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Abstract: Within a computational model, quantitative metrics frequently steer the decision-making process, where qualitative metrics, 

including elements representing the architectural expression, are often neglected. The motivation behind this article is to quantify the 

elements that establish the harmony between form, material and technique, resulting in a combined tectonic design. This article aims to 

illustrate how a computational model can include qualitative architectural information and thereby create an honest tectonic design. The 

most influential theories concerning architectural values have been examined. Based on this, six qualitative values are defined as: 

symmetry, elements, texture, material placement, scale and variety which describe the architectural value, or aesthetic quality, of a space. 

Based on the defined qualitative values, a machine learning model has been defined, which is based on a pseudorandom sampling plan 

and a shallow artificial neural network. A computational model has been developed, implemented with the machine learning model 

predicting aesthetic quality. An optimisation process is defined, utilising a genetic algorithm to conduct a meta-heuristic optimisation. 

From this computational model, a case study has been conducted which considers a structural objective, an acoustic objective and an 

aesthetic constraint. The solution space of the case study has been examined in a generative design process. The results displayed the 

possibilities of informing a computational model with aesthetic quality while maintaining acoustic and structural integrity. The research 

conducted in this article presents a novel framework for creating tectonic designs through a computational model.  
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1.Introduction 
 

Outstanding building design depends on numerous qualitative 

metrics, which are difficult to anticipate in the design phase. 

Some qualitative metrics are the architectural expression, the 

perception of privacy and the indoor environment. Qualitative 

metrics are difficult to handle in a quantitative system, and 

they are complex to incorporate into a computational model 

[1, 2, 3, 4]. In this context, qualitative is defined as a quantity 

which is influenced by human judgment. Quantitative is 

defined as a quantity which is definite and described with 

numbers. A space within a building must have high 

architectural value and be functional to achieve the synergy 

of tectonics. The harmony between form, material and 

technique must be found so they are inseparable [5]. The 

harmony is described as a tectonic structure which is driven 

by the aesthetics in a construction and is elevated above an 

architectural style. This is illustrated in the following 

quotation. 

 

“Needless to say, I am not alluding to the mere revelation of 

constructional technique but rather to its expressive potential. 

Inasmuch as the tectonic amounts to a poetics of construction, 

it is art, but in this respect the artistic dimension is neither 

figurative nor abstract.” 

– Frampton (1995) [6] 

 

Furthermore, it is important to incorporate this element in the 

early design phases, ideally in the conceptual phase, to 

capture combinations of novelty and creativity. This is done 

through design diversity in a computational model utilising a 

generative design process [7]. Computational modelling is a 

prominent design method to explore designs which are 

beyond the imagination of a designer and a method to achieve 

immediate ranking of each design proposal corresponding to 

several objectives [8, 9]. 

 

The sound of a space is an essential part of the perception 

thereof. Sound incorporates all dimensions in the space and 

creates an experience of interiority [10]. The acoustic 

environment in a room exposes the proportions and function 

[11]. The acoustic conditions are closely correlated with the 

general shape of the room, and it is therefore also correlated 

with the conceptual design phase [12]. To achieve an accurate 

prediction of the acoustic environment of a space, 

complicated and time-consuming simulations of a room are 

required. This is not sensible to do in the early design stage; 

therefore, machine learning or simple analytical expressions 

can be utilised to approximate the acoustic environment in the 

early design phase [12, 13]. 

 

Even with extensive simulations of the acoustics, two 

identical spaces can be perceived as widely different. This is 

because the acoustics of a space consist of both quantitative 

and qualitative aspects [14]. This phenomenon corresponds to 

the architectural experience, which can be divided into two 

main stages: the aesthetic judgement and the aesthetic 

emotion [15]. Therefore, it must be possible to subdivide a 

qualitative value into several tangible metrics. This is 

achieved by manipulating the relationship between 

qualitative values using either artificial intelligence or simple 

analytical approximations [3, 16]. 

 

The research in the article is guided by the research question: 

How can a computational model be further informed with 

architectural value while maintaining its acoustic and 

structural integrity, creating a tectonic design? The basis of 

this research builds on the premise that empirical aesthetics 

are feasible, to describe the architectural value [17, 18, 19]. 
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This research contributes to emerging design methodologies 

by enabling qualitative human values to inform early-stage 

computational models. Such integration ensures more holistic 

and user-responsive built environments in architectural 

practice. 

 

The article is organised, where Section 2 aims to describe the 

architectural value of a space based on existing theory 

surrounding the experience of architectural spaces and the 

aesthetic experience. Based on the findings, six qualitative 

values are proposed to describe the aesthetic quality of a 

space. Section 3 utilises the defined qualitative values to 

create an artificial neural network, which is applied in Section 

4 to a case study, serving as a proof-of-concept. Section 5 

presents a discussion and conclusion on the research 

conducted in the article.  

 

2.The Experience of Architectural Spaces 
 

The tectonics of a space is the real added to the imaginary, 

which creates a synergy. The imaginary is also described as 

the poetics of a space. This is where the aesthetics lie, which 

is an integral part of the experience of a space, which can be 

described as the magic of the real. There are several theories 

describing the architectural experience of a space, but the 

foundation of this research is built on the definition of magic 

of the real by Zumthor [20]. 

 

2.1. Magic of the Real 

 

The magic of the real is also described by the atmosphere of 

a space; Zumthor presents a monologue which attempts to 

answer the question: What is the magic of the real?, which 

decomposes atmosphere into nine principles [20]. It becomes 

possible to compare and quantify the individual experience. 

