
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Amazon Kiro: Transforming Software Development

Through AI-Powered Autonomous Coding

Ravi Kant Sharma

L.M. Ericsson

Email: ravi.k.kant.sharma[at]ericsson.com

Abstract: The integration of AI-powered development assistants into the Software Development Lifecycle (SDLC) has shown promising

results in improving developer productivity. This paper proposes a comprehensive research framework to evaluate Amazon Kiro, a next-

generation autonomous AI coding assistant, through controlled experimentation with professional developers. We present a detailed

methodology for measuring task completion time, code quality, cognitive load, and developer satisfaction across multiple SDLC phases

including coding, testing, documentation, and code review. Based on preliminary observations and existing literature on AI coding

assistants, we hypothesize significant productivity improvements while maintaining code quality standards. The proposed study design

includes 15 software developers over a 4-week period using within-subjects experimental methodology. This framework provides a rigorous

approach for empirically validating AI-assisted development tools and establishes a governance model for sustainable organizational

adoption. The research design can be adapted for evaluating other autonomous AI development assistants.

Keywords: Amazon Kiro, AI Development, Software Lifecycle, Autonomous Coding, Developer Productivity

1. Introduction

The software development industry faces mounting pressure

to deliver high-quality code faster while managing increasing

system complexity. Traditional development approaches

struggle to keep pace with demands for rapid feature delivery,

comprehensive testing, and thorough documentation.

Artificial Intelligence (AI) has emerged as a transformative

force, with AI-powered coding assistants demonstrating

potential to augment developer capabilities across the entire

Software Development Lifecycle (SDLC).

Amazon Kiro represents a new generation of AI development

assistants, distinguished by its autonomous coding

capabilities, deep context awareness, and customizable

automation through agent hooks and steering rules. Unlike

traditional code completion tools, Kiro can autonomously edit

multiple files, understand project-wide context through

#Codebase indexing, and adapt to team-specific conventions

through steering documents.

This research addresses a critical gap in existing literature.

While studies have examined AI coding assistants like GitHub

Copilot, Cursor, and Cline, limited empirical research has

evaluated autonomous AI agents capable of multi-file

refactoring, context-aware development, and customizable

automation workflows. Most studies focus on narrow metrics

like code completion speed, neglecting holistic SDLC impact

including documentation, testing, and maintenance phases.

This research proposes to: (1) quantify Amazon Kiro's impact

on developer productivity across SDLC phases, (2) evaluate

code quality and security implications of AI-assisted

development, (3) assess developer cognitive load and

satisfaction with autonomous features, (4) identify best

practices and governance frameworks for Kiro adoption, and

(5) compare Kiro's performance against baseline manual

development practices.

This research framework will contribute empirical evidence

for AI-assisted development adoption decisions, provide

quantitative metrics for ROI calculation, and offer practical

guidance for organizations implementing autonomous AI

coding tools.

2. Literature Survey

AI integration in software development has evolved through

several generations. Early tools focused on syntax

highlighting and basic autocomplete. The introduction of

machine learning-based code completion (e.g., TabNine, Kite)

marked the second generation. The third generation,

exemplified by GitHub Copilot, leveraged large language

models (LLMs) for context-aware suggestions.

Recent studies demonstrate significant productivity gains

from AI coding assistants. Peng et al. (2023) found GitHub

Copilot users completed tasks 55.8% faster in randomized

controlled trials. Ziegler et al. (2022) reported 46% of code

written with Copilot assistance. However, these studies

primarily measured code completion rather than

comprehensive SDLC impact.

Research examining AI across SDLC phases reveals varied

impact. AI tools show 10-15% efficiency gains in requirement

ambiguity detection. AI-assisted architecture design

demonstrates 15-20% improvement in generating design

alternatives. Multiple studies confirm 20-40% productivity

improvements in coding tasks. AI test generation tools

achieve 25-40% coverage improvements. AI-assisted code

review reduces review time by 15-30% while maintaining

quality standards. AI documentation generators save 10-15

hours weekly per developer.

Autonomous AI agents represent the fourth generation of

development tools, capable of multi-step reasoning, file

system navigation, and independent task execution. Unlike

reactive code completion tools, autonomous agents can plan,

execute, and verify complex refactoring operations. Recent

Paper ID: SR251115051642 DOI: https://dx.doi.org/10.21275/SR251115051642 1150

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

autonomous coding tools include Devin, Cursor's Agent

mode, and Cline, with preliminary studies suggesting 60-80%

efficiency gains for specific tasks.

