Groundwater in Bihar at a Crossroad - A Review of Groundwater Quality

Govind Kumar¹, Rameswar Behera², Deepti Prava Sahoo³, Milusan Nayak⁴

¹ Central University of Punjab, Bathinda Corresponding Author Email: *govindkumar730cu[at]gmail.com*

> ²Central University of Punjab, Bathinda Email: *kunuxperia[at]gmail.com*

> ³Central University of Punjab, Bathinda Email: *sahoo.mama2000[at]gmail.com*

⁴Central University of Punjab, Bathinda Email: *milusannayak1998[at]gmail.com*

Abstract: Groundwater is the most utilized source for drinking water, and its quality in recent times is at alarming stage. This study aims to provide a comprehensive review on the groundwater quality of the state Bihar by compiling data of more than 8, 000 locations from published studies/reports. A total of 13 parameters were concluded finally. Out of the total studied parameters, Bhojpur and Siwan districts were found exceeding the permissible limits of more than 10 parameters, while Sitamarhi was found exceeding the permissible limit in only 3 parameters. Most prevailing parameters exceeding Permissible Limit in majority of the districts were Total Hardness (TH), Calcium (Ca^{2+}), Magnesium (Mg^{2+}), Total Dissolved Solids (TDS), Chloride (CI^{-}), Nitrate (NO_3^{--}), and Fluoride (F^{-}). This widespread prevalence of non-compliance with BIS standards highlights significant concerns regarding water quality and underscores the need for measures to mitigate the adverse impacts on public health. The results also highlight the need for targeted water quality management and mitigation strategies in the concerned districts, while maintaining relatively better conditions in rest ones. The findings of this research paper are expected to provide valuable insights for policymakers, water resource managers, and researchers involved in groundwater management and quality improvement in Bihar and India.

Keywords: Groundwater quality, Heavy metals Contamination, physicochemical properties, SDG, Bihar

1. Introduction

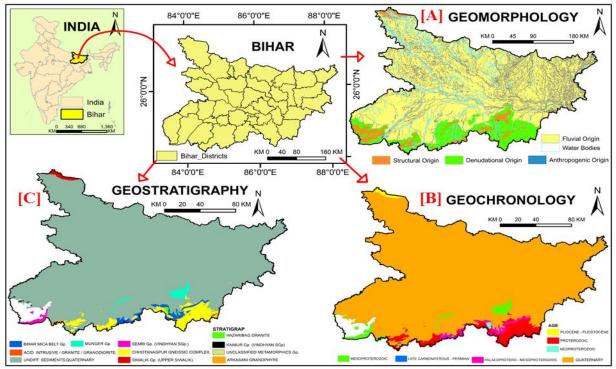
Groundwater is the most vital resource and a critical component of the hydrological cycle favoring the survival of living organisms. It is an irreplaceable entity sustaining various sectors such as agriculture, industry, transportation, etc. Chemically it is an aqueous solution in the sub-surface geological formation which is primarily used for fulfilling people's irrigation and drinking needs across the globe. Nearly 50% of the world's urban population depends on groundwater resources, with the human demand currently being about 3.5 times the actual volume of aquifers (United Nations., 2022; leeson et al., 2012). In India, approximately 89% of irrigation and 80% of drinking water demands are met by groundwater (CGWB, 2019; Mukherjee et al., 2020). About 80% of all the diseases in human beings are caused by water (Kavitha et al., 2010). These figures and findings concludes that groundwater quality is an alarming concern in recent decades due to the mounting anthropogenic pressure of industrialization, urbanization and modernization (Mukherjee et al., 2020, Castaño-Sánchez et al., 2020; Mammola et al., 2019; Vaccarelli et al., 2023, Kumar et al., 2024, Kumar et al., 2025, Ijumulana et al., 2020; Kumar et al., 2020a; Verma et al., 2023).

Bihar, located in north-eastern part of India, is predominantly dependent on groundwater for meeting its water demands. With its rapidly growing population and increasing urbanization, the state faces significant challenges in maintaining the quality of its groundwater resources.

According to the State Public health and engineering department's groundwater quality report a total of 13 districts with prevalance of Arsenic, 11 with Fluoride and 9 with Iron was reported affecting a total of 250 blocks and impacting more than 25000 inhabitants. Sustainability and quality of groundwater in Bihar has really become an alarming concern due to various anthropogenic activities and natural processes. Understanding the dynamics of groundwater quality time to time is a needful for ensuring the availability of safe drinking water, public health safety and sustainable development in the region.

