# International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

# Factors Affecting Radiation Exposure to Patients During ERCP

B. Ravi Shankar<sup>1</sup>, B. Shruti Sagar<sup>2</sup>, Viswanath Reddy Donapati<sup>3</sup>, Rakesh Kumar Adi<sup>4</sup>, G. Srinivas Rao<sup>5</sup>, Kiran Kumar Jogu<sup>6</sup>, Shiva Nagilla<sup>7</sup>

1, 3, 4, 5, 6, 7 Department of Medical Gastroenterology, Yashoda Hospital, Secunderbad, India

<sup>2</sup>MD, DM, Associate Consultant, Medical Gastroenterology, Yashoda Hospitals, Secunderabad, Telangana, India, 500003 Corresponding Author Email: sagar1292[at]gmail.com

Abstract: Introduction: Endoscopic retrograde cholangiopancreatography (ERCP) is a common technique performed worldwide for the indications of cholangitis, biliary tract pathology and pancreatic duct disease. Fluoroscopy is a requisite during ERCP which involves varied doses of radiation exposure to both patient & the team involved. Objective: This study aims to measure the radiation exposure during ERCP and to identify patient and procedural factors associated with increased radiation exposure during ERCP. Materials & Methods: In this retrospective, single-center study of 375 patients who underwent ERCP between January to October 2023, we analyzed the influence of indication of ERCP and presence of native papilla on the following radiation exposure parameters - Cumulative radiation dose (mGy), dose area parameter (Gy-cm<sup>2</sup>), total fluoroscopy time and number of fluoroscopy shots. Using SPSS version 24, statistical tests were performed. <u>Results</u>: The major indication for ERCP in our study was choledocholithiasis (55 %). The mean cumulative radiation dose was  $44.54 \pm 2.35$ mGy, mean DAP 12.49  $\pm$  0.77, average number of fluoroscopy shots 26.46  $\pm$  1.04 and mean fluoroscopy time was 6.58  $\pm$  4.06 minutes. Various indications like choledocholithiasis, benign biliary stricture, malignant biliary stricture and pancreatic duct stones were analyzed. There was a significant difference between ERCP quality indicators and indications. Among the indications, Benign biliary stricture had the highest cumulative radiation dose (60.94  $\pm$  5.99 mGy), DAP (17.92  $\pm$  2.61 Gy-cm<sup>2</sup>) and number of fluoro shots (32.51  $\pm$  2.82). Presence of prior sphincterotomy/native papilla did not significantly influence radiation parameters recorded in the study. Conclusion: The amount of radiation that a patient was exposed to was influenced by the nature of the indication, disease behavior and complexity of the ERCP procedure. Radiation dose parameters such as dose area parameters (DAP), median cumulative dose exposure and total fluoroscopy time can be used as ERCP quality indicators.

**Keywords:** Choledocholitiasis, Pancreatitis, Biliary stricture, Cholangitis, Fluoroscopy

#### 1. Introduction

Endoscopic retrograde cholangiopancreatography (ERCP) is an invasive endoscopic procedure that is commonly performed across the world for the management of hepatobiliary and pancreatic diseases with success rates of up to 90%<sup>1</sup>. With the recent advancement of non-invasive diagnostic tools, such as magnetic resonance imaging, magnetic resonance cholangiopancreatography, and endoscopic ultrasonography, ERCP has become an almost exclusively therapeutic procedure.

ERCP is a highly technical and demanding invasive procedure carrying a high potential risk of severe complications. The most common are pancreatitis, haemorrhage, perforation, cholangitis and other infectious complications. ERCP-related mortality rate is approximately 1%<sup>2</sup>.

ERCP procedure requires fluoroscopic imaging and digital X rays to be performed to visualize the biliary tract and the pancreas, which makes it an interventional radiology procedure 3

Medical radiation exposure is increasingly becoming a significant problem because of its frequent usage in different specialities of health care and associated potential carcinogenic effects.

ERCP procedure involves relatively high doses of radiation compared to other diagnostic radiological examinations. This is particularly the case for examinations that include therapeutic intervention, which may have effective doses of the order of that of an abdominal CT. The estimated cancer risk from a diagnostic ERCP was 1 in 6700 and from a therapeutic ERCP 1 in 1700. These risks are small but not insignificant<sup>4</sup>.