Research identifies several challenges with AI coding

assistants. AI-generated code may introduce subtle bugs or

security vulnerabilities. Perry et al. (2023) found 40% of

Copilot suggestions contained security issues. Developers

may accept AI suggestions without adequate review,

potentially degrading code quality. Legal concerns exist

regarding training data and code ownership. LLMs may

generate incorrect or outdated code patterns.

Existing literature demonstrates AI coding assistant benefits

but lacks comprehensive evaluation of autonomous agents

across full SDLC phases. Most studies use small samples

(n<10) over short periods (<2 weeks), limiting

generalizability. This study addresses these gaps through

controlled experimentation with Amazon Kiro.

3. Problem Definition

Organizations face critical challenges in software

development: (1) increasing pressure for faster delivery cycles

while maintaining quality, (2) rising complexity of distributed

systems requiring deeper expertise, (3) growing

documentation debt impacting maintainability, (4) developer

burnout from repetitive tasks, and (5) difficulty onboarding

new team members to complex codebases.

Traditional development tools provide limited assistance,

focusing primarily on syntax highlighting and basic

autocomplete. While recent AI coding assistants show

promise, they lack autonomous capabilities for complex

multi-file operations, comprehensive codebase understanding,

and customizable automation workflows.

The research questions are: (1) Can autonomous AI

development assistants like Amazon Kiro significantly

improve developer productivity across the entire SDLC while

maintaining code quality and security standards? (2) What are

the optimal usage patterns, governance frameworks, and best

practices for sustainable adoption? (3) How do autonomous

AI agents compare to traditional code completion tools in

terms of comprehensive SDLC impact?

Research Hypotheses:

• H1: Amazon Kiro will reduce task completion time by 30-

50% across SDLC phases

• H2: Code quality metrics will remain stable or improve

with Kiro assistance

• H3: Developer cognitive load will decrease significantly

with autonomous features

• H4: Context-aware features (#Codebase) will show higher

satisfaction than basic code completion

4. Methodology/Approach

4.1 Research Design

This study proposes a mixed-methods approach combining

quantitative performance metrics with qualitative developer

feedback. We will use a within-subjects experimental design

where participants serve as their own controls, completing

comparable tasks with and without Kiro assistance.

4.2 Proposed Participant Selection

The study will recruit fifteen professional software developers

(n=15). Selection criteria include: minimum 3 years

professional development experience, proficiency in at least

two programming languages, no prior experience with

Amazon Kiro, and active development on production

codebases. Target demographics: Experience range 3-12

years, diverse programming languages (JavaScript, Python,

Java, etc.), varied roles (full-stack, backend, frontend),

balanced gender representation, age range 25-45 years.

Participants will be recruited through professional networks

and development communities.

4.3 Proposed Experimental Procedure

Phase 1 (Baseline, Week 1-2): Participants will complete

assigned development tasks using their standard tools and

workflows. We will measure task completion time, code

quality metrics, and self-reported cognitive load.

Phase 2 (Training, Week 2, Days 6-7): Participants will

receive 4 hours of Kiro training covering core features, best

practices, and safety guidelines. Training will include hands-

on exercises and documentation review.

Phase 3 (Kiro-Assisted Development, Week 3-4): Participants

will complete comparable tasks using Amazon Kiro. We will

measure identical metrics for direct comparison.

4.4 Proposed Task and Measurements

Tasks will represent realistic SDLC activities: (1) Feature

Implementation - Add new REST API endpoint with

validation, database integration, and error handling, (2) Bug

Fixing - Identify and resolve 5 bugs of varying complexity in

unfamiliar codebase, (3) Code Refactoring - Refactor legacy

module to improve maintainability and test coverage, (4)

Documentation - Generate API documentation, inline

comments, and README updates, (5) Test Creation - Write

unit and integration tests achieving 80% coverage, (6) Code

Review - Review pull requests and provide actionable

feedback, (7) Legacy Code Understanding - Analyze and

document unfamiliar codebase functionality.

Quantitative metrics included: task completion time

(minutes), lines of code written, code quality score

(SonarQube analysis), test coverage percentage, bug density

(bugs per 1000 lines), documentation completeness score, and

code review thoroughness (issues identified).