Through an in-depth analysis of pH, Cl⁻, SO₄²⁻, NO³⁻, TH, Ca²⁺, Mg²⁺, F⁻, TDS, As, Cu, Fe & Pb parameters and the available data, this study aims to put a comprehensivereview of the physico-chemical parameters of the ground water of the state of Bihar and the changes that has taken place in recent decade. The findings of this review are expected to provide valuable insights for policymakers, water resource managers, and researchers involved in groundwater management and help to identify the target areas for impactful implementation of Sustainable Development's 6th goal i. e, Clean water and sanitation in the State of Bihar.

2. Study Area


Bihar is a landlocked state stretching between 24°20′10" and 27°31′15" N latitudes and 82°19′50" and 88°17′40" E longitudes (Bose et al., 2015; Roy et al., 2016). It is the 12th largest state in terms of land area, with an area of 98, 940 sq.

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

Paper ID: SR251015133205 DOI: https://dx.doi.org/10.21275/SR251015133205

Km, and the 3rd most populous state in India (Ranjan., 2016). As a part of the Gangetic Plain, Bihar's population density is nearly 3 times the national average (382 per square kilometre) (Chandramouli and General., 2011). It is in the Temperate zone's subtropical area. Regarding climate, economy, and culture, Bihar is in a transitional position because of its location. Majority of the area of the state contains undifferentiated sediments of quaternary era. The southern extent containing chotanagpur gneissic complex dates back to the proterozoic era and the Bihar mica belt group to the paleoprotero-mesoproterozoic era respectively. (Fig.1B, 1C). The state land is major of fluvial origin in nature dominating in the northern, central and some part of southwest followed by denudational origin stretched in the southern part of the state. Some patches of structural with anthropogenic origin is

also seen. The network of water bodies is stretched all across the state (Fig.1A). The state experiences a modest amount of rain, significantly impacting the agricultural and fishery sectors. The region is also characterised by its alluvial soil, deposited by the mighty rivers flowing down from the Himalayas. The flat terrain and favourable climate have made it an agricultural hotspot. The agrarian sector of Bihar accounts for 21.3 % of the state's Gross Domestic Product (GDP). It will remain vital to the state's economic development and primary source of income for around 90 % of the people living here (GOB, 2015). The Ganga River, flowing through the heart of the state from west to east, splits the Bihar plain into two unequal portions (North Bihar and South Bihar).

Figure 1: Study area description map of Bihar showing Geomorphology (A), Geochronology (B) and Geostratigraphy (C) of the state.

3. Methodology

The methodology involved a systematic search and collecting data from relevant publications and CGWB reports on groundwater quality assessment in Bihar. Further the collected data was critically analysed and evaluated to extract the key findings and trends in the data. Data from more than 8, 000 locations were covered ranging from year 2010 -2024.

This extensive temporal and spatial coverage gives a detailed assessment of groundwater quality dynamics, helping to establish long-term trends and correlations with potential influencing factors such as industrial expansion, agricultural activities, and climatic variations. The systematic approach ensured that the findings were based on a robust and well-documented dataset, enhancing the reliability and relevance of the study.

International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

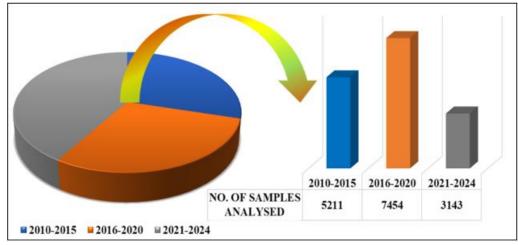


Figure 2: Description of years and samples data taken in review for data conclusion.

