
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Design of an Asynchronous Architecture Based on

Django and WebSocket for Interactive Applications

Arley Iván Solis Zacapantzi1, Juan Ramos Ramos2, José Juan Hernández Mora3,

Blanca Estela Islas Flores4

1, 2, 3, 4 Instituto Tecnológico de Apizaco, División de Estudios de Posgrado e Investigación,

1, 2, 3, 4 Av. Instituto Tecnológico S/N, Conurbado Tzompantepec, C.P. 90300, Ciudad de Apizaco, Tlaxcala, México
1Email: m23370008[at]apizaco.tecnm.mx

2 Corresponding Author Email: juan.rr[at]apizaco.tecnm.mx
3Email: juan.hm[at]apizaco.tecnm.mx

4Email: m23370004[at]apizaco.tecnm.mx

Abstract: This work proposes an asynchronous architecture based on the Django framework to enable real-time bidirectional

communication using WebSockets and the ASGI standard. Unlike the traditional synchronous WSGI model, the proposed design

supports multiple simultaneous connections, enabling interactive web applications such as messaging, monitoring, and notifications. It

details the structural design, Django Channels configuration, and inter-process communication, demonstrating notable improvements in

responsiveness, concurrency, and scalability—positioning Django as a strong option for modern real-time services.

Keywords: ASGI, asynchronous architecture, Django, interactive applications, real-time communication, WebSockets

1. Introduction

The demand for interactive web experiences and real-time

two-way communication has steadily increased over the past

decade, driven by use cases such as messaging, monitoring,

dashboards, and instant notifications [1]. In this context,

synchronous models based on the request–response

paradigm (e.g., WSGI) present limitations when managing

user-dependent interactions that require low latency and high

concurrency, often leading to polling strategies using AJAX

or fetch, which result in excessive requests and performance

degradation under peak load conditions [2].

Various platforms have addressed real-time communication

through WebSockets and event-driven architectures, with

ecosystems such as Node.js/Socket.io, Phoenix/Elixir, and

ASP.NET Core SignalR standing out, as well as newer

Python frameworks with native asynchronous support [3].

On the frontend, libraries like React or Vue have facilitated

reactive patterns that integrate with low-latency backends

[4]. However, Django—historically synchronous—remains

preferred for its robustness, security, and extensive Python

ecosystem (AI, IoT, vision, billing, scientific libraries), in

addition to its clear and extensible MVT architecture that

reduces integration complexity [5].

Although approaches exist to “simulate” asynchrony (e.g.,

short/long polling) or offload non-interactive tasks to Celery,

these solutions do not fully address real-time two-way

communication with concurrency and efficiency guarantees

at scale [6]. The identified gap lies in the absence of an

integrated and replicable architecture that transforms Django

into an asynchronous core for interactive applications

without abandoning its ecosystem and operational

advantages.

This work proposes the Design of an Asynchronous

Architecture Based on Django and WebSockets for

Interactive Applications, supported by the ASGI standard,

the Daphne server, Django Channels as the WebSocket

protocol layer, and a Redis message channel for fan-out, load

balancing, and decoupling of producers and consumers. The

proposal eliminates polling dependency, enables true

concurrency, and promotes an event-driven model while

preserving Django’s multifunctionality as a full-stack

framework, pure backend, or “glue” across multiple

technologies (AI/ML, IoT, billing services, and security

modules) within a single framework.

2. State of the Art

The transition of web development toward real-time

interactions has driven the adoption of persistent,

bidirectional channels that reduce latency and request

overhead. Early attempts generalized polling and long-

polling via AJAX/Fetch to emulate immediacy, though

scalability degraded under high concurrency [7].

WebSockets later enabled continuous message exchange

over a single connection, improving responsiveness and

efficiency. A widely explored path involved event-driven

backends such as Node.js with Socket.IO, which supports

reconnection, multiplexing, and fallbacks—establishing a

foundation for collaborative and presence-based applications

[8]. Alternatives consolidated efficient concurrency models

for large-scale connections, but migration from Python/

Django systems often demands deep rewrites and data

reengineering, increasing transition costs.

Within the Python ecosystem, offloading non-interactive

work to queues like Celery with Redis or RabbitMQ became

common practice [9]. While ideal for deferred jobs and

heavy processing, this approach does not enable real-time

bidirectional interaction during user sessions, as it focuses on

asynchronous task handling rather than persistent messaging.

Paper ID: SR251108101843 DOI: https://dx.doi.org/10.21275/SR251108101843 692

http://www.ijsr.net/
mailto:1m23370008@apizaco.tecnm.mx
mailto:2juan.rr@apizaco.tecnm.mx
mailto:4m23370004@apizaco.tecnm.mx

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

A key advancement was the introduction of ASGI, which

standardized asynchronous execution for HTTP and

WebSocket protocols, enabling coroutines and event loops

[10]. Since Django 3.x, official ASGI support opened the

door to real-time architectures without abandoning Django’s

ORM, MVT, and security stack [11]. Django Channels

extended this model “beyond HTTP” through async

consumers, ASGI routing, and WebSocket support, typically

deployed with Daphne and a Redis-based message layer for

pub/sub and process decoupling [12][13].

