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Abstract: Objectives: To analyze the application of artificial intelligence technologies-DataRobot, Generative Al, and Agentic Al-for
predictive modeling and process optimization in pharmaceutical manufacturing, with a focus on enhancing quality stability and reducing
costs. Study Design: A comprehensive applied study involving the systematization of practical case studies and an analytical comparison
of manufacturing solutions within the context of the industry's transition to the '""Pharma 4.0" model. Setting and Duration: The work is
based on a synthesis of industrial and academic sources covering the period from 2022 to 2025, focused on the implementation of digital
factories and intelligent platforms. Methodology: The methodology included a review of publications, thematic coding of AI application
examples, reconstruction of production chains, and classification of tasks by cycle stages (biotechnological processes, quality control,
logistics). Results: The study systematized areas of predictive analytics, identified use cases for generative models for synthetic data and
formulations, and described the architecture of agentic systems for monitoring, Corrective and Preventive Action (CAPA), and resource
planning. The findings confirm accelerated technology development, improved process stability, and reductions in product defects and
unplanned downtime. Conclusion: The combined use of predictive, generative, and agentic solutions forms the foundation of the digital
factories of the future and ensures a sustainable increase in the efficiency of pharmaceutical manufacturing.
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infrastructure principles for agentic applications and action
orchestration (DataRobot, 2025). M. Boskabadi presented the
concept of industrial agentic Al and its connection to
generative modeling in complex systems, which was used as
the framework for the agent architecture (Boskabadi et al.,
2025). N. Hussain reviewed predictive approaches in logistics
and market analytics, which were applied in describing
inventory planning and production schedules (Hussain et al.,
2024). D.R. Serrano summarized the use of Al in drug
discovery and drug delivery, which allowed for the transfer of
PAT, QbD, and neural network parameter selection practices
to granulation, drying, and pressing operations (Serrano et al.,
2024). D. Staunton described examples of agentic Al

1. Introduction

In modern pharmaceutical manufacturing, artificial
intelligence (AI) technologies are increasingly being applied
to enhance the efficiency of drug development and
production. The last five years have seen particularly
intensive development in these approaches, driven by the
need to accelerate the market entry of new drugs, reduce
costs, and improve product quality control. The relevance of
this topic is dictated by the global pharmaceutical industry's
transition to the "Industry 4.0" concept, which involves the
digitalization and intellectualization of production processes
(DataRobot, 2023a). The objective of this work is to analyze

the application of the DataRobot platform and modern
Generative Al and Agentic Al technologies in the
pharmaceutical sector for predictive modeling and the
optimization of manufacturing processes. In line with this
objective, the following tasks are addressed:

e To characterize the capabilities of DataRobot in the
context of pharmaceutical manufacturing,

e To describe examples of the use of generative and agentic
Al for modeling and managing processes,

e To evaluate the impact of these technologies on the
efficiency and quality of pharmaceutical production.

2. Methods and Materials

The source corpus was formed to compare industrial Al
practices with the tasks of pharmaceutical technology and
compliance. DataRobot provided descriptions of AutoML,
simulation, and predictive scheduling for manufacturing
scenarios (DataRobot, 2023a); DataRobot offered an
overview of product modules and deployment options on the
shop floor (DataRobot, 2023b); and DataRobot detailed the

implementation in life-science manufacturing, which formed
the basis for scenarios in laboratory automation and CAPA
processes (Staunton, 2025). L.K. Vora characterized the
engineering applications of Al in pharmaceutical
technologies and dosage form design, which was used in the
systematization of tasks for visual inspection and stabilization
of batch-to-batch variability (Vora et al., 2023).

The methodology included content analysis of documents,
thematic coding of case studies, a comparative analysis of
procedures, mapping of tasks to cycle stages, analytical
synthesis, verification of conclusion consistency across
sources, and reconstruction of data flows for production
loops. The final step was the assembly of three
systematizations and a protocol for the reproducible transfer
of practices into a production environment.