4. Result

Physicochemical Parameters

The analysis of groundwater physicochemical parameters across Bihar reveals significant variations between districts. The pH ranges from 4.6 to 9.3, with acidic conditions observed in Bhagalpur, Banka, and Saharsa, which fall below the BIS permissible lower limit of 6.5, increasing risks of metal leaching and water pipe corrosion. Conversely, alkaline conditions exceeding the upper limit of 8.5 are noted in Siwan and Sheikhpura, potentially affecting water taste and treatment processes. Districts such as Gaya, Rohtas, and Munger exhibit normal pH values, indicating relatively safe water. Electrical conductivity (EC) is highest in Khagaria and Begusarai, surpassing the safe range (750 µS/cm), which indicates high salinity and reduced water usability for drinking and irrigation. Districts like Araria and Supaul have low EC values, reflecting safer water quality. Total dissolved solids (TDS) are alarmingly high in Bhagalpur, Begusarai, and Khagaria, exceeding the permissible limit of 500 mg/L, potentially leading to kidney stones and hypertension. However, districts such as Sheohar, Darbhanga, and Madhubani maintain low TDS levels, making their water safer for consumption. Elevated bicarbonate concentrations in Jamui and Bhagalpur contribute to high alkalinity and scaling issues, while Madhubani and Supaul show low bicarbonate levels, indicating better water quality. Nitrate contamination exceeds permissible limits (BIS: 45 mg/L, WHO: 50 mg/L) in Patna, Araria, and Begusarai, primarily from agricultural runoff, posing risks of methemoglobinemia, while districts like Munger and Banka report low nitrate levels, marking them as safer zones.

Heavy Metals

Heavy metal contamination poses significant risks in several districts. Bhagalpur, Patna, and Samastipur report arsenic levels as high as 84.6 mg/L, far exceeding the BIS and WHO permissible limit of 0.01 mg/L, with severe health implications such as cancer and skin lesions. Sheikhpura and Kishanganj have low arsenic levels, indicating safer water. Iron concentrations are critically high in Gaya, Patna, and Bhagalpur, surpassing the BIS limit of 0.3 mg/L, leading to metallic-tasting water and staining issues, while Sheohar and Vaishaliexhibit low iron levels, marking them as safer zones.

Lead contamination exceeding the 0.01 mg/L limit is recorded in Bhojpur and Patna, linked to neurological and cardiovascular risks, whereas Madhubani and Munger have negligible lead levels. Zinc concentrations remain within permissible limits across all districts, posing no significant health concerns. However, Patna, Bhagalpur, and Khagaria are among the districts where multiple parameters, both physicochemical and heavy metals, exceed safety limits, while Darbhanga, Madhubani, and Supaul emerge as relatively safer districts, with most parameters within permissible ranges. The analysis of cation and anion concentrations in Bihar's groundwater highlights significant spatial variability, reflecting the influence of geological and anthropogenic factors. Among cations, calcium (Ca2+) levels range from 4 to 306 mg/L, with Arwal, Aurangabad, Bhagalpur, and Patna reporting higher concentrations, exceeding the BIS permissible limit of 75 mg/L. These districts face risks of water hardness, which can lead to scaling in plumbing systems and cardiovascular concerns in long-term exposure. Magnesium (Mg2+), ranging between 1 and 269 mg/L, surpasses the permissible limit (30 mg/L) in Bhojpur, Gaya, and Samastipur, potentially leading to laxative effects and mineral imbalance. Sodium (Na+) and potassium (K⁺) levels exhibit considerable variation, with Bhagalpur and Banka showing elevated sodium (up to 573 mg/L), which poses risks for hypertensive individuals, while potassium remains within safe limits across districts. For anions, chloride (Cl⁻) levels peak at 1, 306 mg/L, far above the BIS threshold of 250 mg/L in Patna, Gaya, and Bhagalpur, raising concerns about salinity and corrosion. Sulfate (SO₄²⁻) concentrations range from below detectable levels to 435 mg/L, with districts such as Gaya, Nalanda, and Aurangabad recording higher values that may contribute to gastrointestinal distress. Nitrate (NO₃-) levels are critically high in Patna, Buxar, and Muzaffarpur, exceeding the WHO limit of 50 mg/L, posing risks of methemoglobinemia (blue baby syndrome) and other health issues. While bicarbonate (HCO₃⁻) is significantly elevated in Jamui and Bhagalpur, carbonate (CO32-) remains below detectable levels in most areas. The observed disparities call for district-specific management strategies to mitigate health risks and ensure safe drinking water.

