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Abstract: The discussion highlights how the Archimedean property shapes the behavior of ordered fields, ordered groups, and normed 

vector spaces, and it becomes evident that this property draws a clear line between number systems that behave in a familiar, finite way 

and those that admit infinitesimal or infinitely large elements. The text shows that the real numbers serve as a benchmark for 

understanding how scaling, order, and magnitude interact, especially since no element in this system can remain indefinitely small or 

grow without bound when compared with another. This raises another point, the failure of the property in non-Archimedean fields or p-

adic constructions introduces a very different mathematical landscape, one with ultra-metric geometries and topologies that behave far 

from everyday intuition. It is evident that these contrasting structures reveal why the Archimedean condition is not merely a technical 

requirement but a guiding principle that influences analysis, topology, and algebra in meaningful ways. Taken together, the material 

suggests that understanding both Archimedean and non-Archimedean frameworks helps clarify how modern mathematics accommodates 

both classical intuition and more abstract number systems that stretch conventional ideas of size, distance, and order. 
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1. Introduction  
 

The Archimedean property, originating from the classical 

ideas of Archimedes, is a fundamental concept in modern 

mathematics that distinguishes standard number systems 

from those admitting infinitesimal or infinite elements. In 

ordered fields such as ℝ, the property ensures that no element 

is infinitely small or infinitely large relative to another. 

However, in various algebraic and topological structures, 

such as ordered groups, normed vector spaces, or non-

Archimedean fields, this property either modifies or fails, 

leading to significant theoretical consequences. 

 

Archimedean Property in ℝ 

The Archimedean Property is a fundamental characteristic of 

the real number system (ℝ). It distinguishes ℝ from many 

other ordered fields and forms the basis for analysis and 

calculus. This property ensures that there are no infinitely 

large or infinitely small elements in ℝ. 

 

Definition 

A totally ordered field 𝐹 is said to have the Archimedean 

Property if for every element 𝑥 in 𝐹, there exists a natural 

number 𝑛 such that 𝑥 < 𝑛.  

 

Equivalently, for any positive element 𝑦 in 𝐹, there exists a 

natural number 𝑛 such that 
1

𝑛
 <  𝑦 

 

Examples 

Example 1: In ℝ, for any real number 𝑥, we can always find 

an integer 𝑛 such that 𝑥 < 𝑛.  

For instance, if 𝑥 =  3.5, then 𝑛 =  4 satisfies this property. 

 

Example 2: If we take 𝑦 =  0.01, then we can find a natural 

number 𝑛 (here 𝑛 =  101) such that 
1

𝑛
=

1

101
<

1

100
= 0.01 = 𝑦 

 

ℕ is unbounded above in ℝ. 
 

Proof of the Archimedean Property in ℝ 

 

For every real number 𝒙, there exists 𝒏 ∈  ℕ such that 

𝒙 < 𝒏. 

 

Proof  

Let 𝑥 be any real number.  

Suppose no natural number 𝑛 satisfies 𝑥 < 𝑛.  

⇒ 𝑥 ≥ 𝑛 ∀𝑛 ∈ ℕ 

⇒ 𝑥 is an upper bound of ℕ.  

But ℕ has no upper bound in ℝ ⇒⇐ 

Therefore, there exists some 𝑛 ∈  ℕ such that 𝑥 < 𝑛. 

 

For every positive real number 𝒚, there exists 𝒏 ∈  ℕ such 

that 
𝟏

𝒏
 <  𝒚 

Proof  

Let 𝑥 be positive (𝑥 > 0) 

Suppose 
1

𝑛
≥ 𝑥  ∀𝑛 ∈ ℕ 

⇒ 𝑛𝑥 ≤ 1 ∀ 𝑛 ∈ ℕ 

⇒ 𝑛 ≤
1

𝑥
 ∀ 𝑛 ∈ ℕ   (𝑥 > 0) 

⇒ 
1

𝑥
 is an upper bound of ℕ.  

But ℕ has no upper bound in ℝ ⇒⇐ 

Thus, for any 𝑥 > 0 ∃ 𝑛 ∈ ℕ such that 
1

𝑛
< 𝑥 

 

ℝ contains no infinitely large or infinitely small numbers. 

 

Proof  

Suppose 𝑥 ∈ ℝ be an Infinitely large number  

Then by the Archimedean property, ∃ 𝑛 ∈ ℕ such that 𝑥 < 𝑛 

⇒⇐ 

Similarly suppose 𝑦 ∈  ℝ be an Infinitely small number 

⇒ 𝑦 < 0  

Also 0 < 1 
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⇒  𝑦 < 1, 1 ∈ ℕ  

 

Conclusion 

The Archimedean Property is one of the key distinguishing 

features of the real number system. It guarantees that ℝ 

behaves in a 'finite' way, allowing the development of 

calculus, limits, and continuity.  