Qualitative metrics included: NASA Task Load Index (TLX)

for cognitive load, System Usability Scale (SUS), developer

satisfaction survey (5-point Likert scale), and semi-structured

interviews.

4.5 Proposed Statistical Analysis

We will employ paired t-tests to compare baseline and Kiro-

assisted performance metrics. Statistical significance will be

Paper ID: SR251115051642 DOI: https://dx.doi.org/10.21275/SR251115051642 1151

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

set at α=0.05. Effect sizes will be calculated using Cohen's d.

For non-parametric data, we will use Wilcoxon signed-rank

tests. Qualitative data from interviews will undergo thematic

analysis using open coding followed by axial coding to

identify recurring patterns.

4.6 Ethical Considerations

The study will seek ethics approval from relevant institutional

review boards. All participants will provide informed consent.

Data will be anonymized and stored securely following data

protection regulations. Participants will be able to withdraw at

any time without penalty. No sensitive production code will

be included in analysis. Participants will be compensated for

their time.

5. Expected Results & Anticipated Discussion

5.1 Anticipated Task Completion Time Improvements

Table 1: Expected Task Completion Time Analysis (Hypothesized)
Task Baseline (min) With Kiro (min) Improvement p-value Cohen’s d

Feature Implementation 245 ± 42 142 ± 28 42.0% <0.001 2.84

Bug Fixing (5 bugs) 186 ± 35 118 ± 24 36.6% <0.01 2.21

Code Refactoring 312 ± 58 165 ± 31 47.1% <0.001 3.12

Documentation 156 ± 28 50 ± 12 67.9% <0.001 4.76

Test Creation 198 ± 41 124 ± 29 37.4% <0.01 2.05

Code Review 92 ± 18 60 ± 14 34.8% <0.05 1.98

Legacy Code Analysis 420 ± 76 185 ± 42 56.0% <0.001 3.68

Overall Average 230 ± 98 121 ± 52 47.4% <0.001 3.09

We hypothesize all improvements will be statistically

significant. Documentation is expected to show highest

improvement based on AI's strength in text generation. Large

effect sizes (Cohen's d > 1.9) are anticipated across all tasks

based on similar studies with AI assistants. Weekly time

savings are projected to average 15-20 hours per developer.

5.2 Expected Code Quality Metrics

Table 2: Expected Code Quality Comparison

(Hypothesized)

Metric Baseline With Kiro Change p-value

SonarQube Quality

Score
82.4 ± 6.2 84.1 ± 5.8 +2.1% 0.18 (ns)

Bug Density (per

KLOC)
3.8 ± 1.2 3.6 ± 1.1 -5.3% 0.42 (ns)

Security Vulnerabilities 2.1 ± 1.4 2.3 ± 1.6 +9.5% 0.51 (ns)

Test Coverage (%) 76.2 ± 8.4 81.3 ± 7.2 +6.7% <0.05

We anticipate code quality will be maintained or slightly

improved with Kiro. Test coverage is expected to increase

significantly based on AI's ability to generate comprehensive

test cases. We hypothesize no significant increase in bugs or

security vulnerabilities, though this will require careful

monitoring. Any increase in security vulnerabilities will be

analyzed to determine if it represents systematic issues or

random variation.

5.3 Expected Cognitive Load and Developer Experience

Table 3: NASA Task Load Index (TLX) Scores

(Hypothesized)
Dimension Baseline With Kiro Reduction p-value

Mental

Demand
68.2 ± 12.4 42.6 ± 10.8 37.5% <0.001

Temporal

Demand
72.8 ± 14.2 48.4 ± 11.6 33.5% <0.001

Effort 71.4 ± 11.8 44.8 ± 10.2 37.3% <0.001

Frustration 58.6 ± 15.4 32.2 ± 12.8 45.1% <0.001

Overall TLX 63.7 ± 10.2 46.4 ± 8.6 27.2% <0.001

We anticipate a 20-30% reduction in overall NASA-TLX

scores, indicating substantial cognitive offloading. Kiro is

expected to achieve a System Usability Scale (SUS) score

above 70 (Grade: B or higher, "Good" usability), exceeding

the industry benchmark of 68.0, based on its intuitive interface

and autonomous capabilities.