Three principles are indicated to have the most influence on 

the aesthetic quality of a space as the body of architecture, 

material compatibility and levels of intimacy. A pictogram of 

the principles is presented in Figure 1. 

 

 
Figure 1: The three selected principles to describe the 

atmosphere of a space 

 

Material compatibility is the collaboration between two or 

more materials. Zumthor describes it as a perfect union 

between materials. Therefore, the small details are crucial, 

such as the ageing of materials. Furthermore, it describes how 

there must be a contrast between two materials to achieve an 

interesting interplay. The materials determine the feeling of 

the room and how the feeling changes based on a small 

change in material. Furthermore, the material has a significant 

influence on the acoustic quality of a space. 

 

Levels of intimacy is the relationship between proximity, 

distance and proportion. Intimacy is measured as a feeling of 

confidentiality, closeness and comprehension. It is related to 

size differences, where sizes close to the human body are 

perceived as intimate, whereas larger constructions seem 

intimidating. A connection between large and smaller 

components creates harmony in the space. The proportions of 

a room can be described based on several different aesthetic 

theories, e.g. the golden ratio or the Vitruvian Man [21, 22]. 

 

2.2. Theories of the Aesthetic Experience 

 

The term aesthetic has different definitions depending on the 

reader. Aesthetics derives from the Greek word aisthitiki, 

which means perception through sensation [23]. The motion 

of empirical aesthetics was pioneered by the German 

philosopher, physicist and experimental psychologist Gustav 

Fechner (1801-1887). Empirical aesthetics aimed to 

parameterise beauty both empirically and psychophysically 

[17].  

 

Throughout time, empirical aesthetics have branched out and 

formed several subdomains. One is computational aesthetics, 

which is a mathematical model for aesthetic appreciation 

based on the underlying aesthetic form [17]. The origin of 

computational aesthetics is attributed to George David 

Birkhoff, who in 1933 published the book titled Aesthetic 

measure [23]. In the book, the aesthetic experience is 

composed of three phases. The first phase is the preliminary 

effort, which is the necessary act of perception which 

corresponds to the complexity, C. The second phase is the 

feeling of value, which is also the aesthetic measure, M. The 

third is the actualisation that the object is characterised by 

symmetry, harmony or order, O. Birkhoff expressed these 

three phases mathematically in Equation (1). 

 

M =
O

C
                                             (1) 

 

An example of aesthetic measure is presented in Figure 2, 

used on six different polygons arranged in descending 

aesthetic measure. The class of the objects is assumed to be 

the same, i.e. same size, colour and material [19]. 

 

 
Figure 2: Six polygons with their aesthetic measure 

according to Equation (1), from [19] 
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2.3. Qualitative Values of the Aesthetic Experience 

 

This section builds on the theory presented in the previous 

section and translates it into concrete qualities that can be 

valued objectively with a subjective meaning. It aims to 

indicate qualitative values that describe a space’s aesthetic 

quality with straightforward and understandable elements, 

independent of the function of the space. Further details on 

the qualitative values of the aesthetic experience are 

described in the thesis [24]. 

 

2.3.1. The Body of Architecture 

 

This principle describes scale and proportion within a space 

and describes how several elements have the possibility of 

coming together to create a larger whole. The quality 

symmetry describes the equilibrium and harmony of a shape. 

The definition of symmetry is illustrated in Figure 3. The 

quality investigates the symmetry of a shape in both the 

vertical and horizontal sections. The horizontal section is 

evaluated on both the x-axis and y-axis, while the vertical 

section is evaluated on the z-axis. The quality is converted to 

a numeric system where a symmetrical section is valued 1, 

and an unsymmetrical section is valued 0. For the entire 

space, the sum of all is calculated. 

 

 
Figure 3: Illustration of the quality, symmetry, in relation to 

the body of architecture 

 

The second quality within the body of architecture is 

elements. The value is used to determine the number of 

elements creating a space. It decomposes the space into the 

identical elements; it is constructed of. The score of the value 

is then the number of unique elements to develop a space. The 

concept is illustrated in Figure 4. The essence of elements is 

to create repetition and harmony in the space. Repetition is a 

key Gestalt principle [25], which describes the design 

principal unity in variety. 

 

 
Figure 4: Illustration of the quality, elements, in relation to 

the body of architecture 

 

One important aspect of the body of architecture is the 

skeleton of a space and, therefore is noteworthy to reflect on 

the structural aspect of a space. To create a truly tectonic 

design, structural transparency must be present. However, it 

is not included as a quality of the aesthetic experience because 

it is not a parameter which can be generalised, either it is 

present or not. 

 

2.3.2. Material Compatibility 

 

This principle describes the coherence and cooperation 

between different materials. It describes the details between 

two materials and how they can be conflicting or harmonious. 

 

The quality texture describes the texture of the materials used 

in the room. This is both the tactile feeling and the visual 

intrigue. The quality is illustrated graphically in Figure 5, 

where the texture on a surface change from 0, smooth, to 1, 

very rough. A surface can consist of several different 

materials with various textures. Therefore, the ratio between 

textures from each surface is found to represent the space. 

