International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Design of an Asynchronous Architecture Based on
Django and WebSocket for Interactive Applications

Arley Ivan Solis Zacapantzi!, Juan Ramos Ramos?, José Juan Hernandez Mora?,
Blanca Estela Islas Flores*

1.2,3. 41nstituto Tecnoldgico de Apizaco, Division de Estudios de Posgrado e Investigacion,

1,2,3.4 Av. Instituto Tecnolégico S/N, Conurbado Tzompantepec, C.P. 90300, Ciudad de Apizaco, Tlaxcala, México
"Email: m23370008/at]apizaco.tecnm.mx
2 Corresponding Author Email: juan.rr/at]apizaco.tecnm.mx
3Email: juan.hm[at]apizaco.tecnm.mx
4Email: m23370004[at]apizaco.tecnm.mx

Abstract: This work proposes an asynchronous architecture based on the Django framework to enable real-time bidirectional
communication using WebSockets and the ASGI standard. Unlike the traditional synchronous WSGI model, the proposed design
supports multiple simultaneous connections, enabling interactive web applications such as messaging, monitoring, and notifications. It
details the structural design, Django Channels configuration, and inter-process communication, demonstrating notable improvements in
responsiveness, concurrency, and scalability—positioning Django as a strong option for modern real-time services.

Keywords: ASGI, asynchronous architecture, Django, interactive applications, real-time communication, WebSockets

1. Introduction

The demand for interactive web experiences and real-time
two-way communication has steadily increased over the past
decade, driven by use cases such as messaging, monitoring,
dashboards, and instant notifications [1]. In this context,
synchronous models based on the request—response
paradigm (e.g., WSGI) present limitations when managing
user-dependent interactions that require low latency and high
concurrency, often leading to polling strategies using AJAX
or fetch, which result in excessive requests and performance
degradation under peak load conditions [2].

Various platforms have addressed real-time communication
through WebSockets and event-driven architectures, with
ecosystems such as Node.js/Socket.io, Phoenix/Elixir, and
ASP.NET Core SignalR standing out, as well as newer
Python frameworks with native asynchronous support [3].
On the frontend, libraries like React or Vue have facilitated
reactive patterns that integrate with low-latency backends
[4]. However, Django—historically synchronous—remains
preferred for its robustness, security, and extensive Python
ecosystem (Al, IoT, vision, billing, scientific libraries), in
addition to its clear and extensible MVT architecture that
reduces integration complexity [5].

Although approaches exist to “simulate” asynchrony (e.g.,
short/long polling) or offload non-interactive tasks to Celery,
these solutions do not fully address real-time two-way
communication with concurrency and efficiency guarantees
at scale [6]. The identified gap lies in the absence of an
integrated and replicable architecture that transforms Django
into an asynchronous core for interactive applications
without abandoning its ecosystem and operational
advantages.

This work proposes the Design of an Asynchronous
Architecture Based on Django and WebSockets for

Interactive Applications, supported by the ASGI standard,
the Daphne server, Django Channels as the WebSocket
protocol layer, and a Redis message channel for fan-out, load
balancing, and decoupling of producers and consumers. The
proposal eliminates polling dependency, enables true
concurrency, and promotes an event-driven model while
preserving Django’s multifunctionality as a full-stack
framework, pure backend, or “glue” across multiple
technologies (AI/ML, IoT, billing services, and security
modules) within a single framework.

2. State of the Art

The transition of web development toward real-time
interactions has driven the adoption of persistent,
bidirectional channels that reduce latency and request
overhead. Early attempts generalized polling and long-
polling via AJAX/Fetch to emulate immediacy, though
scalability degraded under high concurrency [7].

WebSockets later enabled continuous message exchange
over a single connection, improving responsiveness and
efficiency. A widely explored path involved event-driven
backends such as Node.js with Socket.IO, which supports
reconnection, multiplexing, and fallbacks—establishing a
foundation for collaborative and presence-based applications
[8]. Alternatives consolidated efficient concurrency models
for large-scale connections, but migration from Python/
Django systems often demands deep rewrites and data
reengineering, increasing transition costs.