Table 1: Table showing water quality parameters, comparison with permissible limits and prevailing districts of concern in Bihar

S. No	Parameters	Unit	Min	Max	P. L BIS	P. L WHO	Districts exceeding maximum permissible limit
1	рН	-	4.6	9.3	6.5-8.5	6.5-8.5	Bhagalpur, Banka, Bhojpur, Begusarai, Jamuni. Jehnabad, Siwan, khagaria, Madhepura, Patna, Saharsa, Sheikhpura
2	Cl-	mg/L	0.26	1306	250	250	Bhagalpur, Arwal, Gaya , Aurangabad, Jamui, Banka, Begusarai, Samastipur , Bhojpur Siwan, Buxar, E Champaran, Gopalganj, Jehnabad, Kaimur, Khagaria, Lakshisarai, Madhubani, Muzaffarpur, Nalanda, Nawada, Patna, Purnea, Saharsa, Saran, Sheikhpura, W. Champaran
3	SO ₄ ² -	mg/L	BDL	435	200	250	Gaya , Siwan, Aurangabad, Bhojpur, Jamui, Jehnabad, Kaimur, Katihar, Nalanda, Purnea, Rohtas, Saran
4	NO ₃ -	mg/L	BDL	233	45	50	Bhojpur , Araria, Gaya , Arwal, Aurangabad, Begusarai, Siwan , Buxar, E Champaran, Jehnabad, Kaimur, Katihar, kishanganj, Lakshisarai, Madhubani, Muzaffarpur, Nalanda, NAWADA, Patna, Purnea, rohtas, samASTIPUR, saran, SHEOHAR, supaul, vaishali, w. Champaran
5	ТН	mg/L	35	1510	200	500	Bhagalpur, Araria, Bhojpur, Arwal, Buxar, Aurangabad, Banka, Gaya, Begusarai, Khagaria, Mujaffarpur, Nawada, Patna, Darbhanga, Samastipur, E Champaran, Saran, Siwan, Gopalganj, Jamui, Jehnabad, Kaimur, Katihar, Kishanganj, Lakshisarai, Madhepura, Madhubani, Munger, Nalanda, Purnea, Rohtas, Saharsa, sheohar, Sitamarhi, Supaul, Vaishali, W. Champaran
6	Ca ²⁺	mg/L	4	306	75	-	Arwal, Aurangabad, Banka, Begusarai, Bhagalpur , Bhojpur , Buxar, Darbhanga, E Champaran, Gaya , Gopalganj, Jamui, Jehnabad, Kaimur, Katihar, Khagaria, kishanganj, Lakshisarai, Madhepura, Madhubani, Munger, Muzaffarpur, Nalanda, Nawada , Patna , Purnea, Rohtas, Saharsa, Samastipur , Saran, SHEOHAR, sitamarhi, Siwan, Supaul, Vaishali, W. Champaran
7	Mg^{2+}	mg/L	1	269	30	-	Araria, Bhagalpur , Arwal, Bhojpur , Aurangabad, Gaya , Banka, Jamui , Begusarai, Nawada , Patna , Buxar, Darbhanga, Samastipur , E Champaran, Gopalganj, Jehnabad, Kaimur, Katihar, Khagaria, kishanganj, Lakshisarai, Madhepura, Madhubani, Munger, Muzaffarpur, Nalanda, Purnea, Rohtas, Saharsa, Saran, sheikhpura, Sheohar, sitamarhi, Siwan, Supaul, Vaishali, W. Champaran
8	F-	mg/L	BDL	4.7	1	1.5	Aurangabad, Banka, Gaya, Bhagalpur, Jamui , Bhojpur, Nawada , Buxar, Darbhanga, E Champaran, Seikhpura , Siwan , Gopalganj, Kaimur, kishanganj, Lakshisarai, Madhepura, Madhubani, Munger, Muzaffarpur, Nalanda, Patna, Rohtas, Saharsa, Samastipur, Supaul, W. Champaran
9	TDS	mg/L	58	3004	500	500	Araria, Arwal, Aurangabad, Banka, Begusarai, Bhagalpur, Bhojpur, Buxar, Darbhanga, E Champaran, Gaya, Gopalganj, Jamui, Jehnabad, Kaimur, Katihar, Khagaria, Lakshisarai, Madhepura, Madhubani, Munger, Muzaffarpur, Nalanda NAWADA, Patna, Purnea, Rohtas, Saharsa, SAMASTIPUR, Saran, SHEOHAR, Siwan, Supaul, Vaishali, W. Champaran
10	As	mg/L	0.002	84.6	10 μg/L	10 μg/L	Ararea, Bhagalpur, Bhojpur, Patna, Samastipur, Saran, Siwan, Vaishali
11	Cu	mg/L	BDL		0.05 μg/L	2000 μg/L	Bhojpur
12	Fe	mg/L	BDL	20	0.3	0.3	Bhojpur, Bhagalpur, Gaya, Patna, Samastipur, Siwan
13	Pb	mg/L	BDL	0.040	10 μg/L	10 μg/L	Bhojpur

