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Abstract: Within a computational model, quantitative metrics frequently steer the decision-making process, where qualitative metrics,
including elements representing the architectural expression, are often neglected. The motivation behind this article is to quantify the
elements that establish the harmony between form, material and technique, resulting in a combined tectonic design. This article aims to
illustrate how a computational model can include qualitative architectural information and thereby create an honest tectonic design. The
most influential theories concerning architectural values have been examined. Based on this, six qualitative values are defined as:
symmetry, elements, texture, material placement, scale and variety which describe the architectural value, or aesthetic quality, of a space.
Based on the defined qualitative values, a machine learning model has been defined, which is based on a pseudorandom sampling plan
and a shallow artificial neural network. A computational model has been developed, implemented with the machine learning model
predicting aesthetic quality. An optimisation process is defined, utilising a genetic algorithm to conduct a meta-heuristic optimisation.
From this computational model, a case study has been conducted which considers a structural objective, an acoustic objective and an
aesthetic constraint. The solution space of the case study has been examined in a generative design process. The results displayed the
possibilities of informing a computational model with aesthetic quality while maintaining acoustic and structural integrity. The research

conducted in this article presents a novel framework for creating tectonic designs through a computational model.
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1.Introduction

Outstanding building design depends on numerous qualitative
metrics, which are difficult to anticipate in the design phase.
Some qualitative metrics are the architectural expression, the
perception of privacy and the indoor environment. Qualitative
metrics are difficult to handle in a quantitative system, and
they are complex to incorporate into a computational model
[1, 2, 3, 4]. In this context, qualitative is defined as a quantity
which is influenced by human judgment. Quantitative is
defined as a quantity which is definite and described with
numbers. A space within a building must have high
architectural value and be functional to achieve the synergy
of tectonics. The harmony between form, material and
technique must be found so they are inseparable [5]. The
harmony is described as a tectonic structure which is driven
by the aesthetics in a construction and is elevated above an
architectural style. This is illustrated in the following
quotation.

“Needless to say, I am not alluding to the mere revelation of
constructional technique but rather to its expressive potential.
Inasmuch as the tectonic amounts to a poetics of construction,
it is art, but in this respect the artistic dimension is neither
figurative nor abstract.”

— Frampton (1995) [6]

Furthermore, it is important to incorporate this element in the
early design phases, ideally in the conceptual phase, to
capture combinations of novelty and creativity. This is done
through design diversity in a computational model utilising a
generative design process [7]. Computational modelling is a
prominent design method to explore designs which are
beyond the imagination of a designer and a method to achieve

immediate ranking of each design proposal corresponding to
several objectives [8, 9].

The sound of a space is an essential part of the perception
thereof. Sound incorporates all dimensions in the space and
creates an experience of interiority [10]. The acoustic
environment in a room exposes the proportions and function
[11]. The acoustic conditions are closely correlated with the
general shape of the room, and it is therefore also correlated
with the conceptual design phase [12]. To achieve an accurate
prediction of the acoustic environment of a space,
complicated and time-consuming simulations of a room are
required. This is not sensible to do in the early design stage;
therefore, machine learning or simple analytical expressions
can be utilised to approximate the acoustic environment in the
early design phase [12, 13].

Even with extensive simulations of the acoustics, two
identical spaces can be perceived as widely different. This is
because the acoustics of a space consist of both quantitative
and qualitative aspects [14]. This phenomenon corresponds to
the architectural experience, which can be divided into two
main stages: the aesthetic judgement and the aesthetic
emotion [15]. Therefore, it must be possible to subdivide a
qualitative value into several tangible metrics. This is
achieved by manipulating the relationship between
qualitative values using either artificial intelligence or simple
analytical approximations [3, 16].

The research in the article is guided by the research question:
How can a computational model be further informed with
architectural value while maintaining its acoustic and
structural integrity, creating a tectonic design? The basis of
this research builds on the premise that empirical aesthetics
are feasible, to describe the architectural value [17, 18, 19].
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This research contributes to emerging design methodologies
by enabling qualitative human values to inform early-stage
computational models. Such integration ensures more holistic
and user-responsive built environments in architectural
practice.

The article is organised, where Section 2 aims to describe the
architectural value of a space based on existing theory
surrounding the experience of architectural spaces and the
aesthetic experience. Based on the findings, six qualitative
values are proposed to describe the aesthetic quality of a
space. Section 3 utilises the defined qualitative values to
create an artificial neural network, which is applied in Section
4 to a case study, serving as a proof-of-concept. Section 5
presents a discussion and conclusion on the research
conducted in the article.

2.The Experience of Architectural Spaces

The tectonics of a space is the real added to the imaginary,
which creates a synergy. The imaginary is also described as
the poetics of a space. This is where the aesthetics lie, which
is an integral part of the experience of a space, which can be
described as the magic of the real. There are several theories
describing the architectural experience of a space, but the
foundation of this research is built on the definition of magic
of the real by Zumthor [20].