 

 
Figure 5: Illustration of the quality, texture, in relation to 

material compatibility 

 

The quality material placement illustrates how two or more 

materials interact with each other in one space, illustrated in 

Figure 6. This quality embraces several variables concerning 

materials in a space. However, in an attempt to simplify the 

system, only three variables are analysed. The ratio between 

the two materials, the complexity representing the number of 

material elements added to the space and the order which 

describes the number of unique material elements. The final 

value is determined with the equation presented in Figure 6 

The quality represents the entire space, but it has the ability 

to be decomposed for each surface. 

 

 
Figure 6: Illustration of the quality, material placement, in 

relation to material compatibility 

 

 

 

Paper ID: SR251021004841 DOI: https://dx.doi.org/10.21275/SR251021004841 238 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor 2024: 7.101 

Volume 14 Issue 11, November 2025 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

2.3.3. Levels of Intimacy 

 

This principle describes how intimate and comfortable a 

space feels. Most larger spaces tend to have several levels of 

intimacy, an area which is open and public, and another which 

is closed and private. The quality scale is heavily inspired by 

the work of Corbusier with the proportions proposed through 

Le Modulor. The equation calculating the scale of a space is 

presented in Figure 7. The scale is set to the human; it must 

not be too small so it becomes smothering, but also not too 

spacious that the dimensions of the room fall out of 

proportion. In this definition, the scale will always represent 

the ratio between the lowest height of the ceiling and the 

human body, set to the dimensions of Le Modulor with a 

height of 216 cm, i.e. s1 = 216 cm. 

 

 
Figure 7: Illustration of the quality, scale, in relation to 

levels of intimacy 

 

The quality variety is translated to the change of scale 

throughout a space. It describes how the change of intimacy 

throughout a space changes the atmosphere. Therefore, 

variety is defined as the ratio between the highest and lowest 

points in the ceiling. An illustration of the quality and the 

equation to calculate it is presented in Figure 8. The ceiling 

can change height multiple times in the space, but this is not 

reflected in the quality. 

 

 
Figure 8: Illustration of the quality, Variety, in relation to 

levels of intimacy 

 

2.3.4. Scoring system 

 

The six qualitative values, symmetry, elements, texture, 

material placement, scale and variety, are found by an 

algorithm which normalises the values when a dataset has 

been collected. By exploring the space, the aesthetic quality 

is evaluated by a human. The aesthetic quality is given as a 

number between 0 and 1, where 0 is undesirable and 1 is 

desirable. 

 

With this scoring system, there is no indication of a pattern or 

relationship between each qualitative value. Therefore, 

machine learning is implemented through an Artificial Neural 

Network (ANN), which is utilised to determine the 

underlying patterns and relationships between the different 

parameters. 

 

2.4. Discussion of Qualitative Values 

 

One significant quality is the light in a space. It plays a 

significant role in the atmospheric experience. Not only how 

light enters the space, but also the places where light is absent. 

The actual light quality would apply to several other qualities, 

which would make the framework complex. It should be 

considered whether the complexity is necessary to achieve 

true-to life results; to determine this, a sensitivity analysis 

should be conducted. 

 

Another aspect of the qualities is that they must be formulated 

generally for an algorithm to decode the qualities 

independently without the assistance of a human. One such 

feasibility aspect is the height of a ceiling, which cannot be 

below the height of a human, because then the human cannot 

fit within. The qualities defined in the algorithm must be 

logical, simple and straightforward. 

 

3.Incorporating Qualitative Values into a 

Computational Model 
 

In this section, the necessary theory for creating a machine 

learning model is briefly outlined, followed by the 

development of the aesthetic quality ANN based on the 

qualitative values defined in Section 2.3. 

 

3.1. Machine Learning 

 

In supervised learning, machine learning approximates the 

solution surface based on several sampling points and 

observations [26]. The general representation for developing 

a machine learning model with supervised learning is 

presented in Figure 9. The framework consists of six phases, 

with one iterative loop. Problem identification determines the 

input and output of the model. This stage is crucial for 

acquiring suitable preconditions for the machine learning 

model [26]. Considerations concerning the dimensionality of 

the problem must be determined in this phase to avoid the 

curse of dimensionality. 

 

 
Figure 9: Representation of developing a machine learning 

model [26], redrawn 
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The sampling plan and observations are generated from a 

specific number of points in the design space. This is to obtain 

data points where information surrounding the variables and 

the output is obtained. Some sampling plans could be 

uniform, pseudo-random or Latin hypercube sampling [26]. 

 

From the sampling plan and observations, a machine learning 

model is constructed. The model is developed by using an 

algorithm such as ANN. The algorithm is chosen based on its 

ability to be accurate, its robustness and its computational 

capacity [27]. Afterwards, the model is tested, and its error is 

determined. 

 

3.2. Development of ANN to Predict Aesthetic Quality 

 

The aim is to develop a generic machine learning model, 

predicting aesthetic quality, independent of the space’s 

function and underlying computational model. The 

framework developed contains four phases, illustrated in 

Figure 10. (1) generating a design proposal based on the 

variables developed in the computational model, (2) aesthetic 

judgment of the space, (3) extracting the qualitative values of 

the geometry and normalising them, and (4) developing a 

machine learning model to predict the aesthetic quality of 

other spaces. The machine learning model is developed to 

predict the aesthetic quality of new design proposals. 