Technical literature emphasizes that while this stack

achieves low latency and high concurrency, success depends

on a well-defined architecture: separation of real-time and

batch processes, proper backplane configuration, retry

policies, and observability metrics such as active

connections and latency [14].

In summary, current solutions fall into three families:

polling/SSE for basic needs; event-driven stacks

(Node.js/Phoenix/SignalR) for greenfield projects; and ASGI

+ WebSockets for preserving Django ecosystems with

production-grade robustness. Despite existing resources on

individual components (Channels, Celery, Redis), few works

provide integrated, reproducible architectures for

transitioning from WSGI to ASGI while maintaining

Django’s data and security integrity. The proposed model—

Django (ASGI) + Channels + Daphne + Redis,

complemented by Celery for offline workloads—addresses

this gap, consolidating real-time communication with a

structured and maintainable design.

3. Methodology

The research and technological development focus on

designing and implementing an asynchronous Django

architecture (ASGI, Channels, Daphne, Redis) to enable

real-time bidirectional communication. A flexible, agile-

based approach is adopted, integrating tools and practices

suited to the project’s needs. This aligns with the view that

technological research not only analyzes phenomena but also

creates new realities through innovation and design [15].

Figure 1 presents De la Cruz Casaño’s methodological

framework, which guides the project through proposal,

theoretical foundation, methodology, implementation, and

evaluation. Phase 4 incorporates the system’s development

process, unifying research and technological execution into a

single, coherent workflow that connects problem definition,

conceptual grounding, and field validation with the

incremental design of the asynchronous architecture.

Figure 1: Research Methodology. Author's own work

Figure 2 illustrates the development methodology applied to

this project, combining agile practices and tools to build and

validate the architecture through real use cases (real-time

notifications, monitoring panels, and messaging). Project

planning follows sprint-based iterations with Kanban

visualization, while quality and delivery rely on XP practices

such as automated testing, peer review, and CI/CD pipelines.

Security and observability guidelines address per-channel

authentication, origin checks, and latency metrics. Phase 4

thus becomes an incremental, traceable cycle where each

software increment is validated against acceptance criteria,

ensuring the architecture evolves through empirical

evidence.

Figure 2: Project Programming Methodology. Author's own

work

In summary, the reference technological methodology [19],

reinterpreted with an agile and artifact-oriented lens, aligns

research with development: the asynchronous architecture is

designed, constructed incrementally with verifiable

engineering practices, and validated through practical use

cases, maintaining alignment between objectives, process,

and outcomes.

4. Architecture Development

Figure 3 presents the proposed technological architecture for

real-time communication in an asynchronous Django

environment. It integrates client, server, and messaging

layers under a modular structure that optimizes concurrency

and bidirectional data flow.

The web client uses JavaScript and jQuery to update

interfaces dynamically and exchange events through

WebSockets, enabling low-latency interaction. On the server

side, Django—running under the ASGI standard—efficiently

handles multiple simultaneous connections through

asynchronous processes managed by Daphne and Django

Channels.

Redis acts as a message broker using the publish/subscribe

pattern to synchronize events and support inter-process

communication. Finally, all components are containerized

with Docker, ensuring portability, isolation, and consistency

across environments.

Paper ID: SR251108101843 DOI: https://dx.doi.org/10.21275/SR251108101843 693

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2024: 7.101

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 3: Asynchronous technological architecture based on

Django, Channels, Daphne, and Redis

5. Results

The proposed asynchronous architecture enabled the system

to evolve from a traditional synchronous server to a fully

asynchronous environment, achieving real-time

communication without polling or page reloads. Deployed

and validated on AWS across five independent projects, it

demonstrated stable performance and seamless user

interaction.

A key implementation is the School Management System for

the Universidad Politécnica Región Poniente, where real-

time notifications were integrated into grade and payment

modules, allowing instant updates for students and

administrators. Another example is the Dental Management

Module (Figure 4), where patients and dentists receive

immediate notifications upon appointment confirmation,

showcasing the efficiency of the Django Channels, Daphne,

and Redis–based asynchronous model.

Figure 3: Real-time notification interface in the Clinic App:

patient view (left) and dentist view (right)

The deployment on AWS—combined with containerized

environments via Docker—ensured scalability, reliability,

and consistent performance under concurrent connections.

Each implementation verified the architecture’s capacity to

handle real-time events with low latency, validating the

approach as a viable model for interactive, service-oriented

web applications.

References

[1] J. D. A. Rincón, J. A. D. Lote, M. R. Galavís, y C. M.

S. Loreto, “Sistema de notificaciones en tiempo real

por proximidad basado en IoT para promover los

servicios de la Vicerrectoría del Medio en la Pontificia

Universidad Javeriana,” Pontificia Universidad

Javeriana, 2023.

[2] N. W. T. Mamani, “Modelo de API Gateway para

mejorar la comunicación de los microservicios en

aplicaciones empresariales,” Universidad Nacional del

Altiplano de Puno (Perú), 2023.