5.4 Expected Developer Satisfaction

We anticipate high developer satisfaction based on Kiro's

advanced features. Expected survey results (5-point Likert

scale): productivity improvement (4.0-4.5), reduction in

repetitive work (4.5+), willingness to recommend (4.0+),

learning new patterns (4.0+), increased confidence (4.0+),

overall satisfaction (4.0+). Trust in code suggestions is

expected to be moderate (3.5-4.0), indicating healthy

skepticism and proper verification practices. We anticipate

80-90% of developers will recommend Kiro to colleagues.

5.5 Anticipated Qualitative Themes

Based on preliminary observations and existing AI assistant

research, we anticipate thematic analysis will reveal several

key themes: Theme 1 - Cognitive Offloading: Developers will

likely report that Kiro handles boilerplate code, allowing

focus on architecture and business logic. Theme 2 - Learning

Accelerator: Kiro may expose developers to patterns they

wouldn't discover independently, functioning like pair

programming with an expert. Theme 3 - Trust and

Verification: We expect developers will emphasize the

importance of reviewing Kiro's code, with supervised mode

being particularly valued. Theme 4 - Context Awareness: The

#Codebase feature's ability to understand relationships across

files may significantly impact legacy code analysis. Theme 5

- Concerns and Limitations: Some developers may note

occasional outdated pattern suggestions and emphasize

continued need for security scanning.

5.6 Anticipated Discussion Points

If results align with hypotheses, this study will provide robust

empirical evidence that Amazon Kiro significantly enhances

Paper ID: SR251115051642 DOI: https://dx.doi.org/10.21275/SR251115051642 1152

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

developer productivity across SDLC phases. Expected time

savings of 30-50% would represent substantial efficiency

gains while maintaining code quality standards. These

improvements would align with or exceed previous AI coding

assistant research. While GitHub Copilot studies reported

55.8% faster task completion for specific coding tasks, this

study aims to demonstrate sustained productivity across

diverse SDLC activities including documentation and legacy

code analysis.

Critically, we hypothesize productivity gains will not

compromise code quality. If SonarQube scores remain stable

and test coverage increases, this would address concerns about

AI-generated code quality. Expected reduction in NASA-TLX

scores would indicate substantial cognitive offloading, with

participants potentially reporting focus on high-level

architecture while Kiro handles implementation details.

Kiro's autonomous capabilities and context awareness should

distinguish it from traditional code completion tools. High

utilization and satisfaction with the #Codebase feature would

suggest comprehensive context understanding is crucial for

complex development tasks.

For organizations, projected ROI calculations suggest

significant value: if 15-20 hours weekly savings per developer

are achieved, for a 50-developer team this equals 750-1000

hours/week = 39,000-52,000 hours/year ≈ 20-26 FTE

equivalents. Assuming $150K average developer cost,

potential savings of $3-4M annually would justify significant

AI tool investment. For developers, anticipated benefits

include focus shift from implementation to design, reduced

context switching and cognitive load, and continuous learning

through exposure to diverse patterns.

Based on literature review and best practices, we propose a

governance framework for Kiro adoption that will be

validated through the study: (1) Policy Definition - Define

approved use cases and prohibited uses, (2) Human-in-the-

Loop Validation - Mandatory code review for all AI-generated

code with supervised mode for high-risk changes, (3) Training

and Onboarding - Minimum 4-hour training before Kiro

access, (4) Monitoring and Measurement - Track productivity

metrics and security vulnerability trends, (5) Steering Rules

and Customization - Codify team conventions in steering

documents, (6) Data Privacy and Security - Use self-hosted

models for sensitive codebases with prompt filtering, (7)

Continuous Improvement - Monthly retrospectives and

knowledge sharing.

6. Conclusion

This paper presents a comprehensive research framework for

evaluating Amazon Kiro's impact on developer productivity

across the Software Development Lifecycle. The proposed

controlled experiment with 15 professional developers over 4

weeks will provide empirical evidence on AI-assisted

development effectiveness. Based on existing literature and

preliminary observations, we hypothesize 30-50% average

time savings across SDLC tasks, significant improvements in

documentation efficiency, 20-30% reduction in cognitive

load, maintained code quality with no significant increase in

bugs or vulnerabilities, and high developer satisfaction.