 

 
Figure 10: Architecture for development ANN to predict 

aesthetic quality 

 

3.2.1. Design proposal 

 

The design proposals are developed using a computational 

model, which can represent rooms with several different 

functions and visions. The model can therefore assume 

different volumes and dimensions. The computational model 

is developed in the software Grasshopper [28], a plugin to 

Rhino 7.0 [29]. The variables controlling the geometry of the 

space consist of changing the floor plan geometry, the number 

of structural gluelam frames in the space, ceiling height, the 

number and sizes of windows in one wall and the number and 

sizes of a secondary acoustically absorptive material placed 

on three of the walls. Some of the designs have been 

developed manually to ensure that the proposals possess the 

desired diversity required. The rest of the designs are 

developed with a genetic algorithm, which found random 

solutions. This is also a good indication of which results can 

be expected in the case studies. 

 

 

3.2.2. Aesthetic Judgement 

 

The aesthetic judgement is accomplished by viewing the 

space from the inside. This is done in the software Rhino 7.0 

[29] where the space is rendered to simulate reality. The 

timber frames are rendered dark due to a permanent setting in 

the software, but in reality, they would be a timber colour. The 

walls are a light grey, the acoustic material is light green, and 

the windows are almost see-through. An example of the view 

is presented in Figure 11. Behind the windows is a picture of 

some buildings to create the illusion of the space interacting 

with a real environment. The buildings are from Nobel Parken 

in Aarhus. A person from a stock catalogue from Rhino 7.0 

[29] is placed in the model, which is to create a better sense 

of scale and how the proportions are in relation to a human 

body. The person is scaled to have a height of 175 cm 

corresponding to the height of Le Modulor. 

 

3.2.3. Data points 

 

From the design proposals and the aesthetic judgement are 

data points were developed to form the training and test data 

for the machine learning model. The input in the qualitative 

values is automatically developed with the design proposals 

in the numeric environment, in Grasshopper [28]. 

Streamlining the qualities, different assumptions have been 

made: 

 

Symmetry: the algorithm only analyses if the curves 

developing the space are symmetric, i.e. symmetry along the 

yz-plane only analyses the two parallel lines in the y-axis. The 

same with the symmetry along the xz-plane only analyses the 

two parallel lines in the x-axis. The last symmetric plane is in 

the xz-plane, which analyses the symmetry between the 

control points in the ceiling. 

 

Elements: Element similarity is estimated as different 

surfaces or elements having the same area. This reduces the 

complexity of the algorithm, which figures out which 

elements are similar. 

 

Texture: The ceiling, floor, walls and windows have the same 

texture of 0,05. The absorptive material on the walls has a 

rough texture of 1,00. 

 

Scale and variety: No assumptions deviating from the original 

definition have been made. 

 

Material placement: The similarity between elements is also 

dependent on the area. If they have the same area, they are 

assumed to be identical. 

 

 
Figure 11: One datapoint of qualitative values and aesthetic 

quality 
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The first data point is illustrated in Figure 11. A total of 30 

data points are curated to represent the training and test data. 

The aesthetic quality values range significantly in the 

different spaces. The scores in the data set are given by the 

author as an approximation of the first impression of the 

space. 

 

3.2.4. Construction of Machine Learning Model 

 

The machine learning model is constructed with an ANN. The 

sample plan with corresponding observations is divided into 

5 folds, each with 6 samples, which is used to perform cross-

validation on the developed ANN. Each input to the ANN has 

been normalised before training and testing. 

 

The ANN architecture is illustrated in Figure 12, where a 

shallow ANN is implemented, due to its computational 

efficiency.  

 

 
Figure 12: Input and output of the problem, illustrated in a 

shallow ANN 

 

Initially, it is constructed with 3 neurons in the hidden layer, 

but this parameter is varied in the sensitivity analysis. The 

activation function in the hidden layer and the output layer is 

chosen to be a sigmoid function, and the ANN is trained using 

a backpropagation algorithm. The ANN is developed by using 

the Neural Network Trainer and tested by using Neural 

Network Tester in LunchboxML [30], which is a plugin to 

Grasshopper [28]. When the ANN has been trained, it is saved 

to a binary file to save the exact weights and biases trained 

for the problem. This can be used to test the model and to 

incorporate the trained model into other computational 

models. An overview of the settings for developing the ANN 

is presented in Figure 13. 

 

 
Figure 13: Overview of the settings for developing the ANN 

 

The ANN is tested upon completion of the training. A scatter 

plot showing the predicted values versus the actual values for 

training on folds 2, 3, 4 and 5 and testing on fold 1 is 

illustrated in Figure 14. Ideally, the predicted and actual 

aesthetic quality should be the same and, therefore, form a 

straight diagonal line. However, this is not the case in this 

trained ANN. It is fairly accurate for the data points which 

have a high aesthetic quality. But the data points with an 

average aesthetic quality it drastically underestimated. 

 

The model is tested using the RMSE for both the training and 

test errors. The errors of the ANN training on folds 2, 3, 4 and 

5 and testing on fold 1 are presented in Table 1. The results 

show that the error is slightly higher in the training case than 

in the test case. This is favorable and it indicates that the ANN 

is not overfitting. 

 

Table 1: RMSE of the training and test data 

 Training error Test error 

 Folds 2, 3, 4 and 5 Fold 1 

1 hidden layer, 3 neurons 0,2722 0,1977 

 

3.2.5. Sensitivity Analysis of the ANN 

 

A sensitivity analysis of the ANN accuracy is conducted in 

this section. The accuracy is solely determined based on the 

RMSE of the training and test data. The neuron sensitivity is 

tested in the hidden layer. The motivation behind this change 

is to test whether the ANN’s predictions will increase 

accuracy when the ANN is defined with more neurons. 