2.1. Magic of the Real

The magic of the real is also described by the atmosphere of
a space; Zumthor presents a monologue which attempts to
answer the question: What is the magic of the real?, which
decomposes atmosphere into nine principles [20]. It becomes
possible to compare and quantify the individual experience.
Three principles are indicated to have the most influence on
the aesthetic quality of a space as the body of architecture,
material compatibility and levels of intimacy. A pictogram of
the principles is presented in Figure 1.

The body of architecture

Scale & proportion
Elements creating a larger whole

Material compatibility

o . The detail
NN Coherence and cooperation
between elements

Levels of intimacy

Proximity, distance and proportion
\ Enclosure degree

Figure 1: The three selected principles to describe the
atmosphere of a space

Material compatibility is the collaboration between two or
more materials. Zumthor describes it as a perfect union
between materials. Therefore, the small details are crucial,
such as the ageing of materials. Furthermore, it describes how
there must be a contrast between two materials to achieve an
interesting interplay. The materials determine the feeling of

the room and how the feeling changes based on a small
change in material. Furthermore, the material has a significant
influence on the acoustic quality of a space.

Levels of intimacy is the relationship between proximity,
distance and proportion. Intimacy is measured as a feeling of
confidentiality, closeness and comprehension. It is related to
size differences, where sizes close to the human body are
perceived as intimate, whereas larger constructions seem
intimidating. A connection between large and smaller
components creates harmony in the space. The proportions of
a room can be described based on several different aesthetic
theories, e.g. the golden ratio or the Vitruvian Man [21, 22].

2.2. Theories of the Aesthetic Experience

The term aesthetic has different definitions depending on the
reader. Aesthetics derives from the Greek word aisthitiki,
which means perception through sensation [23]. The motion
of empirical aesthetics was pioneered by the German
philosopher, physicist and experimental psychologist Gustav
Fechner (1801-1887). Empirical aesthetics aimed to
parameterise beauty both empirically and psychophysically
[17].

Throughout time, empirical aesthetics have branched out and
formed several subdomains. One is computational aesthetics,
which is a mathematical model for aesthetic appreciation
based on the underlying aesthetic form [17]. The origin of
computational aesthetics is attributed to George David
Birkhoff, who in 1933 published the book titled Aesthetic
measure [23]. In the book, the aesthetic experience is
composed of three phases. The first phase is the preliminary
effort, which is the necessary act of perception which
corresponds to the complexity, C. The second phase is the
feeling of value, which is also the aesthetic measure, M. The
third is the actualisation that the object is characterised by
symmetry, harmony or order, O. Birkhoff expressed these
three phases mathematically in Equation (1).

M = (1)

0
c
An example of aesthetic measure is presented in Figure 2,
used on six different polygons arranged in descending
aesthetic measure. The class of the objects is assumed to be
the same, i.e. same size, colour and material [19].

oo P

1,00 0,71 0,62
4 5 6
0,29 0,00 -0,10

Figure 2: Six polygons with their aesthetic measure
according to Equation (1), from [19]

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper ID: SR251021004841

DOI: https://dx.doi.org/10.21275/SR251021004841 237


http://www.ijsr.net/

International Journal of Science and Research (IJSR)

ISSN: 2319-7064
Impact Factor 2024: 7.101

2.3. Qualitative Values of the Aesthetic Experience

This section builds on the theory presented in the previous
section and translates it into concrete qualities that can be
valued objectively with a subjective meaning. It aims to
indicate qualitative values that describe a space’s aesthetic
quality with straightforward and understandable elements,
independent of the function of the space. Further details on
the qualitative values of the aesthetic experience are
described in the thesis [24].

2.3.1. The Body of Architecture

This principle describes scale and proportion within a space
and describes how several elements have the possibility of
coming together to create a larger whole. The quality
symmetry describes the equilibrium and harmony of a shape.
The definition of symmetry is illustrated in Figure 3. The
quality investigates the symmetry of a shape in both the
vertical and horizontal sections. The horizontal section is
evaluated on both the x-axis and y-axis, while the vertical
section is evaluated on the z-axis. The quality is converted to
a numeric system where a symmetrical section is valued 1,
and an unsymmetrical section is valued 0. For the entire
space, the sum of all is calculated.

/ Symmetry
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Figure 3: Illustration of the quality, symmetry, in relation to
the body of architecture

The second quality within the body of architecture is
elements. The value is used to determine the number of
elements creating a space. It decomposes the space into the
identical elements; it is constructed of. The score of the value
is then the number of unique elements to develop a space. The
concept is illustrated in Figure 4. The essence of elements is
to create repetition and harmony in the space. Repetition is a
key Gestalt principle [25], which describes the design
principal unity in variety.

D50
it

Figure 4: Illustration of the quality, elements, in relation to
the body of architecture

One important aspect of the body of architecture is the
skeleton of a space and, therefore is noteworthy to reflect on
the structural aspect of a space. To create a truly tectonic
design, structural transparency must be present. However, it
is not included as a quality of the aesthetic experience because
it is not a parameter which can be generalised, either it is
present or not.

2.3.2. Material Compatibility

This principle describes the coherence and cooperation
between different materials. It describes the details between
two materials and how they can be conflicting or harmonious.