Hence there is a need to establish diagnostic reference levels for radiation doses in ERCP procedure as per various societies. The International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA), and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) <sup>5</sup>. However, data regarding radiation doses during ERCP is scarce.

ASGE includes radiation dose and fluoroscopy time as part of its intra procedure quality indicators of ERCP. ESGE also recommended permissible radiation dose exposure levels in Endoscopy in 2012. However, they acknowledged in the same report that there is limited data available regarding radiation dose exposure levels during ERCP <sup>5</sup>.

Reducing the fluoroscopy duration is the most effective and easiest method to minimize radiation exposure during ERCP. Fluoroscopy radiation depends on many factors such as indication of ERCP procedure, degree of difficulty of the

### International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

procedure, patient factors and endoscopic skills. A better understanding of which of these factors lead to increased fluoroscopy duration and radiation exposure during ERCP can help us in preparing better to reduce overall procedure time and radiation exposure.

The aim of this study was to analyze radiation doses to patients during ERCP procedures performed at our centre and to identify factors that lead to increased radiation exposure during the procedure.

#### 2. Materials and Methods

#### 1) Study Design

The present study is a retrospective single center study and was conducted at Yashoda Hospitals, Secunderabad. All consecutive patients who underwent ERCP during the period January 2023 to October 2023 were included in the study. The following patient data was collected – a) Demographic data – Name, age and gender, b) Procedure related data collected included indication of ERCP (which was classified into 4 categories i.e choledocholithiasis, malignant biliary stricture, benign biliary stricture and pancreatic duct stenting. ERCP procedures were also classified based on presence of native papilla or prior sphincterotomy status. The following radiation parameters were recorded for each patient undergoing ERCP: a) Cumulative radiation dose in milligray (mGy), b) Dose area parameter in Gray – centimeter<sup>2</sup>, c) Total fluoroscopy time and Number of fluoroscopy shots. The study was approved by the institutional ethics committee. Informed consent was omitted due to the retrospective nature of the study.

#### 2) Procedure

ERCP was performed for all patients for therapeutic indications. Preferred patient position was prone. Fujifilm ED-580XT duodenoscope was used to perform all the procedures. All ERCPs were performed under sedation with propofol and ancillary medications. ERCP team included the gastroenterologist, anesthetist, ERCP technician and his two assistants. Eight different gastroenterologists have performed ERCP for patients included in this study. All gastroenterologists involved in the study are experienced in ERCP procedure.

The X-ray fluoroscopy generator was a Philips Zenition 50 mobile C – arm unit. The radiation data related to ERCP are automatically recorded by a preinstalled equipment in the system. This unit automatically shows fluoroscopy duration and other radiation parameters included in the study. The fluoroscopy system was entirely operated by the attending radiology technician.

#### 3) Outcome measurements and Statistical Analysis

The primary outcome of interest was radiation exposure during ERCP, which was determined by the following four parameters. a) Cumulative radiation dose in milligray (mGy), b) Dose area parameter in Gray – centimeter2, c) Total fluoroscopy time and number of fluoroscopy shots. Additionally, the association between indication of ERCP, prior sphincterotomy status and patient radiation exposure was determined.

#### 4) Statistical Analysis

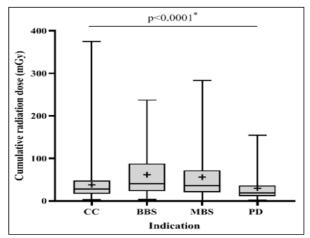
Software used was SPSS version 24. A confidence interval of 95% was taken, hence P value <0.05 is considered significant. Statistical tests performed were: one-way ANOVA and Independent t-test.

#### 5) Consent for ERCP procedure

Written informed consent was obtained from all patients before the procedure in accordance with guidelines set forth by the institutional board of the hospital. All ERCP procedures were therapeutic and were done under sedation provided by an anesthesiologist and with a fixed setup for the patient.

#### 3. Results

A total of 375 patients who underwent ERCP were included in the study. All patients underwent ERCP for therapeutic indications only. Mean age of the patients included in the study was  $53.03 \pm 16.03$  years. 58 % of the patients in the study were men.