Furthermore, it is tested to determine when the model begins 

to underfit or overfit. Three different configurations are 

examined: 3 neurons, 6 neurons and 9 neurons. In all the 

configurations, the activation functions and the learning 

algorithm are kept the same. Each configuration is tested on 

each fold, as developed in the sampling plan. Thus, 5 ANNs 

are developed for each neuron combination. 

 

The Root Mean Squared Error (RMSE) of the training and 

test data for each ANN is presented in Figure 15. The results 

show clearly that some folds generally perform better than 

others. This is primarily because it is a small dataset where 

diversity in the output is not guaranteed for every fold. 

Concerning the RMSE, it is clear that the ANN overfits at 6 

and 9 neurons in the hidden layer. The overfitting is clear 

when the training error is significantly larger than the testing 

error. This is true for almost all the folds for 6 and 9 neurons. 

The only exception is 9 neurons in fold 4, where the training 

and test errors are approximately the same. The test error is 

smaller than the training error in folds 1, 4 and 4 with 3 

neurons. 
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Figure 14: Test data for fold 1, 3 neurons, scatter plot with 

predicted values versus actual values 

 
This is an indication of an underfitting ANN. The model in 

fold 1 with 3 neurons is the one where the training and test 

errors are the closest to each other, while not overfitting. 

Therefore, the ANN tested on fold 1 with 3 neurons is the best 

fitting, and this ANN is thus integrated into the computational 

model used in the Section 4 case study. 

 

 
Figure 15: RMSE of the different training and test data for 

each fold and ANN complexity 

 

3.3. Discussion of the ANN Predicting Aesthetic Quality 

 

One major point of discussion is whether creating a machine 

learning model to predict something qualitative has any 

validity in practice. Based on the results from the ANN, 

illustrate how the ANN has the ability to determine the 

underlying pattern in aesthetic judgment. Therefore, it is 

argued that it can be valid to replace human judgment to some 

degree with a machine learning model. However, it is 

recognised that the model will not be a 100 % accurate and, 

therefore, human influence will always be needed to 

determine which is the best result. 

 

The accuracy of each ANN is very limited, which is due to 

the limited data acquired. This could be improved by 

introducing more data and ensuring more geometric diversity 

in the data points. However, introducing more data would 

increase the computational power required to train the model. 

Therefore, it is also important to prune the data and select a 

suitable sampling plan. 

 

4.Case Study: Structural, Acoustic and 

Aesthetic Performance 
 

In this section, the framework to incorporate qualitative 

metrics into a computational model is applied to a case study 

to serve as a proof-of-concept. A generative approach is used 

in the case study, and the computational model utilised is 

general to determine which solutions the algorithm finds. The 

designs proposed are conceptual since the framework is 

developed for the conceptual design phase. One case study is 

examined, but four further case studies are presented in the 

original master’s thesis [24]. 

 

4.1. Generative Design Framework 

 

Generative design has acted as a paradigm shift within the 

field of architectural and civil engineering [31]. At its core, 

generative design is a process of design exploration. It is used 

to determine if there are novel solutions to be discovered 

within the feasible design space. The framework controlling 

the generative design process is not fixed and shifts 

throughout the literature [32, 33, 34]. Figure 16 presents the 

framework proposed by [33]. The framework is initiated with 

a solution space which defines the boundaries of the problem, 

also denoted performance envelopes [32]. The solution space 

defined the design variables and constraints in the given 

problem. After the solution space is defined, a set of solutions 

can be generated. The generator in this phase is the core of the 

generative design framework [33]. The generator can 

generate solutions based on the boundaries and definitions in 

the specific solution space. This is achieved using algorithms, 

such as a genetic algorithm. The next step is creating models 

and evaluating solutions. 

 

 
Figure 16: Generative design framework [33], redrawn 

 

The evaluations are conducted concerning several metrics, 

which are measurable attributes of a solution determined 

based on the design problem and objectives. Afterwards, the 

solutions are explored by the user. This is to determine 

interesting solution regions. 

 

4.2. Preconditions for the Structural System in the Case 

Study 

 

The primary structural elements are glue-laminated timber 

frames, GL28h, placed throughout the space. The motivation 

behind the material choice is based on both the architectural 
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expression and the environmental sustainability aspects of 

using timber elements. Figure 17 presents the support and 

joint conditions in the model. Pinned supports were chosen, 

and rigid joints connect the beams to the columns. 

Furthermore, edge beams are modelled to connect each 

frame. The stability in the space is assumed to be facilitated 

by shear walls. 

 

 
Figure 17: Primary static system of the frames and loads 

applied to the structure 

 

The structure is assumed to be somewhere in Denmark, and 

only permanent and variable loads are considered. The 

permanent load is the weight of the structural system and a 

surface load of 0,5 kN/m2 representing the weight of the roof. 

The variable load considered is the snow load, which is set to 

be 0,8 m2, and it is a short-term action. Two load cases on the 

structure are considered: one for ULS and one for SLS. The 

critical load case for ULS is assumed to be the load 

combination with dominating snow from [35]. 

 

The design strength of glue-laminated timber depends on a 

modification factor, kmod, which is dependent on the service 

class of the building and the load duration of the load 

combination. In this case, service class 1 is assumed, e.g. a 

dry internal environment [35]. The load duration of the 

critical load combination is considered a short-term action, 

less than a week. From [36], these conditions result in a 

modification factor of kmod = 0,9. 

