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Abstract: The article examines the transformation of the technical debt concept amid the rapid proliferation of artificial intelligence and
analyzes methods for its forecasting. The aim is to identify the characteristics of the accumulation and evolution of technical debt in AI
systems and to develop approaches for its measurement and strategic management. The relevance stems from the fact that technical debt
has ceased to be a local engineering problem and has acquired macroeconomic and organizational significance, affecting company
productivity, the resilience of business processes, and compliance with regulatory requirements. The novelty of the study is in organizing
a multi-layer structure of debt obligations, not by including only classical code and architectural elements, but by adding new layers—
data debt, model debt, pipeline debt, as well as regulatory and workforce costs. The article presents an approach to forecasting debt risks,
hybridizing static metrics, machine classifiers, graph dependency models, time series of operational metrics, and scenario modeling with
large language models. A major takeaway is that Al technical debt can only be effectively managed once a full account of all its layers
has been brought into consideration and their linkages to business metrics, plus regular monitoring and forecasting, are institutionalized.
In practical terms, turning the debt from being just an abstract metaphor into a manageable asset reduces interest expense while, at the
same time, increasing the resilience of technological development. The article will be helpful to researchers in software engineering,

machine learning practitioners, IT system architects, and leaders of digital transformations.
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1. Introduction

Technical debt has long ceased to be merely an engineering
metaphor: according to McKinsey, CIOs of large companies
believe it eats up 20-40% of the total value of their
technology portfolio and adds another 10-20% to the cost of
each new project, effectively acting as a tax on development
[1]. At the economy-wide level, the problem takes on macro-
financial contours: the Consortium for Information &
Software Quality has estimated that the total principal of
outstanding debt in the United States reached $1.52 trillion,
and aggregate losses from poor software quality exceeded
$2.4 trillion by the end 0f 2022 [2]. These figures demonstrate
that we are not dealing with a secondary engineering concern
but with a factor that directly affects businesses’ strategic
indicators and national productivity.

The term technical debt was coined by Ward Cunningham
when describing WyCash trade-offs at OOPSLA-1992: “by
accelerating today, we take a loan for future rework and pay
interest in the form of rising maintenance costs” [3]. The
original idea concerned mainly application code and
architecture, but it quickly evolved: debt came to include
outdated libraries, a lack of tests, and even organizational
processes. In the classical world, these risks were relatively
predictable: system complexity grew linearly, and the release
lifecycle was measured in quarters.

The age of artificial intelligence radically changes how
interest is calculated. Machine learning has added at least two
new layers of debt—data debt and model debt—each with its
accumulation mechanisms. Google’s Hidden Technical Debt
in Machine Learning Systems showed that an ML product has
far more hidden dependencies than traditional software: data
drift, model staleness, irreproducible experiments, and ML-
Ops pipelines that rapidly become brittle graphs of
interdependencies [4]. The industry’s accelerating pace
throws fuel on the fire. According to Al Index 2025, compute

used to train frontier models now doubles every five months.
The share of organizations deploying Al grew from 55% to
78% in just one year, making technical debt the norm of rapid
scaling rather than an exception [5].

Such an environment makes forecasting debt integral to the
technology strategy. The goals of this article are twofold: first,
a systematization of ways Al ingredients make the classical
concept of technical debt more complex; and second, a review
of the modern toolkit available for its forecasting, from static
analysis and ML classifiers to graph models and LLM-based
simulations.

2. Materials and Methodology

This study draws on a broad review of scholarly articles,
market studies, and legislative files aimed at the development
of the technical debt notion from classic engineering
strategies to the era of AL The conceptual base involves
essential works beginning with Ward Cunningham’s
explanation of creation trade-offs at OOPSLA-1992 [3], as
well as modern McKinsey analysis on the Debt Matters for
Corporate Portfolios [1] and macroeconomic scale of losses
conveyed by the Consortium for Information & Software
Quality [2]. As the practical base, we have used analytical
information on covert layers of liability associations in
machine learning from Google’s Hidden Technical Debt in
Machine Learning Systems, and statistics from the Al Index
2025 showing facts about the dynamics of Al usage and
compute growth.

