
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The Role of AI Tools Across the Software

Development Lifecycle

Kunal Kumar

Abstract: This paper examines the growing influence of Artificial Intelligence (AI) tools across the Software Development Lifecycle

(SDLC), exploring their measurable contributions in coding, testing, documentation, code review, and design. Through a case study

involving Cline, an AI-powered development assistant, the paper highlights up to 80% efficiency gains across various engineering tasks.

It further outlines quantitative and qualitative outcomes, including developer productivity, cognitive load reduction, and improved code

quality. The study also presents a governance framework to manage security, ethical use, and over-reliance. In doing so, the paper aims

to guide organizations in effectively embedding AI into their development ecosystems for sustainable, insight-driven transformation.

Keywords: AI in Software Engineering, Software Development Lifecycle, Code Automation, AI Copilot, Developer Productivity

Executive Summary

Initial evidence indicates up to 80% efficiency gains in

certain phases, along with reduced cognitive load and shorter

turnaround times. This white paper quantifies these impacts

across the SDLC, presents a real-world case study using Cline

(AI-powered IDE assistant), and highlights the challenges

and governance models necessary for sustainable AI adoption

in engineering.

1. Introduction

AI in Modern Software Engineering

Software development has evolved from purely manual

engineering to an ecosystem of automation and augmentation.

AI copilots, code analyzers, and documentation generators

now handle repetitive, low-value tasks, allowing developers

to focus on logic, architecture, and innovation.

Key Drivers

• There is a growing need for faster feature delivery and

shorter release cycles.

• Increasing complexity of distributed and microservice

architectures.

• Rising maintenance costs and documentation debt.

• Pressure to reduce operational inefficiencies and human

errors.

This paper aims to evaluate the practical benefits and

challenges of AI tools integrated across the Software

Development Lifecycle, supported by empirical findings

from a case study.

This study is significant for its empirical validation of AI

tools’ efficiency in live development environments, offering

insights into their strategic implementation and governance

for long-term engineering value.

2. AI Across the Software Development

Lifecycle

SDLC Phase Key AI Capabilities
Typical Optimization

(Today)
Notes

Requirements &

Analysis

Ambiguity detection, testable requirement

generation, stakeholder summary
5–15%

Gains increase when AI is integrated

with structured requirement templates.

Design & Architecture
Architecture alternatives, design pattern

recommendations, impact analysis
10–20%

Depends on curated knowledge bases

and prior design data.

Development (Coding)
Code completion, test stubs, refactor

suggestions
15–35%

Most effective for newly written code or

codebases with repetitive structures.

Testing & QA
Unit test generation, test data synthesis,

coverage improvement
20–40%

Strongest in static and mutation-based

testing.

Code Review & Security
AI pre-review, security flaw detection, change

summaries
10–25%

Dependent on team trust and integration

depth.

Documentation &

Knowledge Management

Code summarization, API doc generation,

release notes
20–40%

Best with structured documentation

repositories.

3. Quantified Benefits

3.1 Coding

• GitHub Copilot RCT: 55.8% faster task completion.

• Average developer productivity improvement: 15–35%.

• Productivity gains are most pronounced in boilerplate

code, scaffolding tasks, and when working with

unfamiliar frameworks.

3.2 Testing

• Meta TestGen-LLM: 25% increased coverage, 73%

test suggestions accepted.

• AI testing frameworks can reduce unit-test creation effort

by 40%.

Paper ID: SR251108130321 DOI: https://dx.doi.org/10.21275/SR251108130321 646

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3.3 Documentation

• AI-based code summarization saves 10+ hours/week on

average.

• Automatic synchronization between code changes and

documentation reduces knowledge gaps.

3.4 Code Review

• AI review summaries cut PR turnaround time by 10–

25%.

• Predictive risk analysis helps reviewers focus on

impactful diffs.

4. Case Study: Empirical Experiment with

Cline

To validate these theoretical efficiencies, an internal

experiment was conducted using Cline, an AI-powered IDE

assistant integrated with IntelliJ. Developers used Cline

across analysis, bug fixing, documentation, refactoring, and

code reviews. The experiment involved a team of five

developers over a two-week period, tracking task completion

times before and after the introduction of the AI tool Cline.

4.1 Quantitative Results

Task Without AI With Cline Improvement Notes

Code Analysis 6h 45m 87% faster Contextual code understanding.