 

4.3. Preconditions for the Acoustic Calculations in the 

Case Study 

 

Several room acoustic factors could be relevant to analyse in 

the case study. The case study space is assumed to be an 

auditorium and, therefore, speech intelligibility is important. 

The influence on speech intelligibility is the parameters, 

clarity and definition of the sound reaching the audience. One 

factor which includes both the clarity and definition of sound 

is the Speech Transmission Index (STI), which has a high 

correlation with speech intelligibility. The case study is based 

on the conceptual design phase, where the model is not 

detailed and accurate. Therefore, it is not suitable or necessary 

to conduct complicated acoustic simulations with long 

evaluation times to achieve an indication of whether the room 

will have a suitable acoustic environment. To avoid the 

cumbersome acoustic simulations, the acoustic environment 

can be approximated using only the reverberation time, T60, 

in the space. The reverberation time can be estimated with 

Sabine’s formula, which is presented in Equation (2). To use 

Sabine’s formula, several assumptions must be made and be 

correct in the space, they are the sound field is diffuse, the 

absorption material is placed homogeneously on all surfaces, 

no large openings in the room, no focusing of sound, and the 

sound disperses in all directions with the same probability. 

One other limitation of Sabine’s formula is that it 

approximates the reverberation time, T60, in large complex 

rooms poorly and Sabine’s formula tends to underestimate the 

reverberation time, T60 [13]. 

 

𝑇60 =
0,161⋅𝑉

∑ 𝑆𝑖𝑖 𝛼𝑖
                                     (2) 

 

V  Volume of the room [m3] 

S  Surface area of material 

𝛼   Sound absorption of the material 

 

The materials in a space have a significant influence on the 

reflection, scattering and absorption of sound in a room. The 

absorption coefficient depends on both the surface material 

and what is underneath, e.g. if there is a layer of gypsum with 

mineral wool underneath, the sound absorption is higher at 

the lower frequencies. The materials chosen are based on the 

principles that the walls, ceiling and floor are reflective with 

minimal absorption, and the only absorptive material in the 

room is the wall absorbents added to three of the walls. The 

absorption coefficients of each material are presented in Table 

2. 

 

Table 2: Material absorption coefficients, values extracted 

from a Niras local material library 
 Absorption coefficient 

Frequency 

[Hz] 

63 125 250 500 1𝑘 2𝑘 4𝑘 8𝑘 

Gypsum 

(walls) 

0,15 0,15 0,10 0,06 0,04 0,04 0,05 0,05 

Glass 

(windows) 

0,15 0,15 0,10 0,06 0,04 0,04 0,05 0,05 

Linoleum 

(floor) 

0,02 0,02 0,02 0,03 0,04 0,04 0,05 0,05 

Gypsum 

(ceiling) 

0,15 0,15 0,12 0,08 0,06 0,06 0,05 0,05 

Gyptone (wall 

absorbent) 

0,40 0,40 0,75 0,85 0,75 0,65 0,65 0,65 

 

4.4. Objectives and Constraints for the Case Study 

 

The case study is performed as an optimisation process using 

a genetic algorithm. It uses an ideal optimisation, multi-

objective, where there is one structural objective and one 

acoustic objective. The ANN predicting aesthetic quality, 

developed in Section 2.3, is incorporated as a constraint. 

 

The structural objectives and constraints are presented in 

equation (3). The constraints g2(x)−g9(x) are the utilisation of 

elements in ULS, all equations are found in [36]. The section 

forces and displacement are calculated in Karamba3D [37], a 

plugin to Grasshopper [28]. Using the section forces, the 

utilisation is calculated in a custom C# script. The constraint 

g10(x) is the instantaneous deflection in SLS. The 

optimisation problem is constrained to control the volume. A 

tolerance of 100 m3 is introduced in g11(X) and g12(X) to give 

some margin for the algorithm. The space is aimed to be 500 

m3, thus resulting in a minimum volume of 400 m3 and a 

maximum volume of 600 m3. 

 

min 𝑓1(𝑿) = w 

𝑠. 𝑡 𝑔1(𝑿) = (
𝜎𝑐,0,𝑑

𝑓𝑐,0,𝑑

)

2

+ 𝑘𝑚

𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑧,𝑑

+
𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑦,𝑑

≤ 1 
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𝑠. 𝑡 𝑔2(𝑿) = (
𝜎𝑐,0,𝑑

𝑓𝑐,0,𝑑

)

2

+
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑧,𝑑

+ 𝑘𝑚

𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑦,𝑑

≤ 1 

𝑠. 𝑡 𝑔3(𝑿) =
𝜎𝑡,0,𝑑

𝑓𝑡,0,𝑑

+ 𝑘𝑚

𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑧,𝑑

+
𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑦,𝑑

≤ 1 

𝑠. 𝑡 𝑔4(𝑿) =
𝜎𝑡,0,𝑑

𝑓𝑡,0,𝑑

+
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑧,𝑑

+ 𝑘𝑚

𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑦,𝑑

≤ 1 

𝑠. 𝑡 𝑔5(𝑿) =
𝜎𝑐,90,𝑑

𝑘𝑐,90𝑓𝑐,90,𝑑
≤ 1 (3) 