This article methodologically triangulates three classic paths
of analysis. First, it undertakes a scholarly and applied
literature comparative review that traces the evolution of
code-centric notions to a multilayer structure comprising data
debt, model debt, pipeline debt, and regulatory plus workforce
costs. The second path involves a systematic analysis of
industry surveys and reports, wherein The Morning Consult
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and Unqork Study directly reveal how accumulating debt
impacts innovation activity in companies. At the same time,
Gartner data validates economic loss attributable to the poor
quality of data. Thirdly, results from scholarly reviews on the
reproducibility crisis in ML experiments were incorporated to
help expose gaps in methods for long-term upkeep of models.
This was supplemented with case studies about getting
DevOps integrated with MLOps, which revealed that the
absence of unified versioning practices adds up to pipeline
debt [9].

Focus was set on the regulatory dimension: an analysis of the
European Al Act [10] synthesized ethical and legal
obligations with the financial penalties on organizations. The
methodological framework is furnished with content analysis
of the labor market from IT Pro and 365 Data Science

material, which has evidenced how a shortage of talent
catalyzes the growth of people debt [11, 12].

3. Results and Discussion

In classical software, technical debt accumulates primarily in
code and architecture, but in Al systems, it spreads across a
whole spectrum of new layers. At the level of source code and
microservice architecture, generative development and fast
releases create blind dependencies: a component diagram
loses relevance after just a few sprints, and a single fix deep
in the stack triggers a cascade of testing. This is where the
bulk of debt lurks: a survey of 500 technology leaders found
that 92% of organizations acknowledge significant technical
debt, and 80% canceled or froze mission-critical projects over
the past year because of it, as shown in Fig. 1 [6].
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Figure 1: Quantifying the Organizational Impact of Technical Debt [6]

Data debt grows even faster. Data collected for one business
task drifts, loses completeness, or falls out of schema
currency, turning each model retraining into a costly
operation. Gartner estimates direct losses from poor data
quality at an average of $12.9 million per company per year,
and an additional study showed up to a 20% drop in
productivity and a 30% rise in operating costs [7].

Stacked on top is model debt. No amount of perfectly cleaned
data will ever avail if the model becomes stale or its
experiments cannot be reproduced. In a review encompassing
101 scholarly works on long-term model maintainability,
reproducibility reports that only 12.9% of papers might have
addressed the problem, thereby confirming systematic
underestimation of the situation as depicted in Fig. 2 [8]. And
then there's parameter drift: the more actively data and
requests change under the system, the faster the interest rate
on such debt grows.

@ Repeatability @ Reproducibility @ Replicability
@ Adaptability @ Model Selection @ Label/Data Quality
@ Meta & Incentive @ Maintainability

Figure 2: Prioritizing Reproducibility and Model Selection
Challenges in ML Research [8]

The next layer is pipeline debt or ML-Ops debt. The absence
of unified versioning practices for data, models, and
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infrastructure artifacts turns the pipeline into a brittle graph:
TechRadar notes that 85% of trained models never reach
production due to gaps between DevOps and MLOps [9].
Every manual step in such a process is a potential source of
new debt and of release delays.

To this, it is added ethical and regulatory debt. The European
Al Act introduces fines of up to €35 million or 7% of a
company’s global turnover for the use of opaque or
discriminatory systems. In comparison, lesser violations are
still penalized up to €15 million [10]. Thus, each
unimplemented explainability procedure or bias audit
automatically increases potential costs.