Within the Python ecosystem, offloading non-interactive
work to queues like Celery with Redis or RabbitMQ became
common practice [9]. While ideal for deferred jobs and
heavy processing, this approach does not enable real-time
bidirectional interaction during user sessions, as it focuses on
asynchronous task handling rather than persistent messaging.

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWW.ijsr.net

Paper ID: SR251108101843

DOI: https://dx.doi.org/10.21275/SR251108101843 692

http://www.ijsr.net/
mailto:1m23370008@apizaco.tecnm.mx
mailto:2juan.rr@apizaco.tecnm.mx
mailto:4m23370004@apizaco.tecnm.mx

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

A key advancement was the introduction of ASGI, which
standardized asynchronous execution for HTTP and
WebSocket protocols, enabling coroutines and event loops
[10]. Since Django 3.x, official ASGI support opened the
door to real-time architectures without abandoning Django’s
ORM, MVT, and security stack [11]. Django Channels
extended this model “beyond HTTP” through async
consumers, ASGI routing, and WebSocket support, typically
deployed with Daphne and a Redis-based message layer for
pub/sub and process decoupling [12][13].

Technical literature emphasizes that while this stack
achieves low latency and high concurrency, success depends
on a well-defined architecture: separation of real-time and
batch processes, proper backplane configuration, retry
policies, and observability metrics such as active
connections and latency [14].

In summary, current solutions fall into three families:
polling/SSE for basic needs; event-driven stacks
(Node.js/Phoenix/SignalR) for greenfield projects; and ASGI
+ WebSockets for preserving Django ecosystems with
production-grade robustness. Despite existing resources on
individual components (Channels, Celery, Redis), few works
provide integrated, reproducible architectures for
transitioning from WSGI to ASGI while maintaining
Django’s data and security integrity. The proposed model—
Django (ASGI) + Channels + Daphne + Redis,
complemented by Celery for offline workloads—addresses
this gap, consolidating real-time communication with a
structured and maintainable design.

3. Methodology

The research and technological development focus on
designing and implementing an asynchronous Django
architecture (ASGI, Channels, Daphne, Redis) to enable
real-time bidirectional communication. A flexible, agile-
based approach is adopted, integrating tools and practices
suited to the project’s needs. This aligns with the view that
technological research not only analyzes phenomena but also
creates new realities through innovation and design [15].

Figure 1 presents De la Cruz Casafio’s methodological
framework, which guides the project through proposal,
theoretical foundation, methodology, implementation, and
evaluation. Phase 4 incorporates the system’s development
process, unifying research and technological execution into a
single, coherent workflow that connects problem definition,
conceptual grounding, and field validation with the
incremental design of the asynchronous architecture.

Phase 1 Phase 2 Phase 3

Possible Solutions to the

1.Background of the Problem Research Problem

2.Thearetical Foundations
3. Definition of Basic Terms

1.Problem Statement Problem

2. Formulation Objectives

3.Justification or Significance
Phase 6

Phase 5 Phase 4

1.Work plan for design or
development.

2.Resources: Instruments, tools,
materials, and investments.

In this stage, the design or
development is evaluated.

In this stage, the design or
development Is executed

Figure 1: Research Methodology. Author's own work

Figure 2 illustrates the development methodology applied to
this project, combining agile practices and tools to build and
validate the architecture through real use cases (real-time
notifications, monitoring panels, and messaging). Project
planning follows sprint-based iterations with Kanban
visualization, while quality and delivery rely on XP practices
such as automated testing, peer review, and CI/CD pipelines.
Security and observability guidelines address per-channel
authentication, origin checks, and latency metrics. Phase 4
thus becomes an incremental, traceable cycle where each
software increment is validated against acceptance criteria,
ensuring the architecture evolves through empirical
evidence.

Phase 4

1.Work plan for design or development.

2.Resources: Instruments, tools,
materials, and investments.