3. Results and Discussion
One of the key areas for Al applications is the prediction of

various parameters and outcomes of the manufacturing
process. The DataRobot platform, a leader in the field of
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AutoML (automated machine learning), provides tools for the
rapid creation and deployment of predictive models based on
production data. For example, with DataRobot, enterprises
can develop models to predict the yield of a biotechnological
process, optimize the composition of raw materials, or predict
the probability of defects in a drug batch (DataRobot, 2023b).
According to the company, the use of such models allows for
maximizing product yield and reducing costs through the
optimal selection of parameters—the so-called profitability
and yield matrix, where the ideal combination of components
and process conditions is determined (DataRobot, 2023b).
Furthermore, the integration of prediction algorithms into
production lines helps reduce unplanned equipment
downtime: for instance, analyzing sensor data and equipment
operation logs makes it possible to predict failures and
perform maintenance preventively. As a result, one enterprise
that implemented Al models for failure prediction achieved a
significant reduction in downtime and associated losses.
Applying machine learning methods to process data also
enables advanced process control—dynamically adjusting
conditions in real time.

According to a review by FDA experts, combining real
sensors with predictive models in a process control loop
makes it possible to predict the course of a technological
operation and maintain optimal conditions, which increases
product quality stability (DataRobot, 2023a). In general,
machine learning algorithms are now successfully used to
model complex non-linear relationships between production
parameters and drug quality, which is difficult to achieve with
traditional methods. As noted in a recent study, the
implementation of Al accelerates the development and
scaling of technologies, allowing for the faster discovery of
optimal formulations and regimes at the process design and
scale-up stages (DataRobot, 2023a). Thus, Al-based
predictive modeling has become a powerful tool for Quality
by Design in pharmaceuticals—an approach where quality is
built in by process design rather than being controlled only at
the output (Vora et al., 2023). A systematization of these
approaches is presented below (Table 1).

Table 1: Classification of Predictive Modeling Tasks in Pharmaceutical Manufacturing: Objectives, Data, Algorithms,
Solutions (compiled by the author based on (DataRobot, 2023a; Serrano et al., 2024; Vora et al., 2023)

Production Cycle

Prediction/Optimization

(Quality Control) reports

surface methodology

Stage Objective Data Sources Typical Algorithms Control Loop Solutions
Biotechnological |Predict yield and quality | Process sensors, equipment logs, Autp ML ensgmbles, Prqactlve parameter
Reactor stability and laboratory protocols gradient boosting, and | correction, QbD (Quality by
regularized regressions | Design) experiment planning
. - PAT (Process Analytlgal Neural network models | Adjustment of operational
Granulation/ Stabilize dosage form Technology) streams, moisture . . .
. . e combined with response | modes, reduction of batch-to-
Drying/Pressing characteristics and temperature profiles, QC

batch variability

Unit-Dose Quality

Detect defects and

Image and video streams from

Computer vision,
convolutional networks,

Automated rejection of non-
conforming units, routing for

demand forecast

external factors

gradient-based methods

Control deviations lines, defect standards > .
anomaly detectors re-inspection
Prevent equipment Telemetry, vibration, and acoustic | Remaining useful life Scheduling maintenance
Maintenance Lquip signals, PLC (Programmable  |prediction, probabilistic | before stoppage, reducing
failures . . .
Logic Controller) logs failure models unplanned downtime
Supply Chain |Align production with the | Sales, logistics schedules, and Time-series models, |Batch and inventory planning,

reducing the risk of shortages

Al technologies demonstrate high potential in optimizing
both individual technological stages and the entire drug
supply chain. Through deep learning and other algorithms,
large volumes of trial and monitoring data can be analyzed to
identify hidden factors affecting the quality of the dosage
form. For example, in the production of solid tablet forms,
neural networks and evolutionary algorithms are used to
select optimal conditions for granulation, drying, and
pressing, ensuring the uniformity of product characteristics
(Vora et al., 2023). Modern research shows that using neural
network models in conjunction with statistical methods
(response surface methodology, etc.) allows for a better
understanding of the influence of each parameter on the
critical quality attributes of a drug and for finding parameter
combinations that reduce variability between batches
(Hussain et al., 2024; Vora et al., 2023). This is especially
important for biotechnological drugs and complex dosage
forms, where the traditional empirical approach does not
always successfully prevent defects. The application of Al
leads to increased process stability: for instance, one review
notes that algorithms, by analyzing data in real time, can
detect trends in quality changes and suggest corrective actions
even before parameters go out of tolerance (Vora et al., 2023).

As a result, a reduction in the proportion of non-conforming
products is observed, and drug recalls from the market occur
less frequently.