Finally, there is people debt—the competence deficit required
to service all the layers above. In the United Kingdom alone,
there are over 11,000 open positions, and 69% of them are
tied to Al skills [11]; globally, the ML engineering job market
is valued at $113 billion with about 1.6 million specialists and
steady annual growth, as shown in Fig. 3 [12]. A shortage of
such talent lengthens the time to retire debt: legacy code and
pipelines go without proper refactoring, and interest
payments—in the form of rising maintenance costs—
continue to accrue.
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Figure 3: ML Engineering Market Growth [12]

Technical debt in Al systems is, therefore, multi-layer,
mixing classic code and architectural obligations with data,
model, pipeline, regulatory, and human debts. The better each
layer is understood and how they mutually influence the
formulation of an interest rate for debt across the product
lifecycle (i.e., the better one understands each layer and its
mutual influence on the formulation of an interest rate for debt
across the product lifecycle), then more precise forecasting
and management of the overall interest rate of debt can be.

Once the multilayered nature of technical debt in Al systems
is understood, the main work is to forecast its growth so that
resources can be shifted before the interest rate goes wild. The
easiest way is to bet on static code metrics: complexity,
duplication, and smell density. Present-day linters run
nonstop, checking pull requests and providing an estimated
price for defect fixing right in the build pipeline. There is
practically no setup for this approach, and it works well in a
CI culture. However, it pays off only one layer of debt and
cannot capture the dynamics that are related to models and
data.

Signals shall become much richer out of models that shall be
trained on repository history. They may take a look at how
files evolve, the tone of commit messages, changes in
complexity metrics, and provide a probability that this piece
of code will need refactoring in the next sprint. Just like

traditional classifiers, these machine classifiers can give the
team an early warning about hot components so that they can
plan proactively, too. The downside to using such approaches
is that they require training with labeled datasets and a
consistent taxonomy of debt tickets.

Where explainability is more important than accuracy, use
graph dependency models. Represent as nodes the modules,
the services, even data features, and as edges their
relationships: centrality computation, cluster density—hidden
stress nodes. Topology changes signal rising brittleness long
before a failure ever makes it to production.

DevOps and ML Metrics come in as multi-factor time series.
Deployment Frequency, Mean Time to Incident, Feature
Drift, and Model Quality metrics compose a multi-factor time
series. Algorithms that are usually applied when loads are
being forecast discover trend and seasonality, allowing for an
estimate of just how quickly technical debt will erode the
delivery speed or prediction accuracy.

In the end, scenario crafting with large language models turns
evaluation into an active conversation. A helper can run
experiments, build information, simulate model generation,
and judge the impact of alternative compositional choices. It
forecasts both dimensions of the liability and which
alterations will reduce it--at least as far as cost. When used
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together, they help teams treat debt not as an unavoidable cost
of speed but as a type of asset that can be measured and made
the subject of strategy.

A great forecast begins with an inventory. The team expresses
each liability by layer-code and architecture, data, models,
pipelines, and organizational bottlenecks. Mapping on the
spot builds vocabulary in common between different
engineers' observations, not to mention data analysts and
product managers, in a unified typology ready for analysis
and planning. Once entities are recorded, debt gets names and
priorities with firm links to business metrics, and the layer that
is threatening delivery speed or regulatory compliance in the
near term becomes apparent.

Proceed to collect Static Code metrics, Data Drift, Model
Accuracy Curves, Release Frequency, and Incident Duration
in one central repository. Remove differences in scale and
periodicity. There is no absolute value; use relative values,
rare spikes smoothed by window median, and bring
heterogeneous data to comparable scales. At this level,
technical debt stops being a metaphor and becomes a set of
observable telemetry signals.

Forecasting horizons, over the short horizon—one sprint to a
few weeks—Ilinter heuristics and fast classifiers work well,
having thrown up warnings of overheating in a particular file
or model. The medium-term horizon is several quarters away
and relies on DevOps time series plus graph analytics: it picks
up trend, picks up seasonality, and picks up slow coarsening
of architecture. The long horizon is scenario modeling with
language-model copilots at hand supporting teams to play out
the effects of their strategic decisions, say by moving onto a
new framework version or changes in regulatory
requirements, and which reveal where debt risks are getting
out of control. No forecast can be complete without ground
truth; therefore, continuous verification: compare predicted
costs with actual tickets; monitor deviation; retrain models
automatically. Such a cycle keeps the prediction mechanism
current, makes it sensitive to contextual shifts, and gradually
reduces the influence of human assumptions. As a result,
technical-debt management transforms from a one-off audit
into an ongoing process embedded in the engineering
organization’s culture.