Documentation 4h 30m 87% faster Auto-generated API and inline docs.

Bug Fixing 3h 45m 75% faster Context-based fix suggestions.

Code Reviews 2h 30m 75% faster Summarized PR analysis and impact.

Bug Analysis 30m 2m 93% faster Automated root-cause hints.

API Documentation Update 2h 1m 99% faster Full REST documentation draft.

Refactoring 4h 15m 94% faster Pattern-based code transformation.

Legacy Understanding 2 days 20m 98% faster Cross-module reasoning and insights.

Review Cycle 4h 1.5h 62% faster Reduced reviewer time.

Documentation Cycle 6h 1h 83% faster Reduced manual edits.

Bug Fix Cycle 8h 3h 63% faster Faster resolution and retesting.

Refactor Cycle 4h 1.5h 62% faster Automated pattern validation.

4.2 Overall Efficiency Gains

• Average Time Savings: ~80% across measured

activities.

• Weekly Savings: ≈15 hours per developer.

• Equivalent to 2 full workdays gained per week per

developer.

4.3 Qualitative Insights

• Developers reported higher focus retention and lower

fatigue.

• Documentation debt decreased sharply.

• Refactoring confidence increased with contextual

feedback.

• Bug triage processes became more predictable and

measurable.

4.4 Key Takeaway

When embedded contextually into development

environments, AI copilots like Cline deliver 70–90%

efficiency gains, transforming repetitive, cognitive-heavy

workflows into proactive and insight-driven cycles.

5. Challenges and Considerations

Challenge Description Mitigation

Code Quality and

Security

AI-generated code may introduce subtle defects or

insecure patterns.
Integrate SAST/DAST scanning and enforce review gates.

Data Privacy and IP

Risks
Prompts may expose proprietary logic or identifiers. Use self-hosted AI models with governance rules.

Over-Reliance Developers may under-review AI-generated code. Enforce verification and explainability in AI output.

Bias and Hallucination AI tools may produce incorrect or outdated results. Require automated build/test validation for AI outputs.

Measurement Gaps Many organizations fail to measure true ROI.
Track baseline metrics, conduct A/B testing across teams,

and implement productivity KPIs.

6. ROI and Strategic Impact

Short-Term Benefits

• Immediate time savings across repetitive tasks.

• Higher developer satisfaction and engagement.

Long-Term Advantages

• Faster onboarding of new engineers through contextual

documentation.

• Reduced operational costs via automation of testing and

maintenance.

• Continuous knowledge retention in codebases.

Quantified ROI Example

• 15 hours saved per week = 60 hours/month.

• For a team of 10 developers: 600 hours saved monthly

(~3.5 FTEs).

• Over a year: >7,000 engineering hours reclaimed.

7. Governance Framework for AI in SDLC

1) Policy Definition: Define what tasks AI can automate

(code generation, review assistance, test writing).

2) Human-in-the-Loop Validation: All AI-generated

outputs must pass human verification.

Paper ID: SR251108130321 DOI: https://dx.doi.org/10.21275/SR251108130321 647

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3) Data Control: Implement local model hosting and

prompt filtering.

4) Ethical Guardrails: Prohibit sensitive data inclusion in

prompts.

5) Continuous Measurement: Track KPIs—cycle time,

defect leakage, documentation coverage.

8. Conclusion

AI is not replacing developers—it is amplifying human

capability. With careful adoption, enterprises can achieve

measurable optimization in speed, quality, and

maintainability. The Cline case study validates that real-world

integrations can yield up to 80% efficiency improvement

and 15+ hours of weekly savings per developer.

By systematically embedding AI across the SDLC with

governance and measurement, organizations can transition

from traditional development pipelines to autonomous,

insight-driven software ecosystems.

Future research could further validate these findings across

different teams and programming environments to assess

generalizability.

References

[1] GitHub Copilot Research Study (2023) – GitHub Next.

[2] Meta AI TestGen-LLM Documentation (2024).

[3] McKinsey & Co. (2024). The State of AI in Software

Development.

[4] Atlassian DevEx Report (2025). AI and Developer

Experience Trends.

[5] Thales Internal Experimentation Report (2025). Cline-

Assisted SDLC Productivity Study.

Paper ID: SR251108130321 DOI: https://dx.doi.org/10.21275/SR251108130321 648

http://www.ijsr.net/