 

Archimedean Property in Ordered Groups 

 

Definition of an Ordered Group 

An ordered group is a group (𝐺, +) equipped with a total 

order “ ≤ ” that is translation invariant, meaning: 

𝑎 ≤  𝑏 ⇒  𝑎 +  𝑐 ≤  𝑏 +  𝑐 
for all 𝑎, 𝑏, 𝑐 ∈  𝐺. 

Examples include:(ℤ, +, ≤), (ℚ, +, ≤), (ℝ, +, ≤) etc. 

 

The Archimedean Property (Definition with respect to 

Ordered Groups) 

An ordered group 𝐺 is said to satisfy the Archimedean 

Property if: 

For every 𝑎, 𝑏 ∈  𝐺, (𝑎 >  0, 𝑏 >  0)  ⇒  ∃ 𝑛 ∈  ℕ such that 

𝑛𝑎 >  𝑏. 
No matter how small a positive element 𝑎 is, by adding it to 

itself enough times, it can eventually exceed any given 𝑏. 

Intuitively, there are no infinitesimally small or infinitely 

large elements in an Archimedean ordered group. 

 

Examples 

Example 1: (ℤ, +, ≤) and (ℚ, +, ≤) 

𝑎 = 1, 𝑏 = 10 then  𝑛 = 11 gives 𝑛 · 𝑎 = 11 ∙ 1 = 11 >
 10 =  𝑏 

Example 2: (ℝ, +, ≤)  
Follows from the usual Archimedean property of real 

numbers. 

 

Equivalent Conditions 

For an ordered abelian group G, the following are 

equivalent: 

1) 𝐺 is Archimedean. 

2) For all 𝑎, 𝑏 >  0, there exists n such that 𝑏 <  𝑛𝑎. 

3) 𝐺 can be embedded in (ℝ, +, ≤) (Hölder’s Theorem). 

 

Thus, every Archimedean ordered group behaves “like” a 

subgroup of the real numbers. 

 

Proof  

1 ⇒ 2 

Let 𝐺 be Archimedean and let 𝑎 > 0 and 𝑏 > 0 

⇒  ∃ 𝑛 ∈ ℕ (𝑛𝑎 > 𝑏) ⋯by definition 

2 ⇒ 3 

Choose any fixed positive element 𝑔₀ > 0 in G. For each 𝑥 ∈
𝐺 define 

𝜑(𝑥) = inf{ 𝑟 ∈ ℚ | 𝑟 𝑔₀ ≥ 𝑥 } 

 

Claim { 𝑟 ∈ ℚ | 𝑟 𝑔₀ ≥ 𝑥 } ≠ ∅ 

 

For any  𝑥 ∈ 𝐺, if 𝑥 ≤ 𝑔₀ then 𝑟 = 1 ⇒ 𝑟 𝑔₀ = 1 ∙ 𝑔₀ =
𝑔₀ ≥ 𝑥 ⇒ 𝑟 𝑔₀ ≥ 𝑥 

 

And if 𝑥 > 𝑔₀ 

 

then by Archimedean property, ∃ 𝑛 ∈ ℕ such that 𝑛𝑔₀ > 𝑥 

⇒ 𝑛𝑔₀ ≥ 𝑥 here 𝑛 = 𝑟 ∈ ℚ 

 

Thus, in both the above cases { 𝑟 ∈ ℚ | 𝑟 𝑔₀ ≥ 𝑥 } has an 

element 

⇒ { 𝑟 ∈ ℚ | 𝑟 𝑔₀ ≥ 𝑥 } ≠ ∅ 

 

Also { 𝑟 ∈ ℚ | 𝑟 𝑔₀ ≥ 𝑥 } is bounded below by 
𝑥

𝑔₀
 for every 𝑥 

in 𝐺 

As for any 𝑟′ ∈ { 𝑟 ∈ ℚ | 𝑟 𝑔₀ ≥ 𝑥 } , 𝑟′𝑔0 ≥ 𝑥  
 

⇒ 𝑟′ ≥
𝑥

𝑔₀
 

As { 𝑟 ∈ ℚ | 𝑟 𝑔₀ ≥ 𝑥 } is non-empty and bounded below, so 

the infimum 𝜑(𝑥) exists in ℝ. 