The quality texture describes the texture of the materials used
in the room. This is both the tactile feeling and the visual
intrigue. The quality is illustrated graphically in Figure 5,
where the texture on a surface change from 0, smooth, to 1,
very rough. A surface can consist of several different
materials with various textures. Therefore, the ratio between
textures from each surface is found to represent the space.

Texture

0,66 I
Figure 5: Illustration of the quality, texture, in relation to
material compatibility

The quality material placement illustrates how two or more
materials interact with each other in one space, illustrated in
Figure 6. This quality embraces several variables concerning
materials in a space. However, in an attempt to simplify the
system, only three variables are analysed. The ratio between
the two materials, the complexity representing the number of
material elements added to the space and the order which
describes the number of unique material elements. The final
value is determined with the equation presented in Figure 6
The quality represents the entire space, but it has the ability
to be decomposed for each surface.
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Figure 6: Illustration of the quality, material placement, in
relation to material compatibility
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2.3.3. Levels of Intimacy

This principle describes how intimate and comfortable a
space feels. Most larger spaces tend to have several levels of
intimacy, an area which is open and public, and another which
is closed and private. The quality scale is heavily inspired by
the work of Corbusier with the proportions proposed through
Le Modulor. The equation calculating the scale of a space is
presented in Figure 7. The scale is set to the human; it must
not be too small so it becomes smothering, but also not too
spacious that the dimensions of the room fall out of
proportion. In this definition, the scale will always represent
the ratio between the lowest height of the ceiling and the
human body, set to the dimensions of Le Modulor with a
height of 216 cm, i.e. s; =216 cm.

N e
W

R R
[
Il Il

Figure 7: Illustration of the quality, scale, in relation to
levels of intimacy

51

The quality variety is translated to the change of scale
throughout a space. It describes how the change of intimacy
throughout a space changes the atmosphere. Therefore,
variety is defined as the ratio between the highest and lowest
points in the ceiling. An illustration of the quality and the
equation to calculate it is presented in Figure 8. The ceiling
can change height multiple times in the space, but this is not
reflected in the quality.

Figure 8: Illustration of the quality, Variety, in relation to
levels of intimacy

2.3.4. Scoring system

The six qualitative values, symmetry, elements, texture,
material placement, scale and variety, are found by an
algorithm which normalises the values when a dataset has
been collected. By exploring the space, the aesthetic quality
is evaluated by a human. The aesthetic quality is given as a
number between 0 and 1, where 0 is undesirable and 1 is
desirable.

With this scoring system, there is no indication of a pattern or
relationship between each qualitative value. Therefore,

machine learning is implemented through an Artificial Neural
Network (ANN), which is utilised to determine the
underlying patterns and relationships between the different
parameters.

2.4. Discussion of Qualitative Values

One significant quality is the light in a space. It plays a
significant role in the atmospheric experience. Not only how
light enters the space, but also the places where light is absent.
The actual light quality would apply to several other qualities,
which would make the framework complex. It should be
considered whether the complexity is necessary to achieve
true-to life results; to determine this, a sensitivity analysis
should be conducted.

Another aspect of the qualities is that they must be formulated
generally for an algorithm to decode the qualities
independently without the assistance of a human. One such
feasibility aspect is the height of a ceiling, which cannot be
below the height of a human, because then the human cannot
fit within. The qualities defined in the algorithm must be
logical, simple and straightforward.

into a

3.Incorporating Qualitative Values

Computational Model

In this section, the necessary theory for creating a machine
learning model is briefly outlined, followed by the
development of the aesthetic quality ANN based on the
qualitative values defined in Section 2.3.

3.1. Machine Learning

In supervised learning, machine learning approximates the
solution surface based on several sampling points and
observations [26]. The general representation for developing
a machine learning model with supervised learning is
presented in Figure 9. The framework consists of six phases,
with one iterative loop. Problem identification determines the
input and output of the model. This stage is crucial for
acquiring suitable preconditions for the machine learning
model [26]. Considerations concerning the dimensionality of
the problem must be determined in this phase to avoid the
curse of dimensionality.

[ Problem identification ]

Sampling plan

Observations

Construct machine learning model

Optimise

No

[ Visualise and validate model ]

Figure 9: Representation of developing a machine learning
model [26], redrawn
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The sampling plan and observations are generated from a
specific number of points in the design space. This is to obtain
data points where information surrounding the variables and
the output is obtained. Some sampling plans could be
uniform, pseudo-random or Latin hypercube sampling [26].

From the sampling plan and observations, a machine learning
model is constructed. The model is developed by using an
algorithm such as ANN. The algorithm is chosen based on its
ability to be accurate, its robustness and its computational
capacity [27]. Afterwards, the model is tested, and its error is
determined.

3.2. Development of ANN to Predict Aesthetic Quality

The aim is to develop a generic machine learning model,
predicting aesthetic quality, independent of the space’s
function and underlying computational model. The
framework developed contains four phases, illustrated in
Figure 10. (1) generating a design proposal based on the
variables developed in the computational model, (2) aesthetic
judgment of the space, (3) extracting the qualitative values of
the geometry and normalising them, and (4) developing a
machine learning model to predict the aesthetic quality of
other spaces. The machine learning model is developed to
predict the aesthetic quality of new design proposals.

