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Abstract: The article examines the transformation of the technical debt concept amid the rapid proliferation of artificial intelligence and 

analyzes methods for its forecasting. The aim is to identify the characteristics of the accumulation and evolution of technical debt in AI 

systems and to develop approaches for its measurement and strategic management. The relevance stems from the fact that technical debt 

has ceased to be a local engineering problem and has acquired macroeconomic and organizational significance, affecting company 

productivity, the resilience of business processes, and compliance with regulatory requirements. The novelty of the study is in organizing 

a multi-layer structure of debt obligations, not by including only classical code and architectural elements, but by adding new layers—

data debt, model debt, pipeline debt, as well as regulatory and workforce costs. The article presents an approach to forecasting debt risks, 

hybridizing static metrics, machine classifiers, graph dependency models, time series of operational metrics, and scenario modeling with 

large language models. A major takeaway is that AI technical debt can only be effectively managed once a full account of all its layers 

has been brought into consideration and their linkages to business metrics, plus regular monitoring and forecasting, are institutionalized. 

In practical terms, turning the debt from being just an abstract metaphor into a manageable asset reduces interest expense while, at the 

same time, increasing the resilience of technological development. The article will be helpful to researchers in software engineering, 

machine learning practitioners, IT system architects, and leaders of digital transformations. 

 

Keywords: technical debt, artificial intelligence, forecasting, data debt, model debt, pipeline debt, ML-Ops, risk management 

 

1. Introduction 
 

Technical debt has long ceased to be merely an engineering 

metaphor: according to McKinsey, CIOs of large companies 

believe it eats up 20–40% of the total value of their 

technology portfolio and adds another 10–20% to the cost of 

each new project, effectively acting as a tax on development 

[1]. At the economy-wide level, the problem takes on macro-

financial contours: the Consortium for Information & 

Software Quality has estimated that the total principal of 

outstanding debt in the United States reached $1.52 trillion, 

and aggregate losses from poor software quality exceeded 

$2.4 trillion by the end of 2022 [2]. These figures demonstrate 

that we are not dealing with a secondary engineering concern 

but with a factor that directly affects businesses’ strategic 

indicators and national productivity. 

 

The term technical debt was coined by Ward Cunningham 

when describing WyCash trade-offs at OOPSLA-1992: “by 

accelerating today, we take a loan for future rework and pay 

interest in the form of rising maintenance costs” [3]. The 

original idea concerned mainly application code and 

architecture, but it quickly evolved: debt came to include 

outdated libraries, a lack of tests, and even organizational 

processes. In the classical world, these risks were relatively 

predictable: system complexity grew linearly, and the release 

lifecycle was measured in quarters. 

 

The age of artificial intelligence radically changes how 

interest is calculated. Machine learning has added at least two 

new layers of debt—data debt and model debt—each with its 

accumulation mechanisms. Google’s Hidden Technical Debt 

in Machine Learning Systems showed that an ML product has 

far more hidden dependencies than traditional software: data 

drift, model staleness, irreproducible experiments, and ML-

Ops pipelines that rapidly become brittle graphs of 

interdependencies [4]. The industry’s accelerating pace 

throws fuel on the fire. According to AI Index 2025, compute 

used to train frontier models now doubles every five months. 

The share of organizations deploying AI grew from 55% to 

78% in just one year, making technical debt the norm of rapid 

scaling rather than an exception [5]. 

 

Such an environment makes forecasting debt integral to the 

technology strategy. The goals of this article are twofold: first, 

a systematization of ways AI ingredients make the classical 

concept of technical debt more complex; and second, a review 

of the modern toolkit available for its forecasting, from static 

analysis and ML classifiers to graph models and LLM-based 

simulations.  

 

2. Materials and Methodology 
 

This study draws on a broad review of scholarly articles, 

market studies, and legislative files aimed at the development 

of the technical debt notion from classic engineering 

strategies to the era of AI. The conceptual base involves 

essential works beginning with Ward Cunningham’s 

explanation of creation trade-offs at OOPSLA-1992 [3], as 

well as modern McKinsey analysis on the Debt Matters for 

Corporate Portfolios [1] and macroeconomic scale of losses 

conveyed by the Consortium for Information & Software 

Quality [2]. As the practical base, we have used analytical 

information on covert layers of liability associations in 

machine learning from Google’s Hidden Technical Debt in 

Machine Learning Systems, and statistics from the AI Index 

2025 showing facts about the dynamics of AI usage and 

compute growth. 