Parameter Prevalence

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net

International Journal of Science and Research (IJSR) ISSN: 2319-7064

Impact Factor 2024: 7.101

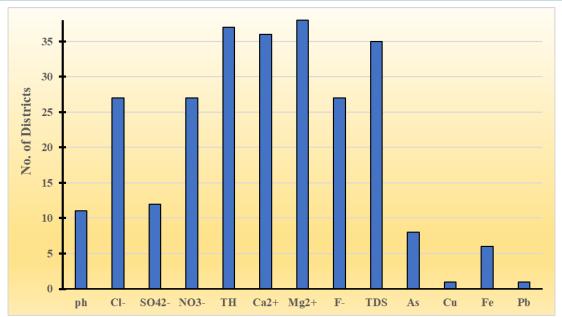


Figure 3: Parameter Vs No. of districts it was found to be exceeding the permissible limit.

From the study, it was observed that among the studied water quality parameters, including Total Hardness, Calcium (Ca²⁺), Magnesium (Mg²⁺), Total Dissolved Solids (TDS), Chloride (Cl⁻), Nitrate (NO₃⁻), and Fluoride (F⁻), several were found to exceed the permissible limits prescribed by the Bureau of Indian Standards (BIS). Notably, these parameters were found to be above the acceptable thresholds in more than 25 districts

of the state. This widespread prevalence of non-compliance with BIS standards highlights significant concerns regarding water quality and underscores the urgent need for remedial measures to mitigate the adverse impacts on public health and the environment.

District Prevalence



Figure 4: District Vs No. of parameter water exceeded BIS permissible limit

From this study, it was observed that the Bhojpur and Siwan districts exhibited water quality exceeding the permissible limits in most of the tested parameters, indicating significant contamination and potential health risks for the local population. In contrast, Sitamarhi district demonstrated better water quality, with the least number of parameters exceeding the permissible limits, suggesting relatively lower contamination levels. These findings highlight the urgent need for targeted water quality management and mitigation

strategies in the concerned districts, while maintaining the relatively better conditions in rest ones.

5. Conclusion

The analysis of groundwater quality in Bihar reveals significant spatial and parametric variability, with several districts exhibiting concentrations of physicochemical parameters and heavy metals exceeding permissible limits set

by BIS and WHO standards. Among physicochemical parameters, districts such as Bhagalpur, Banka, and Patna show critically high values for pH, TDS, and EC, which may pose health risks and affect agricultural productivity. Elevated nitrate levels in Patna, Buxar, and Muzaffarpur raise serious health concerns, particularly the risk methemoglobinemia. The high concentrations of chloride, bicarbonates, and sulfates in certain districts underscore the growing salinity issues and the need for water treatment interventions. The distribution of heavy metals like arsenic, iron, and lead highlights acute contamination in Bhojpur, Samastipur, and Bhagalpur, where concentrations exceed permissible levels, posing carcinogenic risks and other health hazards. Districts such as Arwal, Aurangabad, and Gaya demonstrate higher calcium and magnesium levels, contributing to water hardness and associated health risks. The study emphasizes that while certain districts exhibit parameters within safe limits, widespread disparities necessitate a region-specific approach to water quality management.

