost with this 

normalization, which allows the optimization-based IFA-

LSTM model to train faster and achieve better results. 

𝑧 =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                          (24)  

Where, 𝑥 is the present value, and 𝑚𝑎𝑥( 𝑥) and 𝑚𝑖𝑛( 𝑥) are 

its upper and lower bounds. The trained example is 

represented by the composed dataset (70%), and the testing 

example is represented by the other 30 %.   Tables 2 and 3 

(Figures 1 and 2) discuss the feature importance score of 

UNSWNB-15 and CICIDS-2017 datasets, respectively.   

 

4.3 Parameters settings  

 

The hyperparameter optimization is conducted to increase the 

learning ability and the generalization performance of the 

LSTM model. This paper uses the IFA to auto-tune very 

important LSTM hyperparameters that include learning rate, 

hidden neurons, batch size, dropout rates, and epochs. IFA 

can intelligently balance exploration and exploitation and 

therefore is able to efficiently search the best parameter space, 

prevent local optima, and speed up the convergence. This 

optimization procedure leads to better accuracy and stability 

and less time to train than manually adjusted and traditional 

optimization-based LSTM models. 

   

The effectiveness of hyperparameter optimization is 

dependent on the parameters of the Firefly Algorithm (FA).  

 

Table 3: Feature importance for CICIDS-2017 dataset using Auto Encoder 
Feature Name Importance score Rank Feature Name Importance score Rank 

Bwd PSH Flags 0 0 Bwd Packet Length Min 0.652004 39 

Fwd Avg Bytes/Bulk 0 1 Down/Up Ratio 0.653023 40 

Fwd Avg Packets/Bulk 0 2 min_seg_size_forward 0.677089 41 

Bwd Avg Bytes/Bulk 0 3 SYN Flag Count 0.677513 42 

CWE Flag Count 0 4 Fwd PSH Flags 0.678352 43 

Bwd Avg Packets/Bulk 0 5 Active Max 0.75508 44 

Bwd Avg Bulk Rate 0 6 Fwd Packet Length Mean 0.760739 45 

Bwd URG Flags 0 7 Avg Fwd Segment Size 0.760746 46 

Fwd URG Flags 0 8 Fwd Packet Length Max 0.764629 47 

Fwd Avg Bulk Rate 0 9 Fwd Packet Length Std 0.771227 48 

Bwd IAT Total 0.411608 10 Active Mean 0.771499 49 

PSH Flag Count 0.421377 11 Bwd IAT Min 0.782112 50 

Bwd IAT Max 0.424993 12 Fwd IAT Min 0.810281 51 

Bwd IAT Std 0.441984 13 Active Min 0.818087 52 

FIN Flag Count 0.475182 14 Active Std 0.83311 53 

Fwd IAT Std 0.48549 15 URG Flag Count 0.93475 54 

Idle Mean 0.490261 16 Total Length of Fwd Packets 0.94501 55 

Idle Max 0.491562 17 Subflow Fwd Bytes 0.945324 56 

Fwd IAT Max 0.492962 18 Bwd Header Length 0.985889 57 

Flow IAT Max 0.493276 19 Fwd Header Length 0.985928 58 

Flow IAT Std 0.508462 20 Fwd Header Length.1 0.985949 59 

Bwd Packet Length Mean 0.517305 21 Subflow Bwd Packets 0.985952 60 

Avg Bwd Segment Size 0.517306 22 Total Backward Packets 0.985968 61 

Init_Win_bytes_forward 0.527807 23 Subflow Fwd Packets 0.986026 62 

Fwd IAT Total 0.535289 24 Total Fwd Packets 0.986032 63 

Packet Length Std 0.53544 25 Total Length of Bwd Packets 0.986109 64 

Flow Duration 0.535892 26 Subflow Bwd Bytes 0.986171 65 

Packet Length Mean 0.540261 27 act_data_pkt_fwd 0.986222 66 

Average Packet Size 0.547044 28 Idle Std 0.996599 67 

Flow Packets/s 0.558854 29 Fwd Packet Length Min 1 68 

Bwd Packet Length Max 0.56605 30 Min Packet Length 1 69 

Bwd Packet Length Std 0.574081 31 Bwd Packets/s 1 70 

Max Packet Length 0.583778 32 Flow IAT Min 1 71 

ACK Flag Count 0.587196 33 Fwd Packets/s 1 72 

Bwd IAT Mean 0.616234 34 ECE Flag Count 1 73 

Flow IAT Mean 0.616721 35 Init_Win_bytes_backward 1 74 

Fwd IAT Mean 0.629436 36 Flow Bytes/s 1 75 

Packet Length Variance 0.630707 37 RST Flag Count 1 76 

Destination Port 0.633958 38    
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Direct impact on search diversity is the population size, in 

which a larger size enhances global exploration, but it adds to 

the computational load. The convergence speed is determined 

by the first attractiveness, which determines the magnitude to 

which fireflies approach superior solutions. Light absorption 

coefficient (γ) balances both global and local search, with low 

γ values promoting broader searching, whereas higher values 

promote finer exploitation around promising areas. 