**Table 1:** Baseline characteristics of the patients

| Characteristic | $n (\%) / Mean \pm SD$ |
|----------------|------------------------|
| Age (years)    | $53.03 \pm 16.03$      |
| Sex            |                        |
| Male           | 216(57.6)              |
| Female         | 159(42.4)              |

The major indication for ERCP in our study was choledocholithiasis in 55% of patients. The different types of indications for which ERCP procedures included in the study were undertaken is shown in Table 2. Radiation dose parameters recorded in our study were highly variable and are depicted in table 3

**Table 2:** Indications for ERCP

| Parameter                   | n (%)      |
|-----------------------------|------------|
| Indication                  |            |
| Choledocholithiasis         | 207 (55.2) |
| Benign biliary stricture    | 75 (20)    |
| Malignant Biliary stricture | 54 (14.4)  |
| PD stone                    | 39 (10.4)  |



**Figure A:** Cumulative Radiation Dose Exposure Based on Indication

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
<a href="https://www.ijsr.net">www.ijsr.net</a>

## International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

Table 3: Descriptives of Radiation, DAP, Fluoroscopy, No. of Fluoro Shots

| Parameter                | Minimum | Maximum | $Mean \pm SD$    |
|--------------------------|---------|---------|------------------|
| Radiation(mGy)           | 1.23    | 375     | $44.54 \pm 2.35$ |
| DAP(Gy-cm <sup>2</sup> ) | 0.343   | 176     | $12.49 \pm 0.77$ |
| Fluoroscopy (Minutes)    | 0.1     | 14.9    | $6.58 \pm 4.06$  |
| No. of shots             | 2       | 163     | $26.46 \pm 1.04$ |

Mean cumulative radiation dose was  $44.54 \pm 2.35$  mGy. Maximum cumulative radiation dose was 375 mGy and minimum dose was 1.230 mGy. Mean DAP recorded in the

study was  $12.49 \pm 0.77$  Gy-cm<sup>2</sup>. Average number of fluoroscopy shots applied were  $26.46 \pm 1.04$ .

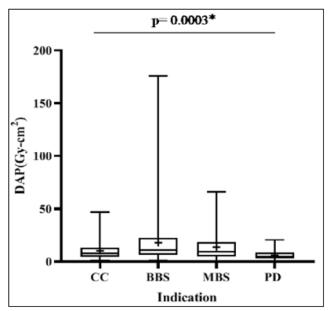



Figure B: DAP Based on Indication

Mean fluoroscopy time in the study was  $6.58 \pm 4.06$  minutes. However, this was highly variable. Shortest duration of fluoroscopy time was only 0.01minutes where only a single fluoroscopy shot was used. Longest duration of fluoroscopy time used was 14.90 minutes for a case with difficult cannulation.

In our study, the indication for which ERCP was performed significantly influenced cumulative radiation dose, dose area product and number of fluoroscopy shots used. This is shown in table 4.

Table 4: Radiation, DAP, Fluoroscopy, No. of Fluoro Shots Based on Indication

| Indication                  | Radiation Dose mGy | DAP              | Fluoroscopy Gcm <sup>2</sup> time in minutes | No. of Fluro Shots |
|-----------------------------|--------------------|------------------|----------------------------------------------|--------------------|
| Choledocholithiasis         | $38.13 \pm 2.61$   | $11.01 \pm 0.84$ | $6.70 \pm 3.98$                              | $24.14 \pm 1.21$   |
| Benign biliary stricture    | $60.94 \pm 5.99$   | $17.92 \pm 2.61$ | $6.35 \pm 4.33$                              | $32.51 \pm 2.82$   |
| Malignant biliary stricture | $57.55 \pm 8.35$   | $14.77 \pm 1.98$ | $6.23 \pm 4.21$                              | $29.44 \pm 3.23$   |
| PD stone                    | $28.99 \pm 4.93$   | $6.71 \pm 0.82$  | $6.85 \pm 3.88$                              | $23.03 \pm 2.84$   |
| P value                     | <0.0001*           | 0.0003*          | 0.804                                        | 0.0083*            |

Test used: One-way ANOVA

Patients who underwent ERCP for malignant and benign biliary strictures had significantly more radiation exposure in terms of cumulative radiation dose in milligray, dose area parameter in Gray – centimeter<sup>2</sup> and number of fluoroscopy shots compared to those who underwent ERCP for choledocholithiasis and pancreatic duct therapy. Fluoroscopy time however was not significantly different based on indication.