References

- [1] Ahmad, S., & Singh, R. (2023). Groundwater Quality Assessment Based on a Statistical Approach in Gaya District, Bihar. *Engineering, Technology & Applied Science Research*, 13 (1), 9867–9871. https://doi.org/10.48084/etasr.5421
- [2] Alam, A., & Singh, A. (2023). Groundwater quality assessment using SPSS based on multivariate statistics and water quality index of Gaya, Bihar (India). *Environmental Monitoring and Assessment*, 195 (6), 687. https://doi.org/10.1007/s10661-023-11294-7
- [3] Ali Md, K. A. (2015). Ground Water Arsenic Poisoning in "Tilak Rai Ka Hatta" Village of Buxar District, Bihar, India Causing Severe Health Hazards and Hormonal Imbalance. *Journal of Environmental & Analytical Toxicology*, 05 (04). https://doi.org/10.4172/2161-0525.1000290
- [4] Bhardwaj, V., & Singh, D. S. (2011). Surface and groundwater quality characterization of Deoria District, Ganga Plain, India. *Environmental Earth Sciences*, 63 (2), 383–395. https://doi.org/10.1007/s12665-010-0709-x
- [5] Bhatia, S., Balamurugan, G., & Baranwal, A. (2014). High arsenic contamination in drinking water handpumps in Khap Tola, West Champaran, Bihar, India. *Frontiers in Environmental Science*, 2. https://doi.org/10.3389/fenvs.2014.00049
- [6] Bhushan, M., Praveen, K., Kumar, K., & Roy, L. B. (2023). Assessment of groundwater quality for irrigation purpose in Badua-Chandan sub-basin in Bihar-a case study. Ann. For. Res, 66 (1), 1871-1882.
- [7] Bose, P., Mazumder, P. P., & Kumar, S. (2015). Assessment of groundwater quality for irrigation and drinking purposes in the Patna district, Bihar, India. *Applied Water Science*, 5 (4), 403-412.
- [8] Castaño-Sánchez, C., Plaza-Bolaños, P., Jiménez-Espinoza, V. H., & Martín-Peinado, F. J. (2020). Assessment of groundwater quality for irrigation in an agricultural area of southern Spain. *Environmental Monitoring and Assessment*, 192 (2), 1-17.

- [9] Central Ground Water Board. (2019). *Ground Water Year Book 2018-19*. Ministry of Water Resources, River Development & Ganga Rejuvenation, Government of India.
- [10] Chakraborti, D., Rahman, M. M., Ahamed, S., Dutta, R. N., Pati, S., & Mukherjee, S. C. (2016). Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: Risk evaluation. *Environmental Science and Pollution Research*, 23 (10), 9492–9504. https://doi.org/10.1007/s11356-016-6149-8
- [11] Chandramouli, C., & General, R. of C. & H. E. (2011). Census of India 2011: Provisional population totals: Paper 1 of 2011: India series 1. Office of the Registrar General & Census Commissioner, ¹ India.
- [12] Gleeson, T., et al. (2012). Water Balance of Global Aquifers Revealed by Groundwater Footprint. Nature, 488, 97-200. https://doi.org/10.1038/nature11295.
- [13] Gouri, K., & Choudhary, S. K. (2017). Fluoride Contamination in Groundwater Sources of Bhagalpur Municipal Corporation Area, Bhagalpur, Bihar. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, 11 (01), 45–49. https://doi. org/10.9790/2402-1101034549
- [14] Government of Bihar. (2015). *Bihar Economic Survey* 2014-15. Department of Finance, Government of Bihar.
- [15] Ijumulana, J. A., Nabaasa, G., &тин, J. B. O. (2020). Assessment of groundwater quality and its suitability for domestic and irrigation purposes in Kampala Metropolitan Area, Uganda. *Applied Water Science*, 10 (3), 1-14.
- [16] Jha, M., Yasmin, S., K Srivastava, S., Singh, T. B. N., & Kumar, S. (2022). Water Quality Assessment in parts of Mohuddinagar Block, Samastipur, Bihar. Proceedings of MOL2NET'22, Conference on Molecular, Biomedical & Computational Sciences and Engineering, 8th Ed. MOL2NET: FROM MOLECULES TO NETWORKS, 12646. https://doi.org/10.3390/mol2net-08-12646
- [17] Kalra, N., Kumar, R., Yadav, S. S., & Singh, R. T. (2012). Physico-chemical analysis of ground water taken from five blocks (Udwantnagar, Tarari, Charpokhar, Piro, Sahar) of southern Bhojpur (Bihar). Journal of Chemical and Pharmaceutical Research, 4 (3), 1827-1832.
- [18] Kavitha R. and Elangovan K., Review article on Ground water quality characteristics at Erode district, (India), of I. J. E. S., 1 (2), (2010)
- [19] Krishan, A., & Mishra, R. K. (2020). Study on groundwater quality and status of Amas Block in Gaya District of Bihar with special reference to fluoride contamination. Algerian Journal of Environmental Science and Technology, 6 (4).
- [20] Kumar, A., Agarwal, R., Kumar, K. et al. Mercury poisoning in women and infants inhabiting the Gangetic plains of Bihar: risk assessment. BMC Public Health 25, 1275 (2025). https://doi.org/10.1186/s12889-025-22336-9
- [21] Kumar, A., Kumar, R., Kumar, G. et al. Manganese pollution in eastern India causing cancer risk. Sci Rep 14, 28588 (2024). https://doi.org/10.1038/s41598-024-78478-0
- [22] Kumar, M., Kumari, K., Ramanathan, A. L., & Singh, S. K. (2020a). Assessment of groundwater quality for