 

This article methodologically triangulates three classic paths 

of analysis. First, it undertakes a scholarly and applied 

literature comparative review that traces the evolution of 

code-centric notions to a multilayer structure comprising data 

debt, model debt, pipeline debt, and regulatory plus workforce 

costs. The second path involves a systematic analysis of 

industry surveys and reports, wherein The Morning Consult 
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and Unqork Study directly reveal how accumulating debt 

impacts innovation activity in companies. At the same time, 

Gartner data validates economic loss attributable to the poor 

quality of data. Thirdly, results from scholarly reviews on the 

reproducibility crisis in ML experiments were incorporated to 

help expose gaps in methods for long-term upkeep of models. 

This was supplemented with case studies about getting 

DevOps integrated with MLOps, which revealed that the 

absence of unified versioning practices adds up to pipeline 

debt [9]. 

 

Focus was set on the regulatory dimension: an analysis of the 

European AI Act [10] synthesized ethical and legal 

obligations with the financial penalties on organizations. The 

methodological framework is furnished with content analysis 

of the labor market from IT Pro and 365 Data Science 

material, which has evidenced how a shortage of talent 

catalyzes the growth of people debt [11, 12]. 

 

3. Results and Discussion 
 

In classical software, technical debt accumulates primarily in 

code and architecture, but in AI systems, it spreads across a 

whole spectrum of new layers. At the level of source code and 

microservice architecture, generative development and fast 

releases create blind dependencies: a component diagram 

loses relevance after just a few sprints, and a single fix deep 

in the stack triggers a cascade of testing. This is where the 

bulk of debt lurks: a survey of 500 technology leaders found 

that 92% of organizations acknowledge significant technical 

debt, and 80% canceled or froze mission-critical projects over 

the past year because of it, as shown in Fig. 1 [6]. 

 

 
Figure 1: Quantifying the Organizational Impact of Technical Debt [6] 

 

Data debt grows even faster. Data collected for one business 

task drifts, loses completeness, or falls out of schema 

currency, turning each model retraining into a costly 

operation. Gartner estimates direct losses from poor data 

quality at an average of $12.9 million per company per year, 

and an additional study showed up to a 20% drop in 

productivity and a 30% rise in operating costs [7]. 

 

Stacked on top is model debt. No amount of perfectly cleaned 

data will ever avail if the model becomes stale or its 

experiments cannot be reproduced. In a review encompassing 

101 scholarly works on long-term model maintainability, 

reproducibility reports that only 12.9% of papers might have 

addressed the problem, thereby confirming systematic 

underestimation of the situation as depicted in Fig. 2 [8]. And 

then there's parameter drift: the more actively data and 

requests change under the system, the faster the interest rate 

on such debt grows. 

 

 
Figure 2: Prioritizing Reproducibility and Model Selection 

Challenges in ML Research [8] 

 

The next layer is pipeline debt or ML-Ops debt. The absence 

of unified versioning practices for data, models, and 
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infrastructure artifacts turns the pipeline into a brittle graph: 

TechRadar notes that 85% of trained models never reach 

production due to gaps between DevOps and MLOps [9]. 

Every manual step in such a process is a potential source of 

new debt and of release delays. 

 

To this, it is added ethical and regulatory debt. The European 

AI Act introduces fines of up to €35 million or 7% of a 

company’s global turnover for the use of opaque or 

discriminatory systems. In comparison, lesser violations are 

still penalized up to €15 million [10]. Thus, each 

unimplemented explainability procedure or bias audit 

automatically increases potential costs. 

 

Finally, there is people debt—the competence deficit required 

to service all the layers above. In the United Kingdom alone, 

there are over 11,000 open positions, and 69% of them are 

tied to AI skills [11]; globally, the ML engineering job market 

is valued at $113 billion with about 1.6 million specialists and 

steady annual growth, as shown in Fig. 3 [12]. A shortage of 

such talent lengthens the time to retire debt: legacy code and 

pipelines go without proper refactoring, and interest 

payments—in the form of rising maintenance costs—

continue to accrue. 