To operationalize this multi-horizon approach, we propose a
three-tiered forecasting methodology that integrates specific
analytical techniques with corresponding organizational
decision-making levels. This model imbues the forecasting
process with a prescriptive character, transforming it from a
set of observations into a framework for action. The first tier,
Tactical Forecasting, addresses the short-term horizon of one
to four weeks. Its primary objective is to inform sprint-level
decisions and prevent the immediate accumulation of new
debt. This is achieved by embedding static analysis tools,
commit-level classifiers, and automated model quality checks
directly into the CI/CD pipeline. The output consists of
actionable alerts and automated quality gates within pull
requests, generating a prioritized list of refactoring tasks for
development teams to address in the current sprint.

The second tier, Operational Forecasting, shifts the focus to
the medium-term horizon of one to two quarters, targeting

systemic risks and quarterly planning. This level employs
time-series analysis of DevOps and MLOps metrics—such as
deployment frequency, mean time to recovery (MTTR), and
model drift—alongside graph dependency analysis to uncover
systemic brittleness. The resulting forecasts identify
architectural "hotspots" and subsystems that necessitate
larger, planned refactoring initiatives. For stakeholders such
as product managers and system architects, these findings
serve as an empirical basis for allocating resources and
justifying dedicated technical improvement projects within
the product roadmap.

The third tier, Strategic Forecasting, operates on a long-term
horizon of one year or more, aligning technology evolution
with overarching business objectives. It utilizes scenario
modeling, often powered by large language models (LLMs),
to evaluate the far-reaching consequences of major strategic
decisions. These scenarios can simulate the impact of
adopting a new Al framework, migrating to a different cloud
provider, or adapting to significant regulatory shifts like the
full implementation of the EU Al Act. The outcomes are
strategic risk assessments, cost-benefit analyses for
substantial technology investments, and a long-term
technology health roadmap. This tier provides essential
foresight for senior leadership, including the CTO and Head
of Engineering, enabling them to navigate complex trade-offs
and avert architectural dead ends.

This integrated, multi-tiered model ensures that technical debt
is managed cohesively across all organizational levels. By
systematically linking short-term code quality, medium-term
system health, and long-term architectural viability, it
transforms technical debt management from a reactive
engineering concern into a proactive and continuous element
of technology strategy.

Technical debt management delivers the benefit when its
magnitude is expressed in terms that business stakeholders
understand. Consequently, the team first establishes a direct
link between each type of debt and key product indicators:
model performance degradation is tied to conversion, data
drift to prediction accuracy, and ethical risks to the cost of
regulatory compliance. Translating engineering metrics into
economic ones allows debt-repayment initiatives to be
defended at the portfolio level, not only within technical
discourse.

To make this linkage work, debt information is concentrated
in a single ticket repository. Regardless of the source—static
analysis, pipeline monitoring, or data audits—all records are
created according to a unified schema: type, layer, impact on
metrics, and estimated effort. The consolidated registry
eliminates desynchronization across teams and serves as a
training dataset for the forecasting models described in
previous sections, which form the core of the analytical
strategy.

On top of the unified catalog sits automatic debt-cost
calculation. The CI system picks up cues from linters, ML
numbers, and production-incident facts, mixes them with
business scores, and provides a financial estimate directly in
the task-control setup. Workers get a ranked list that shows
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not just an unclear code issue but a clear cash danger that gets
bigger with each day of delay.

To keep technical debt from becoming an endless list, teams
set a regular interest payment. They use part of each sprint’s
capacity for remediation. This fixed budget is easy to
communicate, disciplines planning, and prevents an
avalanche of costs that often becomes visible only in late
project stages.