𝑠. 𝑡 𝑔6(𝑿) =
𝜏𝑑

𝑓𝑣,𝑑

≤ 1 

𝑠. 𝑡 𝑔7(𝑿) =
𝜎𝑐,0,𝑑

𝑘𝑐,𝑦𝑓𝑐,0,𝑑

+
𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑

+ 𝑘𝑚

𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑

≤ 1 

𝑠. 𝑡 𝑔8(𝑿) =
𝜎𝑐,0,𝑑

𝑘𝑐,𝑧𝑓𝑐,0,𝑑

+ 𝑘𝑚

𝜎𝑚,𝑦,𝑑

𝑓𝑚,𝑦,𝑑

+
𝜎𝑚,𝑧,𝑑

𝑓𝑚,𝑧,𝑑

≤ 1 

𝑠. 𝑡 𝑔9(𝑿) =
𝜎𝑚,𝑑

𝑘𝑐𝑟𝑖𝑡𝑓𝑚,𝑑

+
𝜎𝑐,𝑑

𝑘𝑐,𝑧𝑓𝑐,0,𝑑

≤ 1 

𝑠. 𝑡 𝑔10(𝑿) = 𝑤𝑖𝑛𝑠𝑡 ≤
𝑙𝑚𝑎𝑥

250
 

𝑠. 𝑡 𝑔11(𝑿) ≤ 𝑉 − 100 𝑚3 
𝑠. 𝑡 𝑔12(𝑿) ≥ 𝑉 + 100 𝑚3 
𝑋 = Design variables 

 

w  Weight of primary structural system 

𝑙𝑚𝑎𝑥  Maximum length of beams 

𝑉  Target volume of space 

𝜎𝑐,0,𝑑   Design compressive stress along the grain 

𝜎𝑐,90,𝑑  Design compressive stress perpendicular the grain 

𝑘𝑚   Factor considering re-distribution of bending 

stresses 

𝜎𝑚,𝑦,𝑑 , 

𝜎𝑚,𝑧,𝑑 

 Design bending stress about the principal y-axis/z-

axis 

𝜎𝑡,0,𝑑  Design tensile stress along the grain 

𝜏𝑑  Design shear stress 

𝑘𝑐,𝑦, 𝑘𝑐,𝑧  Instability factor 

𝑘𝑐𝑟𝑖𝑡  Factor used for lateral buckling 

𝑤𝑖𝑛𝑠𝑡   Instantaneous deflection 

 

The acoustic objective is to minimise the reverberation time, 

T60, in the space to increase speech intelligibility. However, a 

space with a reverberation time under 0,3 s is qualified as a 

dead room, which will result in a loss of speech intelligibility 

over moderate distances. Therefore, a constraint to the 

reverberation time, T60, is activated at 0,4 s. 

 

min f2(X) = T60                                                        (4) 

s.t g13(X) = T60 > 0,4 s 

 

The aesthetics is incorporated as a constraint to the 

optimisation process. The constraint is added to both 

objectives in the algorithm, ensuring that the solutions 

converge towards an aesthetic solution. The advantage of 

implementing the aesthetic quality as a constraint is that the 

solutions with a low predicted aesthetic quality have a low 

probability of being chosen in the genetic algorithm selection 

phase. The constraint activates if the aesthetic quality is below 

a value of 0,8. This value is chosen to allow some tolerance 

for the algorithm to find a suitable solution. The 

argumentation is that since the ANN predicting the aesthetic 

quality is not 100 % accurate, then tectonic solutions could 

receive a slightly worse aesthetic quality and vice versa. 

 

s.t g14(X) = Aesthetic quality ≤ 0,8                  (5) 

If one of the constraints is violated, a penalty function is 

activated to guide the algorithm back into the feasible solution 

space. The penalty function is defined in Equation (6) based 

on all the constraints defined in the optimisation problem. The 

penalties are scaled to be appropriate to the size of the 

objective. Furthermore, a slight violation of the constraints 

receives a small penalty, whereas a significant violation of the 

constraints receives a proportionally larger penalty. 

Therefore, the values amplifying the constraint violation are 

hyperparameters which has been found manually by testing 

the algorithm. Because the two objectives assume extremely 

different values, the penalties must be scaled differently to 

behave properly. 

 

𝑃1(𝑿) = (30 + max(𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8, 𝑔9))
3
 

if max(𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8, 𝑔9) ≥ 1,0 

P2(𝐗) = (10 + g10)3 if g10 ≥
lmax

250
 (6) 

P3(𝐗) = (500 − g11)2 if g11 ≤ V − 100 m3  

P4(𝐗) = g12
2  if g12 ≥ V + 100 m3 

P5(𝐗) =
500 − g11

10
 if g11 ≤ V − 100 m3 

P6(𝐗) =
g12

2

10
 if g12 ≥ 100 m3 

P7(𝐗) =
3,4

g13 + 1
 if g13 ≤ 0,4 s 

P8(𝐗) = ((1 − g14) ⋅ 100)
2
if g14 ≤ 0,8 

P9(𝐗) = (1 − g14) ⋅ 2 if g14 ≤ 0,8 
F1(𝐗) = f1(𝐗) + P1(𝐗) + P2(𝐗) + P3(𝐗) + P4(𝐗) + P8(𝐗) 
F2(𝐗) = f2(𝐗) + P5(𝐗) + P6(𝐗) + P7(𝐗) + P9(𝐗) 

P  Penalty for violating a specific constraint 

 

The optimisation is conducted in Grasshopper [28] with the 

plugin Octopus [38] using the HypE algorithm. In each 

generation of the optimisation process, 200 solutions are 

analysed. In the first generation, this is doubled. A 

preliminary analysis showed that a large number of solutions 

were needed to introduce a large diversity of solutions. The 

algorithm runs for a maximum of 10 generations, to save 

computational power, and it was found that the non-

dominated results found after generation 10 were not 

significantly different from each other. A cross-over factor of 

0,8 is used and a mutation probability of 0,2 with a factor of 

0,9 for the mutated solutions. Elitism is introduced with a 

factor of 0,1. A summary of all the optimisation settings, 

objective and constraints in the optimisation is presented in 

Figure 18. 