Design proposal Aesthetic judgement

Data points Machine learning model

Aesthetic quality

Acsthetic quality

symmetry symmetry

Figure 10: Architecture for development ANN to predict
aesthetic quality

3.2.1. Design proposal

The design proposals are developed using a computational
model, which can represent rooms with several different
functions and visions. The model can therefore assume
different volumes and dimensions. The computational model
is developed in the software Grasshopper [28], a plugin to
Rhino 7.0 [29]. The variables controlling the geometry of the
space consist of changing the floor plan geometry, the number
of structural gluelam frames in the space, ceiling height, the
number and sizes of windows in one wall and the number and
sizes of a secondary acoustically absorptive material placed
on three of the walls. Some of the designs have been
developed manually to ensure that the proposals possess the
desired diversity required. The rest of the designs are
developed with a genetic algorithm, which found random
solutions. This is also a good indication of which results can
be expected in the case studies.

3.2.2. Aesthetic Judgement

The aesthetic judgement is accomplished by viewing the
space from the inside. This is done in the software Rhino 7.0
[29] where the space is rendered to simulate reality. The
timber frames are rendered dark due to a permanent setting in
the software, but in reality, they would be a timber colour. The
walls are a light grey, the acoustic material is light green, and
the windows are almost see-through. An example of the view
is presented in Figure 11. Behind the windows is a picture of
some buildings to create the illusion of the space interacting
with a real environment. The buildings are from Nobel Parken
in Aarhus. A person from a stock catalogue from Rhino 7.0
[29] is placed in the model, which is to create a better sense
of scale and how the proportions are in relation to a human
body. The person is scaled to have a height of 175 cm
corresponding to the height of Le Modulor.

3.2.3. Data points

From the design proposals and the aesthetic judgement are
data points were developed to form the training and test data
for the machine learning model. The input in the qualitative
values is automatically developed with the design proposals
in the numeric environment, in Grasshopper [28].
Streamlining the qualities, different assumptions have been
made:

Symmetry: the algorithm only analyses if the curves
developing the space are symmetric, i.e. symmetry along the
yz-plane only analyses the two parallel lines in the y-axis. The
same with the symmetry along the xz-plane only analyses the
two parallel lines in the x-axis. The last symmetric plane is in
the xz-plane, which analyses the symmetry between the
control points in the ceiling.

Elements: Element similarity is estimated as different
surfaces or elements having the same area. This reduces the
complexity of the algorithm, which figures out which
elements are similar.

Texture: The ceiling, floor, walls and windows have the same
texture of 0,05. The absorptive material on the walls has a
rough texture of 1,00.

Scale and variety: No assumptions deviating from the original
definition have been made.

Material placement: The similarity between elements is also
dependent on the area. If they have the same area, they are
assumed to be identical.

Symme m Elements

& @@

Arsﬂ!et ic q\lnl ty
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Figure 11: One datapoint of qualitative values and aesthetic
quality
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The first data point is illustrated in Figure 11. A total of 30
data points are curated to represent the training and test data.
The aesthetic quality values range significantly in the
different spaces. The scores in the data set are given by the
author as an approximation of the first impression of the
space.

3.2.4. Construction of Machine Learning Model

The machine learning model is constructed with an ANN. The
sample plan with corresponding observations is divided into
5 folds, each with 6 samples, which is used to perform cross-
validation on the developed ANN. Each input to the ANN has
been normalised before training and testing.

The ANN architecture is illustrated in Figure 12, where a

shallow ANN is implemented, due to its computational
efficiency.

Symmetry

Elements

Texture

Material

placement Aesthetic

quality

Scale

Variety

Y ] ! ]
Hidden layer

T
Input layer Output layers

Figure 12: Input and output of the problem, illustrated in a
shallow ANN

Initially, it is constructed with 3 neurons in the hidden layer,
but this parameter is varied in the sensitivity analysis. The
activation function in the hidden layer and the output layer is
chosen to be a sigmoid function, and the ANN is trained using
a backpropagation algorithm. The ANN is developed by using
the Neural Network Trainer and tested by using Neural
Network Tester in LunchboxML [30], which is a plugin to
Grasshopper [28]. When the ANN has been trained, it is saved
to a binary file to save the exact weights and biases trained
for the problem. This can be used to test the model and to
incorporate the trained model into other computational
models. An overview of the settings for developing the ANN
is presented in Figure 13.

Sampling strategy Sample points Sampling folds
* 7 Pseudo-random . 6 points 5 folds
, | sampling
Hidden layers Activation function
O

© 1 hidden layer Sigmoid

O
Figure 13: Overview of the settings for developing the ANN

The ANN is tested upon completion of the training. A scatter
plot showing the predicted values versus the actual values for
training on folds 2, 3, 4 and 5 and testing on fold 1 is
illustrated in Figure 14. Ideally, the predicted and actual
aesthetic quality should be the same and, therefore, form a
straight diagonal line. However, this is not the case in this
trained ANN. It is fairly accurate for the data points which
have a high aesthetic quality. But the data points with an
average aesthetic quality it drastically underestimated.