- drinking and irrigation purposes in an intensively cultivated region of northern India. *Environmental Science and Pollution Research*, 27 (4), 3729-3741.
- [23] Kumar, N., Alam, A., & Srivastava, K. P. (2021). Physico-chemical and microbiological analysis of groundwater of Sonepur subdivision of Saran District of Bihar, India. Pollut. Res, 40, S81-S89.
- [24] Kumar, R., Kumari, A., Kumar, R., Sulaiman, M. A., Zafar, M. M., Singh, A., Prabhakar, R., & Pippal, P. S. (2023). Assessing the geochemical processes controlling groundwater quality and their possible effect on human health in Patna, Bihar. *Environmental Science* and Pollution Research, 30 (49), 107138–107157. https: //doi. org/10.1007/s11356-023-26203-1
- [25] Kumar, R., Singh, S., Kumar, R., & Sharma, P. (2022). Groundwater Quality characterization for safe Drinking Water supply in Sheikhpura District of Bihar, India: A geospatial approach. *Frontiers in Water*, 4, 848018. https://doi.org/10.3389/frwa.2022.848018
- [26] Kumar, S., Kumar, A., Prashant, Jha, V. N., Sahoo, S. K., & Ranjan, R. K. (2022). Groundwater quality and its suitability for drinking and irrigational purpose in Bhojpur district: Middle Gangetic plain of Bihar, India. *Water Supply*, 22 (9), 7072–7084. https://doi.org/10.2166/ws.2022.317
- [27] Kumar, S., Kumar, M., Chandola, V. K., Kumar, V., Saini, R. K., Pant, N., Kumari, N., Srivastava, A., Singh, S., Singh, R., Krishan, G., Induwar, S. P., Kumar, S., Yadav, B. K., Maurya, N. S., & Chaudhary, A. (2021). Groundwater quality issues and challenges for drinking and irrigation uses in Central Ganga basin dominated with rice-wheat cropping system. *Water*, 13 (17), 2344. https://doi.org/10.3390/w13172344
- [28] Maity, S., Biswas, R., & Sarkar, A. (2020). Comparative valuation of groundwater quality parameters in Bhojpur, Bihar for arsenic risk assessment. *Chemosphere*, 259, 127398. https://doi.org/10.1016/j.chemosphere.2020.127398
- [29] Mammola, S., Piano, E., Malard, F., & Culver, D. C. (2019). Groundwater fauna: A hidden world threatened by human activities. *Water*, *11* (10), 2076.
- [30] Mishra, R. K., Choudhary, S. K., & Kumar, M. (2016). Regional geochemical evaluation of Arsenic, Iron, Phosphate and Nitrogenous Contaminations in Groundwater of the aquifers of Eastern Bihar and North-Eastern Jharkhand. *Pollut Res*, 35, 177-185.
- [31] Mukherjee, A., Siade, V. С., наполовину, T. V., & Fryar, A. E. (2020). Changing groundwater landscape of India: Implications to drinking water, food security, socioeconomy and public health. *Proceedings of the Indian National Science Academy*, 86 (3), 533-542.
- [32] Neeti, K., & Singh, R. (2023). Groundwater Quality Assessment and Health Risks from Fluoride in Jamui, Bihar. *Engineering, Technology & Applied Science Research*, 13 (1), 10204–10208. https://doi.org/10.48084/etasr.5576
- [33] Pal, S., Singh, S. K., Singh, P., Pal, S., & Kashiwar, S. R. (2023). Spatial pattern of groundwater arsenic contamination in Patna, Saran, and Vaishali districts of Gangetic plains of Bihar, India. *Environmental Science and Pollution Research*, 31 (41), 54163–54177. https://doi.org/10.1007/s11356-022-25105-y