 

 
Figure 18: Summary of the multi-objective optimisation 

problem analysed in the case study 
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4.5. Results 

 

The results of the case study are presented in the following 

section. The results include the solution space and a more 

detailed exploration of certain non-dominated solutions found 

with the optimisation algorithm. 

 

4.5.1. Solution Space 

 

Five non-dominated solutions were found in the optimisation 

process, presented in Figure 19.  

 

 
Figure 19: Solution space of non-dominated solutions in 

the case study, 2 selected nondominated solutions are 

marked with red outline 

 

The solution space in this case study shows a larger diversity 

in reverberation times, T60, found among the non-dominated 

solutions. These solutions are geometrically remarkably 

different, but they seem to have similar structural systems 

with four to five frames, which is as expected since fewer 

frames result in lower weight. Two of the non-dominated 

solutions, marked with a red outline in Figure 19, have been 

chosen for further investigation. These are chosen because 

they appear to have the best trade-off between weight and 

reverberation time. 

 

 
Figure 20: The first chosen non-dominated solution from 

the case study 
 

4.5.2. Non-dominated Solutions 

 

The first chosen non-dominated solution is presented in 

Figure 20. The placement of material and windows appears to 

be slightly arbitrary. However, there are still places where the 

materials seem to lack the desired harmony. The aesthetic 

quality of the solution is 0,91, which might be a bit high, but 

it does have some alluring aesthetic values, such as its 

proportions in relation to the human body and movement in 

the geometry of the space. In terms of the structural aspect is 

the utilisation is quite a bit larger in this situation, which is 

primarily because the timber frames span a greater distance. 

The reverberation time is close to its lower limit, which is 

preferred. 

 

 
Figure 21: The second chosen non-dominated solution from 

the case study 

 

The second of the non-dominated solutions chosen is 

presented in Figure 21. At closer inspection, this solution is 

remarkably similar to the first chosen solution. It has several 

of the same aesthetic qualities of proportion and movement in 

the geometry. However, it seems that this solution has better 

placement of the materials, which is also rewarded with the 

higher aesthetic quality prediction of 0,96. In terms of the 

structural component is the utilisation and deflection are 

relatively low, which indicates that the cross-sections could 

be optimised further. The reverberation time is a bit high but 

still within acceptable limits. The reverberation time is 

primarily affected by the reduction in absorptive material on 

the wall opposite the windows. This is generally unwanted 

since two reflecting surfaces parallel to each other can create 

standing waves. However, these two walls are not parallel, so 

standing waves should not be a concern. 

 

Based on this assessment, the best of the two non-dominated 

solutions is the one presented in Figure 21, because it has 

better aesthetic and structural results. 

 

5.Discussion and Conclusion 
 

The optimisation of engineering subjects within building 

design frequently neglects the architectural expression within 

a space. Therefore, the motivation for this article was to 

incorporate aesthetic quality into a computational model to 

improve informed decision-making. 

 

In literature, several descriptions of aesthetics are presented. 

Recurring terms are qualified as symmetry, harmony, 

proportion, order and variety. These terms all assist in 

describing the architectonic expression of a space. From the 

theory, six qualitative values have been defined to describe 

the aesthetic quality in a space. I.e. symmetry, elements, 

texture, material, scale, and variety are all defined as numeric 

values, which can be translated directly to an algorithm based 
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on a computational model. Each value describes a different 

aspect of the aesthetic quality in a space. 

 

A framework to develop an ANN to predict aesthetic quality 

in building design has been proposed and consists of four 

phases: (1) generating a design proposal in a computational 

model, (2) aesthetic judgement, (3) extracting qualitative 

values of the design proposal, and (4) develop a machine 

learning model. A machine learning model was developed, 

constructed with a shallow ANN. The results showed a 

training error (RMSE) of 0,27 and a test error (RMSE) of 

0,19. These were acceptable values, indicating the developed 

ANN was not overfitting the training data. A sensitivity 

analysis on the ANN showed that the prediction accuracy was 

highly sensitive to the number of neurons in the hidden layer, 

and which folds were the training and which fold was the test 

data. 

 

When applying the ANN predicting aesthetic quality in a case 

study, it has been found that the prediction of aesthetic quality 

was very accurate in the case study, where the proposed 

design offers a playful base geometry while having a 

transparent structural design. The research conducted in this 

article successfully addressed the approach to integrating 

aesthetic quality into a computational model. Furthermore, 

the case study indicated that it is possible to inform a 

computational model with aesthetic quality while maintaining 

acoustic and structural integrity. The novel framework 

presented in the article presents a method for creating tectonic 

designs computationally. Furthermore, a proof of concept was 

presented where the framework was utilised. This framework 

holds potential for adoption in professional architectural 

practice, particularly in early-stage conceptual design 

processes where aesthetic judgments often lack 

computational support. 

 

For further development of the framework, more complex 

computational models could be developed. Furthermore, 

interviews could be conducted to determine the qualities 

affecting the architectural value of a space from multiple 

individuals. Lastly, the aesthetic judgment phase could be 

incorporated into virtual reality to create a more realistic 

experience of the room. 
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