Furthermore, Al plays a crucial role in the manufacturing
analytics system—for example, computer vision is used for
the automated quality control of tablets and capsules.
Machine vision systems, trained on samples of defects, can
inspect each unit of production at high speed for cracks, chips,
color changes, and other deviations. Automating quality
control with Al not only speeds up this process but also
provides a more objective assessment compared to a human
inspector, minimizing the risk of a defect being missed. In
parallel, Al contributes to the optimization of areas adjacent
to production, such as logistics and inventory management.
Predictive models integrated into supply chain management
platforms forecast the demand for drugs and allow for the
optimal planning of production and delivery volumes.
Consequently, storage costs and the risk of shortages of
important medicines in pharmacies are reduced (Serrano et
al., 2024). In sum, data from recent years indicate that the
application of Al technologies leads to increased efficiency
and reliability in pharmaceutical manufacturing and
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facilitates the industry's transition to the "Pharma 4.0"
concept—the integration of automation, data, and Al to create
smart factories.

Alongside predictive modeling, generative models and
agentic Al applications have garnered increasing interest in
recent years. Generative Al can create new data or variants
based on trained samples. In the context of drug
manufacturing, this finds application, for example, in
generating optimized molecular structures of drug candidates,
as well as in synthesizing new formulations and experimental
conditions. Although the primary field for generative Al is the
early stages of drug discovery, there are already examples of

its integration into the process development stage. For
instance, generative models can be used to simulate various
process scenarios, creating synthetic data to train predictive
algorithms when real experimental data 1is scarce.
Additionally, large language models (LLMs) are beginning to
be wused for analyzing scientific texts and reports,
automatically generating production progress reports, and
even supporting line operators with interactive guidance.
DataRobot, as a universal Al platform, has already integrated
generative Al capabilities alongside classic machine learning.
The range of applications is summarized in a thematic matrix
(Table 2).

Table 2: Generative Al and Synthetic Data in Technology Cycle Stages: Objectives, Methods, Artifacts, Application
(compiled by the author based on (DataRobot, 2025; Serrano et al., 2024; Vora et al., 2023)

Stage Primary Objective

Generative Methods

Resulting Artifacts Application in Manufacturing

Select combinations of
parameters and
conditions

Formulation and
Process Design

Conditional generators,
Bayesian optimization,
evolutionary approaches

Sets of alternative
operational profiles and
formulations

Reducing the number of
physical experiments,
accelerating stabilization

Model Validation
and Robustness

Fill data gaps and
address rare scenarios

Synthetic datasets, digital
simulators, and perturbation
generation

Scenarios of deviations
and rare events

Stress-testing quality control
and management loops

Documentation and | Automate reports and

LLMs, retrieval-augmented

Draft reports, SOP
templates, excerpts from

Accelerating compliance and

Knowledge procedures generation S audits
registries
Navigate protocols and . Interactive instructions, [Reducing operator errors on the
Operator Support gate prote Conversational LLM agents . ’ & opeta
provide guidance checklists line
Production and Align schedules and Generation of demand and Alternative plans and More flexible rescheduling
Supply Planning risks supply scenarios priorities under resource constraints

The concept of Agentic Al, which has developed between
2023 and 2025, deserves special attention. Unlike individual
models, agentic Al involves a set of intelligent agents capable
of autonomously performing sequences of tasks by making
decisions based on data and objectives. The DataRobot
environment now includes an infrastructure for developing
agentic Al applications, allowing for the combination of
various models (both generative and predictive) and tools into
a single pipeline (Staunton, 2025). In pharmaceutical
manufacturing, the agentic approach opens new possibilities
for automating complex workflows. For example, in
laboratory practice, agentic Al can monitor instrument
readings and automatically plan interventions: one agent
continuously tracks reactor sensor data, another compares it
with a predictive model and decides whether to adjust the
temperature or pH, and a third, upon detecting an anomaly,
independently requests human confirmation to stop the
process. As experts note, agentic Al can reduce equipment
downtime and increase laboratory throughput through
predictive maintenance—agents anticipate failures and
schedule repairs at the optimal time (Boskabadi et al., 2025;
Staunton, 2025).