Presence of native papilla did not influence radiation dose exposure parameters measures in the study. This is shown in Table 5. Test used: Independent t test.

<sup>\*</sup>Statistically significant difference was found in radiation dose, DAP, and No. of fluro shots based on indication.

## International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

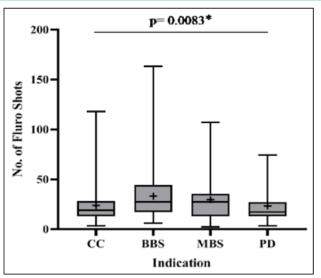



Figure C: No. of Fluoro Shots Based on Indication

**Table 5:** Radiation, DAP, Fluoroscopy, No. of Fluro Shots Based on Sphincterotomy Procedure

| F                           |                  |                  |        |  |
|-----------------------------|------------------|------------------|--------|--|
|                             | With             | Without          | р      |  |
| Parameter                   | sphincterotomy   | sphincterotomy   | value  |  |
|                             | procedure        | procedure        | value  |  |
| Radiation                   | $41.57 \pm 2.78$ | $48.27 \pm 3.97$ | 0.1571 |  |
| DAP                         | $11.16 \pm 0.67$ | $14.16 \pm 1.53$ | 0.0553 |  |
| Fluoroscopy time in minutes | $6.80 \pm 4.08$  | $6.30 \pm 4.04$  | 0.241  |  |
| No. of shots                | $24.76 \pm 1.15$ | $28.61 \pm 1.86$ | 0.0679 |  |

Statistically significant difference was not found in radiation, DAP, fluoroscopy, No. of fluoro shots based on procedure.

#### 4. Discussion

Medical radiation exposure to patients has been increasing over the years and is a potential concern for risk of cancer<sup>5</sup>. Even low dose radiation exposure has been shown in some studies to have carcinogenic potential due to stochastic effect <sup>6,7</sup> Radiation exposure to medical and para medical staff is also a major concern. Radiation safety culture is a major issue that needs addressing at the institutional and administrative level.

The major interventional procedure in Medical Gastroenterology practice that requires the use of medical radiation is ERCP. It requires fluoroscopy for imaging of the pancreaticobiliary system and hence the procedure involves radiation exposure to patients and medical staff. ERCP is being performed widely all across India in a number of centers.

Optimising radiation dose exposure during ERCP would mean limiting the radiation dose to as low as reasonably achievable (ALARA principle). The European Society of Digestive Endoscopy developed guidelines for minimizing radiation exposure of patients and physicians during endoscopy<sup>8</sup>. However before trying to minimize radiation we must have dose reference levels for radiation exposure in ERCP against which we can compare the radiation dose exposure occurring in different ERCP centres<sup>9</sup>.

There is a dearth of data regarding dose reference levels for radiation exposure during ERCP in India.

In our present study we have measured four radiation dose exposure parameters to assess the amount of radiation that a patient is being exposed to during ERCP at our centre which is a tertiary care hospital. Mean cumulative radiation dose, dose area product and fluoroscopy time recorded in our study are similar to values recorded in previous studies <sup>1,2,3,10-17</sup>. Number of fluoroscopy shots applied were higher in our study compared to previous studies. However, the duration of each fluoroscopic shot was less in our study.

The dose of radiation exposure to patients during ERCP depends on a number of factors including patient related factors, indication of procedure, complexity of procedure steps, radiation equipment used etc.

In our study we evaluated the influence of indication of procedure and presence of native papilla/prior sphincterotomy status on the dose of radiation exposure to patients during ERCP.