Unlike previous research focusing on code completion, this

study will comprehensively evaluate AI assistance across full

SDLC phases including requirements, design, development,

testing, review, and maintenance. We aim to demonstrate

whether autonomous AI agents with context awareness

capabilities deliver substantially greater value than traditional

code completion tools.

For a 50-developer team, if hypotheses are confirmed, Kiro

adoption could potentially reclaim 39,000-52,000 hours

annually (≈20-26 FTE equivalents), representing significant

ROI. Beyond productivity, anticipated benefits include

reduced cognitive load, increased confidence, and enhanced

learning opportunities. The proposed governance framework

addresses code review, security scanning, training, and

continuous monitoring for responsible adoption.

AI-assisted development represents a paradigm shift from

manual coding to human-AI collaboration. This research

framework will provide organizations with empirical evidence

to make informed decisions about AI coding assistant

adoption, particularly tools offering autonomous capabilities

and comprehensive context awareness. The methodology

presented can be adapted for evaluating other AI development

tools, contributing to the broader understanding of AI's role in

software engineering.

7. Future Scope

Upon completion of the proposed study, several research

directions should be pursued. Longitudinal studies tracking

developers over 12-24 months would assess long-term

productivity sustainability, skill development or degradation

patterns, over-reliance emergence, and career trajectory

impacts. Comparative studies directly comparing Kiro with

GitHub Copilot, Cursor, and Cline would provide feature-by-

feature effectiveness analysis and cost-benefit insights.

Domain-specific evaluation is needed to assess Kiro

effectiveness in specialized areas including embedded

systems, mobile development, data science pipelines,

DevOps, and safety-critical industries. Investigation of team

dynamics and collaboration would examine AI tools' impact

on pair programming, code review quality, knowledge

sharing, and adoption patterns across experience levels.

Deep security and vulnerability analysis should systematically

compare AI-generated code with human-generated

vulnerability rates and examine security pattern learning over

time. Cognitive and psychological effects research would

examine problem-solving skill development, creativity

metrics, job satisfaction, and learning curves for different

experience levels. Comprehensive economic impact studies

should analyze total cost of ownership, productivity gains

across organization sizes, impact on hiring needs, and market

competitiveness advantages. Exploration of ethical and social

implications including job displacement concerns,

accessibility for developers with disabilities, bias mitigation,

and environmental impact would provide broader context.

Advanced feature evaluation should provide detailed analysis

of agent hooks effectiveness, steering rules impact, MCP

integration use cases, and optimal usage patterns for

supervised versus autopilot modes. Educational applications

Paper ID: SR251115051642 DOI: https://dx.doi.org/10.21275/SR251115051642 1153

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

research would investigate Kiro's role in computer science

education, bootcamp support, career transition assistance, and

impacts on academic integrity and learning outcomes.

References

[1] Storey, M. A., Zimmermann, T., Bird, C., Czerwonka,

J., Murphy, B., & Kalliamvakou, E. (2019). Towards a

theory of software developer job satisfaction and

perceived productivity. IEEE Transactions on Software

Engineering, 47(10), 2125-2142.

[2] Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate:

The science of lean software and DevOps. IT Revolution

Press.

[3] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D.

O., Kaplan, J., & Zaremba, W. (2021). Evaluating large

language models trained on code. arXiv preprint

arXiv:2107.03374.

[4] Amazon Web Services. (2024). Amazon Kiro: AI-

Powered Development Assistant. AWS Documentation.

[5] Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M.

(2023). The impact of AI on developer productivity:

Evidence from GitHub Copilot. arXiv preprint

arXiv:2302.06590.

[6] Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A.,

Rifkin, D., Simister, S., & Aftandilian, E. (2022).

Productivity assessment of neural code completion.

Proceedings of the 6th ACM SIGPLAN International

Symposium on Machine Programming, 21-29.

[7] Robbes, R., & Lanza, M. (2008). How program history

can improve code completion. Proceedings of the 23rd

IEEE/ACM International Conference on Automated

Software Engineering, 317-326.

[8] Svyatkovskiy, A., Deng, S. K., Fu, S., & Sundaresan, N.

(2020). IntelliCode compose: Code generation using

transformer. Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software

Engineering, 1433-1443.

[9] Ferrari, A., Spagnolo, G. O., & Dell'Orletta, F. (2017).

Mining commonalities and variabilities from natural

language documents. Software & Systems Modeling,

16(4), 919-946.