The model is tested using the RMSE for both the training and
test errors. The errors of the ANN training on folds 2, 3, 4 and
5 and testing on fold 1 are presented in Table 1. The results
show that the error is slightly higher in the training case than
in the test case. This is favorable and it indicates that the ANN
is not overfitting.

Table 1: RMSE of the training and test data

Training error |Test error
Folds2,3,4and 5 | Fold 1
1 hidden layer, 3 neurons 0,2722 0,1977

3.2.5. Sensitivity Analysis of the ANN

A sensitivity analysis of the ANN accuracy is conducted in
this section. The accuracy is solely determined based on the
RMSE of the training and test data. The neuron sensitivity is
tested in the hidden layer. The motivation behind this change
is to test whether the ANN’s predictions will increase
accuracy when the ANN is defined with more neurons.
Furthermore, it is tested to determine when the model begins
to underfit or overfit. Three different configurations are
examined: 3 neurons, 6 neurons and 9 neurons. In all the
configurations, the activation functions and the learning
algorithm are kept the same. Each configuration is tested on
each fold, as developed in the sampling plan. Thus, 5 ANNs
are developed for each neuron combination.

The Root Mean Squared Error (RMSE) of the training and
test data for each ANN is presented in Figure 15. The results
show clearly that some folds generally perform better than
others. This is primarily because it is a small dataset where
diversity in the output is not guaranteed for every fold.
Concerning the RMSE, it is clear that the ANN overfits at 6
and 9 neurons in the hidden layer. The overfitting is clear
when the training error is significantly larger than the testing
error. This is true for almost all the folds for 6 and 9 neurons.
The only exception is 9 neurons in fold 4, where the training
and test errors are approximately the same. The test error is
smaller than the training error in folds 1, 4 and 4 with 3
neurons.
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Predicted aesihetic quality
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Actual acsthetic quality

Figure 14: Test data for fold 1, 3 neurons, scatter plot with
predicted values versus actual values

This is an indication of an underfitting ANN. The model in
fold 1 with 3 neurons is the one where the training and test
errors are the closest to each other, while not overfitting.
Therefore, the ANN tested on fold 1 with 3 neurons is the best
fitting, and this ANN is thus integrated into the computational
model used in the Section 4 case study.
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Figure 15: RMSE of the dilff\erent training and test data for
each fold and ANN complexity

3.3. Discussion of the ANN Predicting Aesthetic Quality

One major point of discussion is whether creating a machine
learning model to predict something qualitative has any
validity in practice. Based on the results from the ANN,
illustrate how the ANN has the ability to determine the
underlying pattern in aesthetic judgment. Therefore, it is
argued that it can be valid to replace human judgment to some
degree with a machine learning model. However, it is
recognised that the model will not be a 100 % accurate and,
therefore, human influence will always be needed to
determine which is the best result.

The accuracy of each ANN is very limited, which is due to
the limited data acquired. This could be improved by
introducing more data and ensuring more geometric diversity
in the data points. However, introducing more data would
increase the computational power required to train the model.
Therefore, it is also important to prune the data and select a
suitable sampling plan.

and

4.Case Study: Structural, Acoustic

Aesthetic Performance

In this section, the framework to incorporate qualitative
metrics into a computational model is applied to a case study
to serve as a proof-of-concept. A generative approach is used
in the case study, and the computational model utilised is

general to determine which solutions the algorithm finds. The
designs proposed are conceptual since the framework is
developed for the conceptual design phase. One case study is
examined, but four further case studies are presented in the
original master’s thesis [24].

4.1. Generative Design Framework

Generative design has acted as a paradigm shift within the
field of architectural and civil engineering [31]. At its core,
generative design is a process of design exploration. It is used
to determine if there are novel solutions to be discovered
within the feasible design space. The framework controlling
the generative design process is not fixed and shifts
throughout the literature [32, 33, 34]. Figure 16 presents the
framework proposed by [33]. The framework is initiated with
a solution space which defines the boundaries of the problem,
also denoted performance envelopes [32]. The solution space
defined the design variables and constraints in the given
problem. After the solution space is defined, a set of solutions
can be generated. The generator in this phase is the core of the
generative design framework [33]. The generator can
generate solutions based on the boundaries and definitions in
the specific solution space. This is achieved using algorithms,
such as a genetic algorithm. The next step is creating models
and evaluating solutions.

Solution space

Product definition

Design variables €
Constraints
¥
Solution set
l— Generator —l
Create models and evaluate
solutions

Evaluation 1 Evaluation 2 |2¢2| Evaluation n

I | I
! ! |

dooT uonerojdxg

Exploration
v
Presentation Ersizce Selept
management solution
Solution & Filtering &
metrics selection

Figure 16: Generative design framework [33], redrawn

The evaluations are conducted concerning several metrics,
which are measurable attributes of a solution determined
based on the design problem and objectives. Afterwards, the
solutions are explored by the user. This is to determine
interesting solution regions.