The indication for which ERCP was performed significantly influenced the radiation dose exposure in our study. Patients who underwent ERCP for benign and malignant biliary stricture had significantly more radiation dose exposure in terms of Mean cumulative radiation dose, Dose area product and number of fluoroscopy shots used in comparison with those who underwent ERCP for choledocholithiasis and pancreatic duct therapy. In a study conducted by Hayash et al, radiation dose exposure parameters similar to those in our study were significantly higher in patients undergoing ERCP when the indication for procedure was proximal malignant biliary obstruction as compared to distal malignant biliary obstruction and choledocholithiasis<sup>5</sup>. Chi Hyuk Oh, et al showed that those patients who underwent ERCP for malignant biliary obstruction required significantly more fluoroscopy time than those who underwent ERCP for other indications 18. In this study fluoroscopy time during ERCP was significantly higher in those patients with a high BMI (BMI >27.5kg/m2). Fluoroscopy time was also higher if complex ERCP procedure steps like mechanical lithotripsy and needle-knife use were performed <sup>18</sup>.

In our study the presence of a prior sphincterotomy did not affect radiation dose parameters during ERCP in comparison to those patients undergoing ERCP who had a native papilla. Hayash et al also found that presence of native papilla did not affect radiation dose exposure parameters in their study<sup>5</sup>

Prior studies have shown high-volume endoscopists can achieve lower radiation exposure due to shorter procedure times <sup>19-22</sup>. In our study all the endoscopists are experienced ERCP operators and perform a similar yearly volume of ERCP procedures, so this distinction could not be made.

There are a few limitations of the present study that we would like to acknowledge

# International Journal of Science and Research (IJSR) ISSN: 2319-7064

**Impact Factor 2024: 7.101** 

Present study is a retrospective analysis of a single centre ERCP database.

Influence of difficulty of ERCP procedure on radiation dose parameters based on ASGE grading was not taken into consideration. Effect of individual steps of ERCP on radiation dose parameters like needle knife use, mechanical lithotripsy etc was not included in the study. This could have provided more insight into the factors leading to the wide variability in radiation dose parameters in different studies. Impact of patient related factors like BMI on radiation dose parameters also could have been included.

Overall, having an understanding of patient and ERCP procedure related factors that can affect radiation dose exposure can help reduce radiation exposure to patients during ERCP with prior planning. Multicentre prospective studies are required on this topic to establish dose reference levels and publish well established guidelines on optimizing radiation exposure during ERCP. Future studies should also focus on differences in radiation exposure with different processing engines and optimizing the use of radiation equipment (C - arm machines). Radiation exposure to ERCP staff during the procedure is another topic that needs to be explored in future studies.

#### 5. Conclusion

Fluoroscopy performed during ERCP adds to a patient cumulative medical radiation dose exposure during the course of his life. Dose of radiation exposure during ERCP is highly variable and depends on a number of procedure related factors. A prior understanding of ERCP procedure related factors that influence radiation dose exposure to patients can help a physician to reduce radiation dose exposure during the ERCP procedure with prior planning.

#### References

- [1] Alzimami K, Sulieman A, Paroutoglou G, Potamianos S, Vlychou M, Theodorou K. Optimisation of Radiation Exposure to Gastroenterologists and Patients during Therapeutic ERCP. Gastroenterol Res Pract. 2013;2013:587574. doi:10.1155/2013/587574
- [2] Saukko E, Grönroos JM, Salminen P, Henner A, Nieminen MT. Patient radiation dose and fluoroscopy time during ERCP: a single-center, retrospective study of influencing factors. Scand J Gastroenterol.2018;53(4):495-504. doi:10.1080/00365521.2018.1445774
- [3] Buls N, Pages J, Mana F, Osteaux M. Patient and staff exposure during endoscopic retrograde cholangiopancreatography. *Br J Radiol*. 2002;75(893):435-443. doi:10.1259/bjr.75.893.750435
- [4] Larkin CJ, Workman A, Wright RE, Tham TC. Radiation doses to patients during ERCP. *Gastrointest Endosc*. 2001;53(2):161-164. doi:10.1067/mge.2001.111389
- [5] Hayashi S, Nishida T, Matsubara T, et al. Radiation exposure dose and influencing factors during endoscopic

retrograde cholangiopancreatography [published correction appears in PLoS One. 2018 Dec 20;13(12):e0209877. doi: 10.1371/journal.pone.0209877.]. PLoS One. 2018;13(11):e0207539. Published 2018 Nov 19. doi: 10.1371/journal.pone.0207539