However, establishing such a fixed budget is merely the first
step in a complex organizational change. The practical
implementation of a systematic debt management program
faces significant hurdles, primarily concerning ownership and
alignment. A central challenge lies in creating and
maintaining a unified debt registry. This requires not only
technological integration but also a cultural consensus on
what constitutes debt and how its severity is measured,
compelling engineering, data science, and product teams to
agree on a shared taxonomy that links technical metrics to
tangible business impact. The question of "who pays" for this
debt extends beyond engineering capacity; it necessitates that
product owners and business leaders actively participate in
prioritizing debt remediation alongside new feature
development. Achieving this requires the entire organization
to be onboard, a goal typically unreachable without explicit
executive sponsorship. Leadership, particularly the CTO and
VP of Engineering, must champion this initiative by
consistently framing investments in technical health not as an
engineering cost center, but as a strategic imperative for
mitigating risk and ensuring long-term product velocity.

Furthermore, the implementation of the multi-layered
monitoring and forecasting system proposed herein carries its
own non-trivial engineering and computational costs.
Quantifying these costs precisely is challenging as they vary
with organizational scale and system complexity, but they can
be conceptually modeled. Engineering costs encompass the
initial effort to instrument code, build data pipelines for
telemetry collection, and develop the analytical models, as
well as the sustained effort required for maintenance and
interpretation. Computational costs include the infrastructure
for real-time data ingestion, storage, and processing across all
six debt layers—from code analysis to model performance
tracking. While exact figures differ, industry analyses from
cloud and observability providers suggest that comprehensive
telemetry systems can consume between 5% and 15% of a
total infrastructure budget for traditional software. For the
multifaceted nature of Al systems, with their additional data
and model-centric telemetry, this figure may represent a
conservative baseline. This expenditure, however, should not
be viewed as an operational expense but rather as a strategic
investment. It provides the necessary intelligence to make
informed capital allocation decisions, reducing the risk of
catastrophic failures and managing the accrual of high-
interest debt that could otherwise jeopardize future
innovation.

Finally, as context accumulates, it becomes possible to
refinance the debt—to change the remediation strategy to
reduce the total cost of ownership. Sometimes it is more
advantageous to rewrite a legacy module on a modern
framework than to keep patching; sometimes it is worth

investing in the collection of more representative data to avoid
constant model retraining. A deliberate shift from quick-fix
tactics to structural revision completes the management cycle
and turns technical debt from a force of nature into a
controlled instrument of development.

4. Conclusion

The article shows that technical debt has ceased to be a local
engineering problem and has acquired a broad economic and
organizational character: it affects not only code and
architecture but also data, models, pipelines, regulatory
requirements, and human resources. The era of artificial
intelligence has given rise to two fundamentally new layers of
debt: data debt and model debt. Also in this era, the
interdependencies among layers have been so strengthened
that classical mechanisms for accounting, managing, and
repaying debts are inadequate. Therefore, delivery speed,
prediction quality, and compliance with regulations become
systemic risks as a result of unfulfilled debt obligations.

This also proved that only a hybrid multi-scale set of methods
can come close to accurately predicting technical debt inside
Al systems. Static metrics and linters for short horizons and
at the code layer work perfectly well. Simple from the
repository, what hot components are involved early in the
process. At the same time, graph models expose hidden
brittleness nodes in dependencies, while DevOps/ML time
series express trend and seasonality. The best way to model
long horizons is through scenarios made possible by large
language models, where one can play out the effects of
architectural and regulatory decisions.

The practical scheme of management draws from several key
elements, such as the inventory by layers of debts and their
mapping to business metrics; centralized collection and
normalization of telemetry indicators ; unified ticket registry
with single taxonomy ; automatic calculation of the monetary
cost of debt; regimen regular interest payments in sprints, as
well as the possibility to refinance debt positions.

It underscores the continuous verification whereby
predictions have to be constantly matched with actual tickets
and incidents, and forecasting models retrained accordingly
on observed mismatches. Nothing but a consolidated cyclical
approach that will infuse both the quantitative metrics and
scenario modeling will transform technical debt from being
perceived as just a burden into a manageable resource,
minimize its interest payments, and ensure resilient product
development under conditions of rapid Al-driven scaling.
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