4.2. Preconditions for the Structural System in the Case
Study

The primary structural elements are glue-laminated timber
frames, GL28h, placed throughout the space. The motivation
behind the material choice is based on both the architectural
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expression and the environmental sustainability aspects of
using timber elements. Figure 17 presents the support and
joint conditions in the model. Pinned supports were chosen,
and rigid joints connect the beams to the columns.
Furthermore, edge beams are modelled to connect each
frame. The stability in the space is assumed to be facilitated
by shear walls.

e Y

Structural
1

Pinned
support

Figure 17: Primary static system of the frames and loads
applied to the structure

The structure is assumed to be somewhere in Denmark, and
only permanent and variable loads are considered. The
permanent load is the weight of the structural system and a
surface load of 0,5 kN/m? representing the weight of the roof.
The variable load considered is the snow load, which is set to
be 0,8 m?, and it is a short-term action. Two load cases on the
structure are considered: one for ULS and one for SLS. The
critical load case for ULS is assumed to be the load
combination with dominating snow from [35].

The design strength of glue-laminated timber depends on a
modification factor, kmod, Which is dependent on the service
class of the building and the load duration of the load
combination. In this case, service class 1 is assumed, e.g. a
dry internal environment [35]. The load duration of the
critical load combination is considered a short-term action,
less than a week. From [36], these conditions result in a
modification factor of kmed = 0,9.

4.3. Preconditions for the Acoustic Calculations in the
Case Study

Several room acoustic factors could be relevant to analyse in
the case study. The case study space is assumed to be an
auditorium and, therefore, speech intelligibility is important.
The influence on speech intelligibility is the parameters,
clarity and definition of the sound reaching the audience. One
factor which includes both the clarity and definition of sound
is the Speech Transmission Index (STI), which has a high
correlation with speech intelligibility. The case study is based
on the conceptual design phase, where the model is not
detailed and accurate. Therefore, it is not suitable or necessary
to conduct complicated acoustic simulations with long
evaluation times to achieve an indication of whether the room
will have a suitable acoustic environment. To avoid the
cumbersome acoustic simulations, the acoustic environment
can be approximated using only the reverberation time, Teo,
in the space. The reverberation time can be estimated with
Sabine’s formula, which is presented in Equation (2). To use
Sabine’s formula, several assumptions must be made and be
correct in the space, they are the sound field is diffuse, the
absorption material is placed homogeneously on all surfaces,

no large openings in the room, no focusing of sound, and the
sound disperses in all directions with the same probability.
One other limitation of Sabine’s formula is that it
approximates the reverberation time, Teo, in large complex
rooms poorly and Sabine’s formula tends to underestimate the
reverberation time, Teo [13].

__ 0,161V
XiSia;

Teo @)

V | Volume of the room [m?]
S |Surface area of material
a | Sound absorption of the material

The materials in a space have a significant influence on the
reflection, scattering and absorption of sound in a room. The
absorption coefficient depends on both the surface material
and what is underneath, e.g. if there is a layer of gypsum with
mineral wool underneath, the sound absorption is higher at
the lower frequencies. The materials chosen are based on the
principles that the walls, ceiling and floor are reflective with
minimal absorption, and the only absorptive material in the
room is the wall absorbents added to three of the walls. The
absorption coefficients of each material are presented in Table
2.

Table 2: Material absorption coefficients, values extracted
from a Niras local material library

Absorption coefficient

Frequency 63 125 250 500 1k 2k 4k 8k
[Hz]

Gypsum 0,15 | 0,15 | 0,10 | 0,06 | 0,04 | 0,04 | 0,05 | 0,05
(walls)

Glass 0,15 | 0,15 | 0,10 | 0,06 | 0,04 | 0,04 | 0,05 | 0,05
(windows)

Linoleum 0,02 | 0,02 | 0,02 | 0,03 | 0,04 | 0,04 | 0,05 | 0,05
(floor)

Gypsum 015 | 0,15 | 0,12 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05
(ceiling)

Gyptone (wall | 0,40 [ 0,40 | 0,75 | 0,85 | 0,75 | 0,65 | 0,65 | 0,65
absorbent)

4.4. Objectives and Constraints for the Case Study

The case study is performed as an optimisation process using
a genetic algorithm. It uses an ideal optimisation, multi-
objective, where there is one structural objective and one
acoustic objective. The ANN predicting aesthetic quality,
developed in Section 2.3, is incorporated as a constraint.

The structural objectives and constraints are presented in
equation (3). The constraints g»(x)—go(x) are the utilisation of
elements in ULS, all equations are found in [36]. The section
forces and displacement are calculated in Karamba3D [37], a
plugin to Grasshopper [28]. Using the section forces, the
utilisation is calculated in a custom C# script. The constraint
gio(x) 1is the instantaneous deflection in SLS. The
optimisation problem is constrained to control the volume. A
tolerance of 100 m?is introduced in g;;(X) and g12(X) to give
some margin for the algorithm. The space is aimed to be 500
m?, thus resulting in a minimum volume of 400 m3 and a
maximum volume of 600 m>.