[10] Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J.,

Ajagbe, M. A., Chioasca, E. V., & Batista-Navarro, R.

T. (2021). Natural language processing for requirements

engineering: A systematic mapping study. ACM

Computing Surveys, 54(3), 1-41.

[11] Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C.

(2018). A survey of machine learning for big code and

naturalness. ACM Computing Surveys, 51(4), 1-37.

[12] Vaithilingam, P., Zhang, T., & Glassman, E. L. (2022).

Expectation vs. experience: Evaluating the usability of

code generation tools powered by large language

models. CHI Conference on Human Factors in

Computing Systems Extended Abstracts, 1-7.

[13] Barke, S., James, M. B., & Polikarpova, N. (2023).

Grounded Copilot: How programmers interact with

code-generating models. Proceedings of the ACM on

Programming Languages, 7(OOPSLA1), 85-111.

[14] Lemieux, C., Inala, J. P., Lahiri, S. K., & Sen, S. (2023).

Codamosa: Escaping coverage plateaus in test

generation with pre-trained large language models.

Proceedings of the 45th International Conference on

Software Engineering, 919-931.

[15] Tufano, M., Watson, C., Bavota, G., Di Penta, M.,

White, M., & Poshyvanyk, D. (2019). An empirical

study on learning bug-fixing patches in the wild via

neural machine translation. ACM Transactions on

Software Engineering and Methodology, 28(4), 1-29.

[16] Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., &

Karri, R. (2022). Asleep at the keyboard? Assessing the

security of GitHub Copilot's code contributions. 2022

IEEE Symposium on Security and Privacy, 754-768.

[17] Chen, X., Lin, D., Jiang, N., Hu, X., & Chen, C. (2024).

Automated code documentation generation using large

language models: An empirical study. Journal of

Systems and Software, 208, 111876.

[18] Wang, X., Zhao, Y., Pourpanah, F., Hu, Y., & Feng, Y.

(2023). Recent advances in deep learning for code

generation: A survey. ACM Computing Surveys, 56(1),

1-37.

[19] Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., &

Yao, S. (2023). Reflexion: Language agents with verbal

reinforcement learning. arXiv preprint

arXiv:2303.11366.

[20] Perry, N., Srivastava, M., Kumar, D., & Boneh, D.

(2023). Do users write more insecure code with AI

assistants? Proceedings of the 2023 ACM SIGSAC

Conference on Computer and Communications Security,

2785-2799.

[21] Prather, J., Pettit, R., McMurry, K., Peters, A., Homer,

J., & Cohen, M. (2023). On the benefits of AI-powered

code generation for novice programmers. Proceedings of

the 54th ACM Technical Symposium on Computer

Science Education, 1047-1053.

[22] Hart, S. G., & Staveland, L. E. (1988). Development of

NASA-TLX (Task Load Index): Results of empirical

and theoretical research. Advances in Psychology, 52,

139-183.

[23] Brooke, J. (1996). SUS: A quick and dirty usability

scale. Usability Evaluation in Industry, 189(194), 4-7.

[24] Strauss, A., & Corbin, J. (1998). Basics of qualitative

research: Techniques and procedures for developing

grounded theory (2nd ed.). Sage Publications.

[25] Sweller, J., Van Merriënboer, J. J., & Paas, F. (2019).

Cognitive architecture and instructional design: 20 years

later. Educational Psychology Review, 31(2), 261-292.

[26] Amazon Kiro - https://kiro.dev/

Author Profile

Ravi Kant Sharma received his Master of Computer

Applications (M.C.A.) degree from Uttar Pradesh

Technical University, India in 2011. At L.M. Ericsson

Limited, he has served in various senior capacities

including Software Architect and Principal Security Master and is

currently a Senior Software Developer. His expertise spans software

development, AI-assisted engineering tools, and security

architecture. His research interests include artificial intelligence in

software development, autonomous coding systems, developer

productivity, and software lifecycle optimization. With over 14 years

of experience in telecommunications and enterprise software, he

investigates how AI-powered tools can enhance developer efficiency

while maintaining code quality and security standards. Contact:

ravi.k.kant.sharma[at]ericsson.com

Paper ID: SR251115051642 DOI: https://dx.doi.org/10.21275/SR251115051642 1154

http://www.ijsr.net/
https://kiro.dev/
mailto:ravi.k.kant.sharma@ericsson.com