-l -+

1.Creation of roles.
2.Structured meetings

a» -

1.Visual workflow management
tion and management

1. Focus on quality.
2.Intensive communication and
collaboration.

3. Flexible adaptation.
4, Creation of sprints,

of sprints.

3. Rapid iterations and continuous
3. Identification of bottlenecks. "

feedback.

Figure 2: Project Programming Methodology. Author's own
work

In summary, the reference technological methodology [19],
reinterpreted with an agile and artifact-oriented lens, aligns
research with development: the asynchronous architecture is
designed, constructed incrementally with verifiable
engineering practices, and validated through practical use
cases, maintaining alignment between objectives, process,
and outcomes.

4. Architecture Development

Figure 3 presents the proposed technological architecture for
real-time communication in an asynchronous Django
environment. It integrates client, server, and messaging
layers under a modular structure that optimizes concurrency
and bidirectional data flow.

The web client uses JavaScript and jQuery to update
interfaces dynamically and exchange events through
WebSockets, enabling low-latency interaction. On the server
side, Django—running under the ASGI standard—efficiently
handles multiple simultaneous connections through
asynchronous processes managed by Daphne and Django
Channels.

Redis acts as a message broker using the publish/subscribe
pattern to synchronize events and support inter-process
communication. Finally, all components are containerized
with Docker, ensuring portability, isolation, and consistency
across environments.

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

Paper ID: SR251108101843

DOI: https://dx.doi.org/10.21275/SR251108101843 693

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064
Impact Factor 2024: 7.101

Figure 3: Asynchronous technological architecture based on
Django, Channels, Daphne, and Redis

5. Results

The proposed asynchronous architecture enabled the system
to evolve from a traditional synchronous server to a fully
asynchronous environment, achieving real-time
communication without polling or page reloads. Deployed
and validated on AWS across five independent projects, it
demonstrated stable performance and seamless user
interaction.

A key implementation is the School Management System for
the Universidad Politécnica Region Poniente, where real-
time notifications were integrated into grade and payment
modules, allowing instant updates for students and
administrators. Another example is the Dental Management
Module (Figure 4), where patients and dentists receive
immediate notifications upon appointment confirmation,
showcasing the efficiency of the Django Channels, Daphne,
and Redis—based asynchronous model.

view patient view dentist
Figure 3: Real-time notification interface in the Clinic App:
patient view (left) and dentist view (right)

The deployment on AWS—combined with containerized
environments via Docker—ensured scalability, reliability,
and consistent performance under concurrent connections.
Each implementation verified the architecture’s capacity to
handle real-time events with low latency, validating the
approach as a viable model for interactive, service-oriented
web applications.

References

[1] J. D. A. Rincén, J. A. D. Lote, M. R. Galavis, y C. M.
S. Loreto, “Sistema de notificaciones en tiempo real
por proximidad basado en IoT para promover los
servicios de la Vicerrectoria del Medio en la Pontificia
Universidad Javeriana,” Pontificia Universidad
Javeriana, 2023.

[2] N. W. T. Mamani, “Modelo de API Gateway para
mejorar la comunicacion de los microservicios en
aplicaciones empresariales,” Universidad Nacional del
Altiplano de Puno (Peru), 2023.

[3]

[3]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

H. V. P. Singh, S. R. Rizvi, y Q. H. Mahmoud, “Two
architectures for real-time sensor data streaming for
cloud applications,” International Symposium on
Signal Processing and Information Technology, pp.
133-138, 2015. doi: 10.1109/ISSPIT.2015.7394315.

E. E. Sosa, “Libreria de componentes para agilizar el
desarrollo inicial de un proyecto,” Universidad
Nacional de La Plata, 2024.

G. E. Paula, L. Quisaguano Collaguazo, A. C. Guaman,
y S. Llambo Alvarez, “Frameworks del lado del
servidor: caso de estudio Node JS, Django y Laravel,”
593 Digital Publisher CEIT, vol. 10, no. 1, pp. 403—
414, 2025.