[3] H. V. P. Singh, S. R. Rizvi, y Q. H. Mahmoud, “Two

architectures for real-time sensor data streaming for

cloud applications,” International Symposium on

Signal Processing and Information Technology, pp.

133–138, 2015. doi: 10.1109/ISSPIT.2015.7394315.

[4] E. E. Sosa, “Librería de componentes para agilizar el

desarrollo inicial de un proyecto,” Universidad

Nacional de La Plata, 2024.

[5] G. E. Paula, L. Quisaguano Collaguazo, A. C. Guaman,

y S. Llambo Alvarez, “Frameworks del lado del

servidor: caso de estudio Node JS, Django y Laravel,”

593 Digital Publisher CEIT, vol. 10, no. 1, pp. 403–

414, 2025.

[6] K. J. Gracia Orejuela, M. B. Gorozabel Bazurto, y W.

Chango, “Long polling, WebSockets y Server-Sent

Events: comunicación para el envío de datos en tiempo

real,” Mikarimin, vol. 10, no. 3, pp. 101–120, 2024.

doi: 10.61154/mrcm.v10i3.3272.

[7] E. Bozdag, A. Mesbah, A. van Deursen, “A

Comparison of Push and Pull Techniques for Ajax”,

WSE 2007, IEEE, 2007.

doi:10.1109/WSE.2007.4380239. Esta compara los

enfoques “pull” (polling) frente a “push”

(Comet/long-polling) en aplicaciones AJAX y describe

los compromisos de escalabilidad.

[8] R. Kannan, M. A. K. T., S. Vairachilai, and V.

Ramshankar, “NodeJS and Postman for Serverless

Computing,” Advances in Systems Analysis, Software

Engineering, and High Performance Computing, Apr.

2024, doi: 10.4018/979-8-3693-1682-5.ch012.

[9] S. Ganesh, R. George, R. Tejas, N. Badri, and K.

Vinodha, “Queue Orchestration Using an In-Memory

Broker,” in Proc. 2022 IEEE 2nd Int. Conf. on Mobile

Networks and Wireless Communications (ICMNWC),

Dec. 2022. doi:

10.1109/ICMNWC56175.2022.10031963

[10] M. Lathkar, High-Performance Web Apps with

FastAPI: The Asynchronous Web Framework Based on

Modern Python, Apress, 2023. doi: 10.1007/978-1-

4842-9178-8

[11] M. M. Tkhabisimova, U. G. Baymuradov, and A. Sh.

Izrailova, “Development and implementation of web

applications in Python using the Django framework,”

Èkonomika i upravlenie: problemy, rešenîâ, vol. –, Jan.

2024. doi: 10.36871/ek.up.p.r.2024.12.08.007

[12] P. Soligo and J. S. Ierache, “Informe técnico,

telemetría satelital de tiempo real sobre WebSockets y

framework Django,” ReDDI: Revista Digital del

Departamento de Ingeniería, vol. 7, no. 2, pp. –, 2023.

doi: 10.54789/reddi.7.2.5

[13] J. M. Claudiyap and P. O. N. Saian, “Implementasi

sistem broadcast message menggunakan python dan

redis pub/sub,” JIPI (Jurnal Ilmiah Penelitian dan

Pembelajaran Informatika), vol. 7, no. 3, pp. –, Aug.

2022. doi: 10.29100/jipi.v7i3.3014

[14] L. P. Carloni, “The Role of Back-Pressure in

Implementing Latency-Insensitive Systems,” Electron.

Notes Theor. Comput. Sci., vol. –, 2006. doi:

10.1016/J.ENTCS.2005.05.036

[15] C. De La Cruz Casaño, “Metodología tecnológica en

ingeniería,” Revista Ingenium, vol. 1, 2016, pp. 1–.

Paper ID: SR251108101843 DOI: https://dx.doi.org/10.21275/SR251108101843 694

http://www.ijsr.net/
https://scispace.com/papers/nodejs-and-postman-for-serverless-computing-36o12es6ir?utm_source=chatgpt
https://scispace.com/papers/queue-orchestration-using-an-in-memory-broker-2fhot12n?utm_source=chatgpt
https://scispace.com/papers/high-performance-web-apps-with-fastapi-the-asynchronous-web-3nsoxs6b?utm_source=chatgpt
https://scispace.com/papers/high-performance-web-apps-with-fastapi-the-asynchronous-web-3nsoxs6b?utm_source=chatgpt
https://scispace.com/papers/development-and-implementation-of-web-applications-in-python-1vc2pu2i10rk?utm_source=chatgpt
https://scispace.com/papers/informe-tecnico-telemetria-satelital-de-tiempo-real-sobre-w8ct82xe?utm_source=chatgpt
https://scispace.com/papers/implementasi-sistem-broadcast-message-menggunakan-python-dan-vkwbifcb?utm_source=chatgpt
https://scispace.com/papers/the-role-of-back-pressure-in-implementing-latency-3wajb8uiv8?utm_source=chatgpt