- [6] Cardis E, Gilbert ES, Carpenter L, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. *Radiat Res.* 1995;142(2):117-132.
- [7] Richardson DB, Cardis E, Daniels RD, et al. Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS) [published correction appears in BMJ. 2015 Dec 04;351:h6634. doi: 10.1136/bmj.h6634.]. BMJ. 2015;351:h5359. Published 2015 Oct 20. doi:10.1136/bmj.h5359
- [8] Dumonceau JM, Garcia-Fernandez FJ, Verdun FR, et al. Radiation protection in digestive endoscopy: European Society of Digestive Endoscopy (ESGE) guideline. Endoscopy. 2012;44(4):408-421. doi:10.1055/s-0031-1291791
- [9] Hayashi S, Takenaka M, Hosono M, Nishida T. Radiation exposure during image-guided endoscopic procedures: The next quality indicator for endoscopic retrograde cholangiopancreatography. World J Clin Cases. 2018;6(16):1087-1093. doi:10.12998/wjcc.v6.i16.1087
- [10] Sulieman A, Paroutoglou G, Kapsoritakis A, et al. Reduction of radiation doses to patients and staff during endoscopic retrograde cholangiopancreatography. *Saudi J Gastroenterol*. 2011;17(1):23-29. doi:10.4103/1319-3767.74456
- [11] Hart D, Hillier MC, Wall BF. National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK. *Br J Radiol*. 2009;82(973):1-12. doi:10.1259/bjr/12568539
- [12] Tsalafoutas IA, Paraskeva KD, Yakoumakis EN, et al. Radiation doses to patients from endoscopic retrograde cholangiopancreatography examinations and image quality considerations. *Radiat Prot Dosimetry*. 2003;106(3):241-246. doi:10.1093/oxfordjournals.rpd.a006355
- [13] Brambilla M, Marano G, Dominietto M, Cotroneo AR, Carriero A. Patient radiation doses and references levels in interventional radiology. *Radiol Med.* 2004;107(4):408-418.
- [14] Olgar T, Bor D, Berkmen G, Yazar T. Patient and staff doses for some complex x-ray examinations. *J Radiol Prot.* 2009;29(3):393-407. doi:10.1088/0952-4746/29/3/004
- [15] ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
- [16] Singhal A, Rowe G, Faizallah R. Pulse fluoroscopy in ERCP: reducing radiation exposure. Gastrointestinal Endoscopy. 2006 Apr 1;63(5): AB300.

#### International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

- [17] Samara ET, Stratakis J, Enele Melono JM, Mouzas IA, Perisinakis K, Damilakis J. Therapeutic ERCP and pregnancy: is the radiation risk for the conceptus trivial?. Gastrointest Endosc. 2009;69(4):824-831. doi:10.1016/j.gie.2008.05.068
- [18] Oh CH, Dong SH, Kim JW, Kim GA, Lee JM. Radiation exposure during endoscopic retrograde cholangiopancreatography according to clinical determinants. *Medicine* (Baltimore). 2020;99(13):e19498. doi:10.1097/MD.0000000000019498
- [19] Uradomo LT, Lustberg ME, Darwin PE. Effect of physician training on fluoroscopy time during ERCP. *Dig Dis Sci.* 2006;51(5):909-914. doi:10.1007/s10620-005-9007-y
- [20] Gonzalez-Gonzalez JA, Martínez-Vazquez MA, Maldonado-Garza HJ, Garza-Galindo AA. Radiation doses to ERCP patients are significantly lower with experienced endoscopists. *Gastrointest Endosc*. 2011;73(2):415. doi:10.1016/j.gie.2010.06.009
- [21] Liao C, Thosani N, Kothari S, Friedland S, Chen A, Banerjee S. Radiation exposure to patients during ERCP is significantly higher with low-volume endoscopists. *Gastrointest Endosc.* 2015;81(2):391-8.e1. doi:10.1016/j.gie.2014.08.001
- [22] Jorgensen JE, Rubenstein JH, Goodsitt MM, Elta GH. Radiation doses to ERCP patients are significantly lower with experienced endoscopists. *Gastrointest Endosc*. 2010;72(1):58-65. doi:10.1016/j.gie.2009.12.060