K. J. Gracia Orejuela, M. B. Gorozabel Bazurto, y W.
Chango, “Long polling, WebSockets y Server-Sent
Events: comunicacion para el envio de datos en tiempo
real,” Mikarimin, vol. 10, no. 3, pp. 101-120, 2024.
doi: 10.61154/mrem.v10i3.3272.

E.Bozdag, A.Mesbah, A. vanDeursen, “A
Comparison of Push and Pull Techniques for Ajax”,
WSE 2007, IEEE, 2007.
doi:10.1109/WSE.2007.4380239. Esta compara los
enfoques “pull” (polling) frente a “push”
(Comet/long-polling) en aplicaciones AJAX y describe
los compromisos de escalabilidad.

R. Kannan, M. A. K. T., S. Vairachilai, and V.
Ramshankar, “Node]JS and Postman for Serverless
Computing,” Advances in Systems Analysis, Software
Engineering, and High Performance Computing, Apr.
2024, doi: 10.4018/979-8-3693-1682-5.ch012.

S. Ganesh, R. George, R. Tejas, N. Badri, and K.
Vinodha, “Queue Orchestration Using an In-Memory
Broker,” in Proc. 2022 IEEE 2nd Int. Conf. on Mobile
Networks and Wireless Communications (ICMNWC),
Dec. 2022. doi:
10.1109/ICMNWC56175.2022.10031963

M. Lathkar, High-Performance Web Apps with
FastAPI: The Asynchronous Web Framework Based on
Modern Python, Apress, 2023. doi: 10.1007/978-1-
4842-9178-8

M. M. Tkhabisimova, U. G. Baymuradov, and A. Sh.
Izrailova, “Development and implementation of web
applications in Python using the Django framework,”
Ekonomika i upravlenie: problemy, resenid, vol. —, Jan.
2024. doi: 10.36871/ek.up.p.r.2024.12.08.007

P. Soligo and J. S. Ierache, “Informe técnico,
telemetria satelital de tiempo real sobre WebSockets y
framework Django,” ReDDI: Revista Digital del
Departamento de Ingenieria, vol. 7, no. 2, pp. —, 2023.
doi: 10.54789/reddi.7.2.5

J. M. Claudiyap and P. O. N. Saian, “Implementasi
sistem broadcast message menggunakan python dan
redis pub/sub,” JIPI (Jurnal Ilmiah Penelitian dan
Pembelajaran Informatika), vol. 7, no. 3, pp. —, Aug.
2022. doi: 10.29100/jipi.v7i3.3014

L. P. Carloni, “The Role of Back-Pressure in
Implementing Latency-Insensitive Systems,” Electron.
Notes Theor. Comput. Sci., vol. —, 2006. doi:
10.1016/J.ENTCS.2005.05.036

C. De La Cruz Casafio, “Metodologia tecnologica en
ingenieria,” Revista Ingenium, vol. 1, 2016, pp. 1—.

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

DOI: https://dx.doi.org/10.21275/SR251108101843

Paper ID: SR251108101843

694

http://www.ijsr.net/
https://scispace.com/papers/nodejs-and-postman-for-serverless-computing-36o12es6ir?utm_source=chatgpt
https://scispace.com/papers/queue-orchestration-using-an-in-memory-broker-2fhot12n?utm_source=chatgpt
https://scispace.com/papers/high-performance-web-apps-with-fastapi-the-asynchronous-web-3nsoxs6b?utm_source=chatgpt
https://scispace.com/papers/high-performance-web-apps-with-fastapi-the-asynchronous-web-3nsoxs6b?utm_source=chatgpt
https://scispace.com/papers/development-and-implementation-of-web-applications-in-python-1vc2pu2i10rk?utm_source=chatgpt
https://scispace.com/papers/informe-tecnico-telemetria-satelital-de-tiempo-real-sobre-w8ct82xe?utm_source=chatgpt
https://scispace.com/papers/implementasi-sistem-broadcast-message-menggunakan-python-dan-vkwbifcb?utm_source=chatgpt
https://scispace.com/papers/the-role-of-back-pressure-in-implementing-latency-3wajb8uiv8?utm_source=chatgpt