Furthermore, agentic systems successfully handle the task of
intelligent planning: in situations where multiple production
lines compete for resources (raw materials, personnel), Al
agents can dynamically reallocate resources and reconfigure
shift schedules to ensure no unit is idle and no bottlenecks
occur. For example, upon implementing Agentic Al at a
pharmaceutical plant, agents monitored warehouse inventory
levels, logistics schedules, and shop floor load, and upon
detecting a risk of raw material delivery delay, they
automatically reprioritized production to other products, thus
avoiding a general production stoppage (Staunton, 2025).
Similarly, upon detecting a slowdown in the laboratory stage
(e.g., delays in analytical testing), agentic Al can temporarily
reallocate personnel or equipment to smooth out the delay. An
important area is the integration of Agentic Al with quality
control systems: agents can not only detect deviations but also
independently initiate investigations into the causes of
defects, requesting necessary data from various enterprise
information systems and preparing a draft report for the
quality department. Such agentic control ensures continuous
improvement—the system learns from each incident and
proposes measures to prevent similar deviations in the future.
The structure of an agentic system is summarized in an
overview profile (Table 3).
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Table 3: Architectural Elements of Agentic Al in Pharmaceutical Manufacturing: Agent Classes, Responsibilities, Inputs, and
Integration Points (compiled by the author based on Boskabadi et al., 2025; DataRobot, 2025; Staunton, 2025)

Agent Class Responsibility Inputs/Knowledge Actions/Effects Integration Points
Process Continuously track rpetrlcs PAT/SCADA streams, Notlﬁcat10n§, correctlvq DCS/MES, operator
. and compare against predictive models, control recommendations, scenario .
Monitoring . o interfaces
predictions charts nitiation
QC and Identify root causes of non- LIMS, reports, equipment | Draft CAPAs, task routing, and
o . . . . eQMS, LIMS, DMS
Investigations  |conformance, prepare CAPA logs, specifications evidence collection
Planning and Synchronize schedules, ERP, WMS, demand forecasts, Reschedule production, ERP/MES,
Resources shifts, and raw materials line statuses prioritize batches warehouse systems
Maintenance Predictive reliability support Telemetry, fal}ure maps, Create.work orderg, schedule CMMS, calendar
service history maintenance windows systems
Compliance Prepare regulatory reports SOPs, parameter registries, Collect and format the DMS, eQMS,

P P £ fyrep deviation logs evidentiary basis reporting portals
Knowledge and Answer questions, Knowledge bases, Step-by-step instructions, Elt\grlt:acctzt
Operator Assist summarize data formulations, tech notes conversational guidance ’

knowledge portal
Despite its novelty, Agentic Al technology is already being ~ models are trained. Pharmaceutical processes are

considered the next stage in the development of digital
pharmaceutical manufacturing. It builds on the solid
foundation of predictive models and extends them, allowing
not only for prediction but also for autonomous action based
on those predictions. The DataRobot platform offers
enterprises a kind of sandbox for developing agentic
applications with an open architecture, support for connecting
any models and tools via API, and a built-in data store and
vector databases for knowledge management (DataRobot,
2025). This facilitates the creation of specialized agents for
the needs of a specific production facility. For example, a
pharmaceutical company can implement an agent responsible
for regulatory compliance: such an agent would analyze
process data and generate reports for regulators, verifying that
all parameters are within limits and that deviations are
properly documented. Another agent could handle
personalization—for instance, generating production reports
for specific batches for important clients or adapting the
production plan to a sales forecast generated by a marketing
model.

The results of the analysis show that the use of Al, particularly
DataRobot solutions and GenAl/Agentic Al technologies,
leads to significant changes in all aspects of drug
manufacturing. Predictive modeling based on machine
learning has already become firmly established in the practice
of large pharmaceutical companies, allowing them to shift
from reactive management (correcting problems after they
occur) to a proactive style—preventing deviations and
optimizing parameters before problems arise. This aligns with
modern scientific views: a recent review notes that Al
"catalyzes a profound transformation of the pharmaceutical
industry" across all stages of a drug's lifecycle, from
discovery to post-marketing surveillance. In fact, over a short
period, there has been a transition from isolated experiments
to the systemic integration of Al into production processes.
At the same time, academic studies confirm the practical
effect: according to a 2023 review, the implementation of
machine learning algorithms has reduced technology
development time and increased the efficiency of quality
control in several pharmaceutical manufacturing facilities.

However, the limitations of current Al solutions must also be
critically assessed. First, the quality of predictions and
autonomous actions depends entirely on the data on which the

characterized by high complexity and variability of raw
materials (especially in biotechnology), so reliable training
requires extensive and representative data. In practice,
collecting such data is difficult—processes are validated, and
frequent experiments outside narrow operating ranges are not
permitted. This creates the risk that a model will inaccurately
predict process behavior outside of familiar conditions.
Second, there are regulatory aspects: the pharmaceutical
industry is strictly regulated, and the use of Al for making
critical decisions (e.g., an agent independently correcting a
process) raises questions of GMP compliance. Regulators,
including the FDA, are still approaching this cautiously—
discussion documents note that methodologies for validating
Al models and ensuring their transparency need to be
developed. Thus, before agentic Al can fully and
autonomously manage a pharmaceutical plant, the problem of
trust in such systems, their explainability, and their
verification across all possible scenarios must be solved.