 

 
Figure 3: ML Engineering Market Growth [12] 

 

Technical debt in AI systems is, therefore, multi-layer, 

mixing classic code and architectural obligations with data, 

model, pipeline, regulatory, and human debts. The better each 

layer is understood and how they mutually influence the 

formulation of an interest rate for debt across the product 

lifecycle (i.e., the better one understands each layer and its 

mutual influence on the formulation of an interest rate for debt 

across the product lifecycle), then more precise forecasting 

and management of the overall interest rate of debt can be. 

 

Once the multilayered nature of technical debt in AI systems 

is understood, the main work is to forecast its growth so that 

resources can be shifted before the interest rate goes wild. The 

easiest way is to bet on static code metrics: complexity, 

duplication, and smell density. Present-day linters run 

nonstop, checking pull requests and providing an estimated 

price for defect fixing right in the build pipeline. There is 

practically no setup for this approach, and it works well in a 

CI culture. However, it pays off only one layer of debt and 

cannot capture the dynamics that are related to models and 

data. 

 

Signals shall become much richer out of models that shall be 

trained on repository history. They may take a look at how 

files evolve, the tone of commit messages, changes in 

complexity metrics, and provide a probability that this piece 

of code will need refactoring in the next sprint. Just like 

traditional classifiers, these machine classifiers can give the 

team an early warning about hot components so that they can 

plan proactively, too. The downside to using such approaches 

is that they require training with labeled datasets and a 

consistent taxonomy of debt tickets. 

 

Where explainability is more important than accuracy, use 

graph dependency models. Represent as nodes the modules, 

the services, even data features, and as edges their 

relationships: centrality computation, cluster density—hidden 

stress nodes. Topology changes signal rising brittleness long 

before a failure ever makes it to production. 

 

DevOps and ML Metrics come in as multi-factor time series. 

Deployment Frequency, Mean Time to Incident, Feature 

Drift, and Model Quality metrics compose a multi-factor time 

series. Algorithms that are usually applied when loads are 

being forecast discover trend and seasonality, allowing for an 

estimate of just how quickly technical debt will erode the 

delivery speed or prediction accuracy. 

 

In the end, scenario crafting with large language models turns 

evaluation into an active conversation. A helper can run 

experiments, build information, simulate model generation, 

and judge the impact of alternative compositional choices. It 

forecasts both dimensions of the liability and which 

alterations will reduce it--at least as far as cost. When used 
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together, they help teams treat debt not as an unavoidable cost 

of speed but as a type of asset that can be measured and made 

the subject of strategy. 

 

A great forecast begins with an inventory. The team expresses 

each liability by layer-code and architecture, data, models, 

pipelines, and organizational bottlenecks. Mapping on the 

spot builds vocabulary in common between different 

engineers' observations, not to mention data analysts and 

product managers, in a unified typology ready for analysis 

and planning. Once entities are recorded, debt gets names and 

priorities with firm links to business metrics, and the layer that 

is threatening delivery speed or regulatory compliance in the 

near term becomes apparent. 

 

Proceed to collect Static Code metrics, Data Drift, Model 

Accuracy Curves, Release Frequency, and Incident Duration 

in one central repository. Remove differences in scale and 

periodicity. There is no absolute value; use relative values, 

rare spikes smoothed by window median, and bring 

heterogeneous data to comparable scales. At this level, 

technical debt stops being a metaphor and becomes a set of 

observable telemetry signals. 

 

Forecasting horizons, over the short horizon—one sprint to a 

few weeks—linter heuristics and fast classifiers work well, 

having thrown up warnings of overheating in a particular file 

or model. The medium-term horizon is several quarters away 

and relies on DevOps time series plus graph analytics: it picks 

up trend, picks up seasonality, and picks up slow coarsening 

of architecture. The long horizon is scenario modeling with 

language-model copilots at hand supporting teams to play out 

the effects of their strategic decisions, say by moving onto a 

new framework version or changes in regulatory 

requirements, and which reveal where debt risks are getting 

out of control. No forecast can be complete without ground 

truth; therefore, continuous verification: compare predicted 

costs with actual tickets; monitor deviation; retrain models 

automatically. Such a cycle keeps the prediction mechanism 

current, makes it sensitive to contextual shifts, and gradually 

reduces the influence of human assumptions. As a result, 

technical-debt management transforms from a one-off audit 

into an ongoing process embedded in the engineering 

organization’s culture. 