min f;(X) = w ,
O, 0, (o
s.tg.(X) = ( C‘o‘d) +kny myd | Tmed o g
fc,o,d fm,z,d my,d
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2
g, g, 0,
s.tgo(X) = ( CM) + 2L e, L <

fc,o,d fm,z,d " fm,y,d
o o o,
s.tg;(X) = Lod 4 ko myd  med o
ft,o,d fm,z,d fm,y,d
o o o,
5.t g.(X) = 04y myd km mid < q
ft,O,d fm,z,d fm,y,d
s.t gs(X) = —2e20d <1 3)
kc,90fc,90,d
Ta
s.itgeX)=—<1
fv,d
o o o
s.t gy (X) — c,0,d m,y,d km m,z,d <1
kc,yfc,o,d fm,y,d fm,z,d
o [ o,
St Js (X) — c,0,d + km my,d + m,z,d <1
kc,zfc,o,d fm,y,d fm,z,d
Om,d Oc,d
5.t go(X) = — + —=<1
kcritfm,d kc,zfc,o,d
lmax
5.t g10(X) = wing < 250
s.t g (X) <V —100m3
s.t g1,(X) =V +100m3
X = Design variables
w Weight of primary structural system
lnax |Maximum length of beams
V| Target volume of space
Oc0a |Design compressive stress along the grain
0Oc90,4 |Design compressive stress perpendicular the grain
ki Factor considering re-distribution of bending
stresses
Om,y,a, | Design bending stress about the principal y-axis/z-
Omga @XIS

Oc0a |Design tensile stress along the grain
Ty | Design shear stress
ke, k. | Instability factor
kerir |Factor used for lateral buckling
Winse | Instantaneous deflection

The acoustic objective is to minimise the reverberation time,
Tseo, in the space to increase speech intelligibility. However, a
space with a reverberation time under 0,3 s is qualified as a
dead room, which will result in a loss of speech intelligibility
over moderate distances. Therefore, a constraint to the
reverberation time, T, is activated at 0,4 s.

min fz(X) = T60 (4)
s.t gm(X) =Te>0,4s

The aesthetics is incorporated as a constraint to the
optimisation process. The constraint is added to both
objectives in the algorithm, ensuring that the solutions
converge towards an aesthetic solution. The advantage of
implementing the aesthetic quality as a constraint is that the
solutions with a low predicted aesthetic quality have a low
probability of being chosen in the genetic algorithm selection
phase. The constraint activates if the aesthetic quality is below
a value of 0,8. This value is chosen to allow some tolerance
for the algorithm to find a suitable solution. The
argumentation is that since the ANN predicting the aesthetic
quality is not 100 % accurate, then tectonic solutions could
receive a slightly worse aesthetic quality and vice versa.

s.t g14(X) = Aesthetic quality < 0,8

)

If one of the constraints is violated, a penalty function is
activated to guide the algorithm back into the feasible solution
space. The penalty function is defined in Equation (6) based
on all the constraints defined in the optimisation problem. The
penalties are scaled to be appropriate to the size of the
objective. Furthermore, a slight violation of the constraints
receives a small penalty, whereas a significant violation of the
constraints receives a proportionally larger penalty.
Therefore, the values amplifying the constraint violation are
hyperparameters which has been found manually by testing
the algorithm. Because the two objectives assume extremely
different values, the penalties must be scaled differently to
behave properly.

P,(X) = (30 + max(gs, 92, 93 9u. 95, 9o 97, s 99))3

if max (g1, 92, 93, 94, 9s. 9o 97, g, 9o) = 1,0
P,(X) = (10 + g10)° ifg1o = T (6)
P,(X) = (500 — g,,)? ifg,; <V — 100 m?
P,(X) = g%,ifg;, = V+ 100 m*

500 —
Ps(X) = Tg“ ifg,, <V—100m?
2
P6(X)=g1—1éifg122100m3
P, (X) 34 ifg.. <04
=—1 <04s
7 L1 813

Ps(X) = ((1 — g14) - 100)%if g;, < 0,8

Py(X) = (1 —g14) - 2if g1, <08

FX) =) + P(X) + P (X) + P3(X) + P,(X) + Ps(X)
F2(X) = £,(X) + Ps(X) + Ps(X) + P, (X) + Py(X)

P | Penalty for violating a specific constraint

The optimisation is conducted in Grasshopper [28] with the
plugin Octopus [38] using the HypE algorithm. In each
generation of the optimisation process, 200 solutions are
analysed. In the first generation, this is doubled. A
preliminary analysis showed that a large number of solutions
were needed to introduce a large diversity of solutions. The
algorithm runs for a maximum of 10 generations, to save
computational power, and it was found that the non-
dominated results found after generation 10 were not
significantly different from each other. A cross-over factor of
0,8 is used and a mutation probability of 0,2 with a factor of
0,9 for the mutated solutions. Elitism is introduced with a
factor of 0,1. A summary of all the optimisation settings,
objective and constraints in the optimisation is presented in
Figure 18.

[ Structural model and analysis |4 | Acoustic model and analysis Acsthetic quality
Surrogate model
[CWeight ] & | [Reverb time ] [ Constrs ] [CAcsthetic gualiy_]
lx(XII m(n---m:(:)l /.-(')l .qnu)---.qn(l)[ .qu(l)l
L ' 3 —1]
Optimisation % |

Initial population Selection

—
" ¥ 200 solutions == |Factor of 0.8

Cross-over Elitism

—)
‘ | 400 solutions

== |Factor of 0,1

—— 10 generations

| Family of Non-dominated solutions |

Figure 18: Summary of the multi-objective optimisation
problem analysed in the case study
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4.5. Results

The results of the case study are presented in the following
section. The results include the solution space and a more
detailed exploration of certain non-dominated solutions found
with the optimisation algorithm.