Nevertheless, it is already clear that humans and Al can
effectively complement each other. A hybrid approach seems
optimal: Al serves as a "smart assistant," proposing solutions
and handling routine tasks, while the final critical decision
remains with the specialist. For example, DataRobot provides
a "Model Insights" functionality—model explanations and
visualizations of feature importance, which allows engineers
to understand why an algorithm recommends a particular
action. This increases the acceptance of Al in the conservative
environment of process engineers. Similarly, agentic systems
can operate in a semi-automatic mode: an agent makes a
decision but executes it only after operator confirmation. This
approach is currently being implemented on pilot lines, and
personnel feedback is positive—people see agents as a help,
not a threat to their expertise.

On the one hand, investments are required in data
infrastructure, personnel training, and licenses for platforms
like DataRobot. On the other hand, the long-term return is
expressed not only financially (reduction in defects, faster
product launch) but also in an increase in the company's
scientific and technical potential. An organization that has
accumulated data and trained models acquires know-how that
is difficult for competitors to copy. In this sense, the countries
and companies that are the first to master Al in
pharmaceuticals gain a strategic advantage. It is no
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coincidence that the FDA is actively stimulating discussion
about the use of Al in manufacturing, seeking to adapt the
regulatory framework to innovation.

Finally, it is important to note that DataRobot is not the only
platform, and Generative/Agentic Al is not a panacea.
Competing solutions (e.g., C3.ai, IBM Watson, proprietary
developments by large pharmaceutical companies) are also
showing success. The general trend is that the industry is
moving towards greater automation of knowledge:
accumulated scientific data, formulas, and formulations are
being combined with production data in unified data lakes, on
top of which Al algorithms operate. In the coming years, we
can expect the emergence of fully digital "shadows" of
pharmaceutical plants—digital twins that allow for the
simulation of experimental scenarios and process
optimization in a virtual environment before they are
implemented on real equipment. Elements of this are already
visible in the application of generative models: for example,
virtual sensors are being created that generate plausible data
to test the robustness of a quality control system. Agentic Al,
being essentially an orchestrator of multiple models, can play
a key role in managing these digital factories of the future.

4. Conclusion

The development of artificial intelligence methods is
fundamentally  changing the approaches to drug
manufacturing. The conducted research has shown that the
DataRobot platform and similar solutions enable
pharmaceutical companies to effectively use predictive
algorithms for modeling and optimizing processes, from the
stages of technological development to the operational
management of production. Generative models and agentic
Al applications, which have emerged on the wave of recent
advancements (2022-2025), complement these capabilities
by introducing an element of autonomy and "intelligence"
into production systems. The main conclusions are as follows:
(1) predictive modeling with Al significantly improves
quality stability and productivity in pharmaceutical
manufacturing through proactive parameter control and
timely equipment maintenance; (2) the integration of
generative approaches opens new avenues for optimization
(e.g., process simulation, automated processing of text and
knowledge), which accelerates the rollout of new
technologies and improves documentation; (3) agentic Al has
the potential to become the connecting link between disparate
models and systems, providing holistic, autonomous
management of multi-component processes—in practice, this
translates to increased production flexibility, reduced
response time to off-spec situations, and better resource
utilization.

The scientific significance of the obtained results lies in
demonstrating the effective combination of various Al
technologies (AutoML, deep learning, and multi-agent
systems) to solve complex problems in pharmaceutical
technology. The practical significance is confirmed by initial
cases of successful implementation: companies report
reductions in production cycles, lower defect rates, and
increased process yields after integrating Al solutions into
critical control loops. Russian and international enterprises in
the  pharmaceutical  sector, striving for  global

competitiveness, have an objective interest in actively
mastering these methods. Summarizing the results, it can be
concluded that the application of DataRobot, Generative Al,
and Agentic Al in drug manufacturing has ceased to be an
experiment and has become a working tool for the process
engineer. Ahead lies the further deepening of this trend: the
emergence of fully digital factories where Al continuously
learns and improves the process. The transition of the
pharmaceutical industry to these new "rails" of intelligent
technologies promises not only economic benefits but also
direct societal benefits, as the faster and higher-quality
production of medicines means better access to modern
therapy for patients worldwide.
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