 

To operationalize this multi-horizon approach, we propose a 

three-tiered forecasting methodology that integrates specific 

analytical techniques with corresponding organizational 

decision-making levels. This model imbues the forecasting 

process with a prescriptive character, transforming it from a 

set of observations into a framework for action. The first tier, 

Tactical Forecasting, addresses the short-term horizon of one 

to four weeks. Its primary objective is to inform sprint-level 

decisions and prevent the immediate accumulation of new 

debt. This is achieved by embedding static analysis tools, 

commit-level classifiers, and automated model quality checks 

directly into the CI/CD pipeline. The output consists of 

actionable alerts and automated quality gates within pull 

requests, generating a prioritized list of refactoring tasks for 

development teams to address in the current sprint. 

 

The second tier, Operational Forecasting, shifts the focus to 

the medium-term horizon of one to two quarters, targeting 

systemic risks and quarterly planning. This level employs 

time-series analysis of DevOps and MLOps metrics—such as 

deployment frequency, mean time to recovery (MTTR), and 

model drift—alongside graph dependency analysis to uncover 

systemic brittleness. The resulting forecasts identify 

architectural "hotspots" and subsystems that necessitate 

larger, planned refactoring initiatives. For stakeholders such 

as product managers and system architects, these findings 

serve as an empirical basis for allocating resources and 

justifying dedicated technical improvement projects within 

the product roadmap. 

 

The third tier, Strategic Forecasting, operates on a long-term 

horizon of one year or more, aligning technology evolution 

with overarching business objectives. It utilizes scenario 

modeling, often powered by large language models (LLMs), 

to evaluate the far-reaching consequences of major strategic 

decisions. These scenarios can simulate the impact of 

adopting a new AI framework, migrating to a different cloud 

provider, or adapting to significant regulatory shifts like the 

full implementation of the EU AI Act. The outcomes are 

strategic risk assessments, cost-benefit analyses for 

substantial technology investments, and a long-term 

technology health roadmap. This tier provides essential 

foresight for senior leadership, including the CTO and Head 

of Engineering, enabling them to navigate complex trade-offs 

and avert architectural dead ends. 

 

This integrated, multi-tiered model ensures that technical debt 

is managed cohesively across all organizational levels. By 

systematically linking short-term code quality, medium-term 

system health, and long-term architectural viability, it 

transforms technical debt management from a reactive 

engineering concern into a proactive and continuous element 

of technology strategy. 

 

Technical debt management delivers the benefit when its 

magnitude is expressed in terms that business stakeholders 

understand. Consequently, the team first establishes a direct 

link between each type of debt and key product indicators: 

model performance degradation is tied to conversion, data 

drift to prediction accuracy, and ethical risks to the cost of 

regulatory compliance. Translating engineering metrics into 

economic ones allows debt-repayment initiatives to be 

defended at the portfolio level, not only within technical 

discourse. 

 

To make this linkage work, debt information is concentrated 

in a single ticket repository. Regardless of the source—static 

analysis, pipeline monitoring, or data audits—all records are 

created according to a unified schema: type, layer, impact on 

metrics, and estimated effort. The consolidated registry 

eliminates desynchronization across teams and serves as a 

training dataset for the forecasting models described in 

previous sections, which form the core of the analytical 

strategy. 

 

On top of the unified catalog sits automatic debt-cost 

calculation. The CI system picks up cues from linters, ML 

numbers, and production-incident facts, mixes them with 

business scores, and provides a financial estimate directly in 

the task-control setup. Workers get a ranked list that shows 
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not just an unclear code issue but a clear cash danger that gets 

bigger with each day of delay. 

 

To keep technical debt from becoming an endless list, teams 

set a regular interest payment. They use part of each sprint’s 

capacity for remediation. This fixed budget is easy to 

communicate, disciplines planning, and prevents an 

avalanche of costs that often becomes visible only in late 

project stages. 