Practically, the randomization parameter ( α ) aids the 

algorithm to get out of local optima as the algorithm creates 

stochastic movements, especially during initial iterations. The 

combination of these two parameters allows faster 

convergence and better quality of solutions and ensures stable 

optimization and, as a result, better performance of the IFA-

LSTM intrusion detection model.  Table 4 shows the 

parameter settings of the FA and LSTM methods.   

 

4.4 Performance measures  

 

Performance analyzers are used to assess the ability of ML.  

The accuracy, precision, recall, and f-measures are four 

pointers used as follows,    

• The accuracy of classification is measured by the 

proportion of correctly identified samples and the total 

number of samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                        (22) 

• Precision is defined as the ratio of accurately categorized 

samples to projected positive samples. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
                            

(23) 

• The Recall is defined as the ratio of probable positives to 

the sum of genuine positives and false negatives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         

(24) 

• F-measures represent the harmonic mean of recall and 

precision as follows 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 =
2 ×𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
          

(25) 

False positive (FP) means a mistakenly expected regular, 

whereas false negative (FN) indicates an incorrectly predicted  

 

 

 

 

 

 
Figure 1: Feature importance score for UNSW NB-15 dataset using Auto Encoder 
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Figure 2: Feature importance score for CICIDS2017 dataset using AE 

 
DDoS attack. True positive (TP) indicates a successfully 

predicted DDoS attack, whereas true negative (TN) indicates 

a properly recognized normal. 

 

4.5 Results analysis  

 

The analysis of the results is important in supporting the 

effectiveness of the proposed model through the systematic 

comparison of its performance with the base and current 

methods based on the conventional evaluation mechanisms. 

It aids the illustration of the effect of the hyperparameter 

optimization and the autoencoder-driven selection of features 

on the accuracy, the stability, and the convergence behavior. 

The results analysis is the empirical evidence of the 

robustness, generalization capability, and the efficiency of the 

computations of the implementation through detailed analysis 

of the performance measures and convergence trends, which 

justifies the appropriateness of the suggested approach to real-

life applications of intrusion detection. 

 

Table 5 and Figure 3 show the performance and convergence 

analysis of the UNSW-NB15 dataset without feature 

selection. In Table 5, it can be seen that all the optimization-

based LSTM models are significantly better than the baseline 

LSTM in terms of accuracy, recall, precision, and F-score. 

The proposed IFA-LSTM has the best performance in all 

measures, which proves that it has a great ability to learn the 

complicated intrusion patterns. This finding is also supported 

by Figure 3, which demonstrates that IFA-LSTM reaches an 

optimal solution with fewer iterations and stabilizes, showing 

that it is an effective way of learning and prevents the 

existence of local optima.  The outcomes of the CICIDS2017 

dataset before feature selection are explained in Table 6 and 

Figure 4. As indicated in Table 6, IFA-LSTM once again 

achieves the highest accuracy and F-score with respect to FA-

LSTM, IPSO-LSTM, PSO-LSTM, GA-LSTM, and the 

conventional LSTM model. This dataset has better 

improvement as it is highly dimensional and diverse in traffic. 

The convergence curve of the IFA-LSTM model achieves the 

lowest fitness value sooner than the rest of the models, as 

shown in Figure 4, which indicates that it converges more 

quickly and is more stable at training. Table 7 and Figure 5 

show the effects of the feature selection on the UNSW-NB15 

data post-selection. In Table 7, a slight decrease in the 

absolute accuracy is observed in all the methods, but even in 

all the evaluation metrics, the proposed IFA-LSTM remains 

in higher performance.  
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Table 4: Parameter Settings 
LSTM FA 

Parameters Values Parameters Values Parameters Values 

Activation TanH, Sigmoid Expected error 0.0005 𝑁 50 

Loss function MSE Weight range -0.5 and 0.5 𝛽0 1 

Learning rate 0.005 Number of hidden neurons 32 𝜆 1 

Epochs 500 Dropout 0.1 𝑇 100 

 