- [34] Prasad Singh, H. M., & Vidyarthi, S. K. (2022). Analysis of Physico-chemical Characteristics of Ground Water in Samastipur, Bihar. *IARJSET*, *9* (4). https://doi.org/10.17148/IARJSET.2022.9422
- [35] Praveen, K., & Roy, L. B. (2021). Study Of Groundwater Quality For Irrigation Purpose–A Case Study Of Paliganj Distributary, Bihar, India. NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal NVEO, 3461-3477.
- [36] Praveen, K., & Roy, L. B. (2022). Assessment of Groundwater Quality Using Water Quality Indices: A Case Study of Paliganj Distributary, Bihar, India. *Engineering, Technology & Applied Science Research*, 12 (1), 8199–8203. https://doi.org/10.48084/etasr.4696
- [37] Ranjan, R. (2016). Socio-economic profile of Bihar: An overview. *Journal of Social and Development Sciences*, 7 (1), 1-10.
- [38] Ranjan, R. K., Ramanathan, Al., Parthasarathy, P., & Kumar, A. (2013). Hydrochemical characteristics of groundwater in the plains of Phalgu River in Gaya, Bihar, India. *Arabian Journal of Geosciences*, 6 (9), 3257–3267. https://doi.org/10.1007/s12517-012-0599-1
- [39] Richards, L. A., Kumar, A., Shankar, P., Gaurav, A., Ghosh, A., & Polya, D. A. (2020). Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India. *International Journal of Environmental Research and Public Health*, 17 (7), 2500. https://doi.org/10.3390/ijerph17072500
- [40] Roy, S., вроде, D., & Singh, A. K. (2016). Hydrogeochemical assessment of groundwater quality in the Bhagalpur district, Bihar, India. *Environmental Earth Sciences*, 75 (11), 1-15.
- [41] Ruhela, M., Singh, V. K., & Ahamad, F. (2021). Assessment of groundwater quality of two selected villages of Nawada district of Bihar using water quality index. *Environment Conservation Journal*, 22 (3), 387–394. https://doi.org/10.36953/ECJ.2021.22344
- [42] Sharma, D., & Choudhary, S. K. (2014). Evaluation of Water Quality Index for Assessment of Water Quality of the Budhi Gandak River at Khagaria, Bihar. Poll Res, 33 (4), 81-86.
- [43] Sharma, D., & Choudhary, S. K. (2016). A comparative assessment of Water Quality Index of surface (River) water and ground water along the Budhi Gandak Belt using correlation analysis at Khagaria (Bihar).
- [44] Singh, D. S. P. (2014). Spatial Relationship of Various Parameters in Drinking Water in Siwan town of Bihar (India) with Special Emphasis on Arsenic Contamination in Groundwater. J. Chem. Sci. Rev. Lett, 2 (7), 588-595.
- [45] Singh, S. (2019). Assessment of Ground Water Quality in Sakara and Muraul Block of Muzaffarpur District, Bihar. *Agropedology*, 28 (2). https://doi.org/10.47114/j. agroped.2018. dec8
- [46] Singh, Sushant & Ghosh, Ashok & Kumar, Anand & Kumar, Kislay & Kumar, Chandan & Tiwari, R. & Parwez, R. & Niraj, Kumar & Imam, M. . (2014). Groundwater arsenic contamination and associated health risks in Bihar, India. International Journal of Environmental Research.8 (1).49-60.

- [47] Sukumaran, D., Saha, R., & Saxena, R. C. (2015). Ground Water Quality Index of Patna, the Capital City of Bihar, India. *American Journal of Water Resources*.3 (1), 17-21.
- [48] UN-Water (2022). UN World Water Development Report 2022: Groundwater: Making the invisible visible.
- [49] Vaccarelli, I., Petitta, M., Sappa, G., Erthal, F., & Preziosi, E. (2023). Emerging contaminants in groundwater: A review of sources, fate and transport, monitoring strategies, and remediation technologies. *Environmental Research*, 216 (Part 1), 114397.
- [50] Verma, D. K., Bhunia, G. S., Shit, P. K., & Tiwari, A. K. (2018). Assessment of Groundwater Quality of the Central Gangetic Plain Area of India Using Geospatial and WQI Techniques. *Journal of the Geological Society of India*, 92 (6), 743–752. https://doi.org/10.1007/s12594-018-1097-1
- [51] Verma, D. K., Bhunia, G. S., Shit, P. K., Kumar, S., Mandal, J., & Padbhushan, R. (2017). Spatial variability of groundwater quality of Sabour block, Bhagalpur district (Bihar, India). *Applied Water Science*, 7 (4), 1997–2008. https://doi.org/10.1007/s13201-016-0380-9
- [52] Verma, P., Singh, P., Singh, A. K., & Kumar, S. (2023). Impact of industrialization on groundwater quality: A case study of an industrial area in Uttar Pradesh, India. *Environmental Geochemistry and Health*, 55 (2), 1-18.