1. Additivity: For 𝑥, 𝑦 ∈ 𝐺 and  𝑟, 𝑠 ∈ ℚ with 𝑟𝑔₀ ≥ 𝑥 and 

𝑠𝑔₀ ≥ 𝑦, we have (𝑟 + 𝑠)𝑔₀ ≥ 𝑥 + 𝑦  

⇒ 𝑟 + 𝑠 ∈ { 𝑟 ∈ ℚ |𝑟 𝑔₀ ≥ 𝑥 + 𝑦 } 

⇒ 𝜑(𝑥 + 𝑦) ≤ 𝑟 + 𝑠 

⇒ 𝜑(𝑥 + 𝑦) ≤ inf{𝑟 + 𝑠 ∈ ℚ |(𝑟 + 𝑠) 𝑔₀ ≥ 𝑥 + 𝑦} 

                     ≤ inf{𝑟 ∈ ℚ |𝑟 𝑔₀ ≥ 𝑥}+inf{𝑠 ∈ ℚ |𝑠𝑔₀ ≥ 𝑦} 

                     =  𝜑(𝑥) + 𝜑(𝑦) 

⇒ 𝜑(𝑥 + 𝑦) ≤ 𝜑(𝑥) + 𝜑(𝑦) ⋯ (1) 

Also 𝜑(𝑥) + 𝜑(𝑦) ≤ 𝑟 + 𝑠 = 𝑡(𝑠𝑎𝑦) 

⇒ 𝜑(𝑥) + 𝜑(𝑦) ≤ inf{𝑟 + 𝑠 ∈ ℚ |(𝑟 + 𝑠) 𝑔₀ ≥ 𝑥 + 𝑦}
= 𝜑(𝑥 + 𝑦) 

⇒ 𝜑(𝑥) + 𝜑(𝑦) ≤ 𝜑(𝑥 + 𝑦) ⋯ (2) 

∴ from (1) and(2) 𝜑(𝑥) + 𝜑(𝑦) = 𝜑(𝑥 + 𝑦) 

 

2. Order preservation: If 𝑥 ≤ 𝑦, then any 𝑟 with 𝑟𝑔₀ ≥ 𝑦 

⇒ 𝑟𝑔₀ ≥ 𝑥(∵ 𝑦 ≥ 𝑥) 

⇒ {𝑟 ∈ ℚ |𝑟𝑔₀ ≥ 𝑦} ⊆ {𝑟 ∈ ℚ |𝑟𝑔₀ ≥ 𝑥} 

⇒ inf{𝑟 ∈ ℚ |𝑟𝑔₀ ≥ 𝑦} ≥ inf{𝑟 ∈ ℚ |𝑟𝑔₀ ≥ 𝑥} 

⇒ 𝜑(𝑥) ≤ 𝜑(𝑦) 

 

3. Injectivity: let 𝜑(𝑥) = 𝜑(𝑦) 

⇒ 𝜑(𝑥) − 𝜑(𝑦) = 0 

⇒ 𝜑(𝑥 − 𝑦) = 0 

Suppose 𝑥 ≠ 𝑦 

Say 𝑥 > 𝑦 

⇒ 𝑥 − 𝑦 > 0 

Then for all 𝑛 ∈ ℕ we have 

(
1

𝑛
) 𝑔0 ≥ 𝑥 − 𝑦    (∵ inf{𝑟 ∈ ℚ |𝑟𝑔₀ ≥ 𝑥 − 𝑦}

= 0 𝑤𝑒 𝑐𝑎𝑛 𝑐ℎ𝑜𝑜𝑠𝑒 𝑟 =
1

𝑛
) 

⇒ 𝑥 − 𝑦 ≤ 0 ⇒⇐ 

∴ 𝑥 = 𝑦 

Similarly, if 𝑥 < 𝑦 

⇒ 𝑦 − 𝑥 > 0 

Then for all 𝑛 ∈ ℕ we have 

(
1

𝑛
) 𝑔0 ≥ 𝑦 − 𝑥    (∵ inf{𝑟 ∈ ℚ |𝑟𝑔₀ ≥ 𝑦 − 𝑥}

= 0 𝑤𝑒 𝑐𝑎𝑛 𝑐ℎ𝑜𝑜𝑠𝑒 𝑟 =
1

𝑛
) 

⇒ 𝑦 − 𝑥 ≤ 0 ⇒⇐ 

∴ 𝑥 = 𝑦 

Thus 𝜑 is an injective order-preserving homomorphism. 