4.5.1. Solution Space

Five non-dominated solutions were found in the optimisation
process, presented in Figure 19.

Reverberation time

) $

s- Weight
Figure 19: Solution space of non-dominated solutions in
the case study, 2 selected nondominated solutions are
marked with red outline

The solution space in this case study shows a larger diversity
in reverberation times, Teo, found among the non-dominated
solutions. These solutions are geometrically remarkably
different, but they seem to have similar structural systems
with four to five frames, which is as expected since fewer
frames result in lower weight. Two of the non-dominated
solutions, marked with a red outline in Figure 19, have been
chosen for further investigation. These are chosen because
they appear to have the best trade-off between weight and
reverberation time.

non-dominated solution |

a Weight Reverberation Acsthetic Utitisation Deflection Volume
time =) iy
7755 kg 048s /091 72% 15 mm 480 m*

Figure 20: The first chosen non-dominated solution from
the case study

4.5.2. Non-dominated Solutions

The first chosen non-dominated solution is presented in
Figure 20. The placement of material and windows appears to
be slightly arbitrary. However, there are still places where the
materials seem to lack the desired harmony. The aesthetic
quality of the solution is 0,91, which might be a bit high, but

it does have some alluring aesthetic values, such as its
proportions in relation to the human body and movement in
the geometry of the space. In terms of the structural aspect is
the utilisation is quite a bit larger in this situation, which is
primarily because the timber frames span a greater distance.
The reverberation time is close to its lower limit, which is
preferred.

non-dominated solution 2

a0\ Weight L Reverberation Acsthetic Utilisation Deflection Volume
time quality
5460 kg 0,56 % 0,96 57 % 11 mm 565 m?

Figure 21: The second chosen non-dominated solution from
the case study

The second of the non-dominated solutions chosen is
presented in Figure 21. At closer inspection, this solution is
remarkably similar to the first chosen solution. It has several
of the same aesthetic qualities of proportion and movement in
the geometry. However, it seems that this solution has better
placement of the materials, which is also rewarded with the
higher aesthetic quality prediction of 0,96. In terms of the
structural component is the utilisation and deflection are
relatively low, which indicates that the cross-sections could
be optimised further. The reverberation time is a bit high but
still within acceptable limits. The reverberation time is
primarily affected by the reduction in absorptive material on
the wall opposite the windows. This is generally unwanted
since two reflecting surfaces parallel to each other can create
standing waves. However, these two walls are not parallel, so
standing waves should not be a concern.

Based on this assessment, the best of the two non-dominated
solutions is the one presented in Figure 21, because it has
better aesthetic and structural results.

5.Discussion and Conclusion

The optimisation of engineering subjects within building
design frequently neglects the architectural expression within
a space. Therefore, the motivation for this article was to
incorporate aesthetic quality into a computational model to
improve informed decision-making.

In literature, several descriptions of aesthetics are presented.
Recurring terms are qualified as symmetry, harmony,
proportion, order and variety. These terms all assist in
describing the architectonic expression of a space. From the
theory, six qualitative values have been defined to describe
the aesthetic quality in a space. lL.e. symmetry, elements,
texture, material, scale, and variety are all defined as numeric
values, which can be translated directly to an algorithm based
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on a computational model. Each value describes a different
aspect of the aesthetic quality in a space.

A framework to develop an ANN to predict aesthetic quality
in building design has been proposed and consists of four
phases: (1) generating a design proposal in a computational
model, (2) aesthetic judgement, (3) extracting qualitative
values of the design proposal, and (4) develop a machine
learning model. A machine learning model was developed,
constructed with a shallow ANN. The results showed a
training error (RMSE) of 0,27 and a test error (RMSE) of
0,19. These were acceptable values, indicating the developed
ANN was not overfitting the training data. A sensitivity
analysis on the ANN showed that the prediction accuracy was
highly sensitive to the number of neurons in the hidden layer,
and which folds were the training and which fold was the test
data.

When applying the ANN predicting aesthetic quality in a case
study, it has been found that the prediction of aesthetic quality
was very accurate in the case study, where the proposed
design offers a playful base geometry while having a
transparent structural design. The research conducted in this
article successfully addressed the approach to integrating
aesthetic quality into a computational model. Furthermore,
the case study indicated that it is possible to inform a
computational model with aesthetic quality while maintaining
acoustic and structural integrity. The novel framework
presented in the article presents a method for creating tectonic
designs computationally. Furthermore, a proof of concept was
presented where the framework was utilised. This framework
holds potential for adoption in professional architectural
practice, particularly in early-stage conceptual design
processes where aesthetic judgments often lack
computational support.

For further development of the framework, more complex
computational models could be developed. Furthermore,
interviews could be conducted to determine the qualities
affecting the architectural value of a space from multiple
individuals. Lastly, the aesthetic judgment phase could be
incorporated into virtual reality to create a more realistic
experience of the room.
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