 

However, establishing such a fixed budget is merely the first 

step in a complex organizational change. The practical 

implementation of a systematic debt management program 

faces significant hurdles, primarily concerning ownership and 

alignment. A central challenge lies in creating and 

maintaining a unified debt registry. This requires not only 

technological integration but also a cultural consensus on 

what constitutes debt and how its severity is measured, 

compelling engineering, data science, and product teams to 

agree on a shared taxonomy that links technical metrics to 

tangible business impact. The question of "who pays" for this 

debt extends beyond engineering capacity; it necessitates that 

product owners and business leaders actively participate in 

prioritizing debt remediation alongside new feature 

development. Achieving this requires the entire organization 

to be onboard, a goal typically unreachable without explicit 

executive sponsorship. Leadership, particularly the CTO and 

VP of Engineering, must champion this initiative by 

consistently framing investments in technical health not as an 

engineering cost center, but as a strategic imperative for 

mitigating risk and ensuring long-term product velocity. 

 

Furthermore, the implementation of the multi-layered 

monitoring and forecasting system proposed herein carries its 

own non-trivial engineering and computational costs. 

Quantifying these costs precisely is challenging as they vary 

with organizational scale and system complexity, but they can 

be conceptually modeled. Engineering costs encompass the 

initial effort to instrument code, build data pipelines for 

telemetry collection, and develop the analytical models, as 

well as the sustained effort required for maintenance and 

interpretation. Computational costs include the infrastructure 

for real-time data ingestion, storage, and processing across all 

six debt layers—from code analysis to model performance 

tracking. While exact figures differ, industry analyses from 

cloud and observability providers suggest that comprehensive 

telemetry systems can consume between 5% and 15% of a 

total infrastructure budget for traditional software. For the 

multifaceted nature of AI systems, with their additional data 

and model-centric telemetry, this figure may represent a 

conservative baseline. This expenditure, however, should not 

be viewed as an operational expense but rather as a strategic 

investment. It provides the necessary intelligence to make 

informed capital allocation decisions, reducing the risk of 

catastrophic failures and managing the accrual of high-

interest debt that could otherwise jeopardize future 

innovation. 

 

Finally, as context accumulates, it becomes possible to 

refinance the debt—to change the remediation strategy to 

reduce the total cost of ownership. Sometimes it is more 

advantageous to rewrite a legacy module on a modern 

framework than to keep patching; sometimes it is worth 

investing in the collection of more representative data to avoid 

constant model retraining. A deliberate shift from quick-fix 

tactics to structural revision completes the management cycle 

and turns technical debt from a force of nature into a 

controlled instrument of development. 

 

4. Conclusion 
 

The article shows that technical debt has ceased to be a local 

engineering problem and has acquired a broad economic and 

organizational character: it affects not only code and 

architecture but also data, models, pipelines, regulatory 

requirements, and human resources. The era of artificial 

intelligence has given rise to two fundamentally new layers of 

debt: data debt and model debt. Also in this era, the 

interdependencies among layers have been so strengthened 

that classical mechanisms for accounting, managing, and 

repaying debts are inadequate. Therefore, delivery speed, 

prediction quality, and compliance with regulations become 

systemic risks as a result of unfulfilled debt obligations. 

 

This also proved that only a hybrid multi-scale set of methods 

can come close to accurately predicting technical debt inside 

AI systems. Static metrics and linters for short horizons and 

at the code layer work perfectly well. Simple from the 

repository, what hot components are involved early in the 

process. At the same time, graph models expose hidden 

brittleness nodes in dependencies, while DevOps/ML time 

series express trend and seasonality. The best way to model 

long horizons is through scenarios made possible by large 

language models, where one can play out the effects of 

architectural and regulatory decisions. 

 

The practical scheme of management draws from several key 

elements, such as the inventory by layers of debts and their 

mapping to business metrics; centralized collection and 

normalization of telemetry indicators ; unified ticket registry 

with single taxonomy ; automatic calculation of the monetary 

cost of debt; regimen regular interest payments in sprints, as 

well as the possibility to refinance debt positions. 

 

It underscores the continuous verification whereby 

predictions have to be constantly matched with actual tickets 

and incidents, and forecasting models retrained accordingly 

on observed mismatches. Nothing but a consolidated cyclical 

approach that will infuse both the quantitative metrics and 

scenario modeling will transform technical debt from being 

perceived as just a burden into a manageable resource, 

minimize its interest payments, and ensure resilient product 

development under conditions of rapid AI-driven scaling. 
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