Table 5: Performance analysis for the UNSW-NB15 dataset before feature selection  
Methods Accuracy (%) Recall (%) Precision (%) F-Score (%) 

IFA-LSTM 98.92 98.75 99.71 99.23 

FA-LSTM 97.68 97.12 98.36 97.73 

IPSO-LSTM 97.31 95.48 97.89 96.67 

PSO-LSTM 95.86 94.21 96.44 95.31 

GA-LSTM 93.72 93.10 95.68 94.37 

LSTM 91.94 92.88 94.36 93.61 

 

Table 6: Performance analysis for the CICIDS2017 dataset before feature selection  
Methods Accuracy (%) Recall (%) Precision (%) F-Score (%) 

IFA-LSTM 99.12 99.04 99.36 99.20 

FA-LSTM 98.41 98.02 98.67 98.34 

IPSO-LSTM 97.63 96.88 97.94 97.40 

PSO-LSTM 96.42 95.76 96.88 96.31 

GA-LSTM 95.18 94.69 95.92 95.30 

LSTM 93.87 94.12 93.44 93.78 

 

 
Figure 3: Convergence analysis for UNSW-NB15 dataset before feature selection 
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Figure 4: Convergence analysis for the CICIDS2017 dataset before feature selection 

 

Table 7: Performance analysis for UNSW-NB15 dataset after feature selection 
Methods Accuracy (%) Recall (%) Precision (%) F-Score (%) 

IFA-LSTM 97.84 97.62 98.55 98.12 

FA-LSTM 96.41 95.88 97.14 96.59 

IPSO-LSTM 95.92 94.37 96.48 95.52 

PSO-LSTM 94.28 92.81 95.21 94.17 

GA-LSTM 92.36 91.94 94.12 92.98 

LSTM 90.51 91.62 92.88 91.46 

 

Table 8: Performance analysis for the CICIDS2017 dataset after feature selection  
Methods Accuracy (%) Recall (%) Precision (%) F-Score (%) 

IFA-LSTM 97.96 97.84 98.21 98.02 

FA-LSTM 96.88 96.41 97.12 96.73 

IPSO-LSTM 95.94 95.21 96.63 95.87 

PSO-LSTM 94.73 94.08 95.44 94.69 

GA-LSTM 93.36 92.84 94.21 93.51 

LSTM 91.88 92.14 91.63 91.92 

 

Figure 4 demonstrates the convergence pattern to be smoother 

and faster than the pre-feature selection case, which reveals 

the less complexity of computation and enhanced stability 

because unneeded features are dropped. Lastly, Table 8 and 

Figure 6 indicate the results of various models on the 

CICIDS2017 dataset following feature selection. As it is 

observed in Table 7, IFA-LSTM has the highest accuracy, the 

highest recall, the highest precision, and the highest F-score, 

which proves the strength despite the reduced set of features. 

Figure 6 provides better convergence, smoothness, and 

stability of all models, with the convergence of IFA-LSTM 

longest. All in all, the findings in Tables 5-8 and Figures 3-6 

strongly confirm the fact that the suggested IFA-LSTM 

architecture, with feature selection, is an accurate, stable, and 

computationally efficient method of intrusion detection in 

large-scale network settings.   
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Figure 5: Convergence analysis for UNSW-NB15 dataset after feature selection 

 
Figure 6: Convergence analysis for the CICIDS2017 dataset after feature selection 

 

5. Conclusions  
 

This paper introduced an IFA-LSTM model optimized with 

IFA in conjunction with an optimal choice of features using 

AE to detect intrusion in an efficient way. The autoencoder 

was able to acquire compact and informative latent 

representations on high-dimensional network traffic data, 

thus allowing the elimination of redundant and irrelevant 

features, and critical intrusion characteristics were retained. 

Preliminary experimental analyses on the UNSW-NB15 and 

CICIDS2017 datasets showed that the combination of 

autoencoder-based feature selection methods had significant 

benefits in terms of decreasing the complexity of 

computations and enhancing the stability of convergence with 

no compromise on detection accuracy. IFA-LSTM was also 

more accurate, precise, and had a higher recall and F-score 

than the baseline LSTM and other variants of the same model 

that were optimized in accuracy and speed, with or without 

feature selection. In general, the combination of the auto-

encoders-based optimal feature selection algorithm and 

intelligent metaheuristic-based LSTM optimization algorithm 

led to the development of a powerful, precise, and scalable 

intrusion detection system applicable to large-scale and high-

dimensional network configurations. This pattern can further 

be expanded to future work with hybrid strategies of feature 

selection, attention, and real-time implementation of this 

methodology in dynamic network contexts. 
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