 

Importance 

The Archimedean Property ensures comparability and 

prevents the existence of infinitesimal or infinite elements.  
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Archimedean Property in Normed Vector Spaces 

Introduction 

The Archimedean Property plays a crucial role in various 

branches of mathematics, especially in analysis and algebra. 

In the context of normed vector spaces, it ensures that the 

space behaves in a manner consistent with our usual intuition 

of real numbers without the presence of infinitesimal or 

infinitely large elements. This property links the algebraic 

structure of the vector space with its topological and metric 

properties. 

 

Normed Vector Spaces 

A normed vector space (𝑉, || · ||) over a field 

𝔽 (usually ℝ 𝑜𝑟 ℂ) is a vector space equipped with a norm, a 

function || · ||: 𝑉 →  ℝ satisfying the following properties for 

all 𝑥, 𝑦 ∈  𝑉 and 𝛼 ∈  𝔽: 

1. ||𝑥||  ≥  0 and ||𝑥||  =  0 ⇔  𝑥 =  0 

2. ||𝛼𝑥||  =  |𝛼| · ||𝑥|| 
3. ||𝑥 +  𝑦||  ≤  ||𝑥||  +  ||𝑦|| (Triangle Inequality) 

 

The norm defines a metric 𝑑(𝑥, 𝑦)  =  ||𝑥 −  𝑦|| on 𝑉, which 

induces a topology known as the norm topology. 

 

Archimedean Property (Definition with reference to 

Normed Vector Space) 

Let (𝑉, || · ||) be a normed vector space over ℝ. The space is 

said to have the Archimedean Property if: 

 

For every non-zero 𝑥 ∈  𝑉 and every 𝑦 ∈  𝑉, there exists a 

positive integer 𝑛 such that 

||𝑛 · 𝑥||  >  ||𝑦||. 
 

Equivalently, there are no vectors 𝑥 ≠  0 such that ||𝑛 ·
𝑥||  ≤  ||𝑦|| for all 𝑛 ∈  ℕ. In other words, repeated addition 

of a non-zero vector eventually produces a vector whose norm 

exceeds any prescribed bound. 

 

Explanation and Intuition 

The Archimedean Property in a normed space ensures that the 

norm behaves like the absolute value in ℝ. It guarantees that 

every non-zero vector has a finite, positive magnitude and that 

scaling the vector by larger and larger integers will eventually 

increase its norm without bound. This eliminates the 

possibility of 'infinitesimal' vectors whose norm remains 

arbitrarily small no matter how many times they are added to 

themselves. 

 

Examples 

Example 1: (ℝⁿ, || · ||₂) — Euclidean Space 

In the usual Euclidean space, for any non-zero vector 𝑥 ∈ ℝ𝑛 

and let 𝑦 ∈ ℝ𝑛 

If ‖𝑥‖2 ≥ ‖𝑦‖2then we have 𝑛 = 1 

If ‖𝑥‖2 < ‖𝑦‖2 then by Archimedian property in ℝ,  

∃ 𝑛 ∈  ℕ such that 𝑛‖𝑥‖2 > ‖𝑦‖2  ⇒ ‖𝑛. 𝑥‖2 > ‖𝑦‖2 (note 

that ‖𝑛‖2 = 𝑛) 

 

Thus, Euclidean spaces satisfy the Archimedean Property. 

 

Example 2: Any Finite-Dimensional Normed Space over 

ℝ or ℂ 

Let 𝑉 be a finite Dimensional Normed space over ℝ 

Let 𝑥, 𝑦 ∈ 𝑉, ‖𝑥‖ ≠ 0 (‖𝑥‖ > 0) 

Then by Archimedean Property, ∃ 𝑛 ∈  ℕ such that 𝑛‖𝑥‖ >
‖𝑦‖ ⇒ ‖𝑛𝑥‖ > ‖𝑦‖ 

Let 𝑈 be a finite Dimensional Normed space over ℂ 

Let 𝑥, 𝑦 ∈ 𝑈, ‖𝑥‖ ≠ 0 (‖𝑥‖ > 0) 

 

Then by Archimedean Property, ∃ 𝑛 ∈  ℕ such that 𝑛‖𝑥‖ >
‖𝑦‖ ⇒ ‖𝑛𝑥‖ > ‖𝑦‖ 

Every finite-dimensional normed space over ℝ 𝑜𝑟 ℂ inherits 

the Archimedean Property from its scalar field. Since the real 

numbers are Archimedean, the norm, being real-valued, 

preserves this property. 

 

Theorem 

If (𝑉, || · ||) is a normed vector space over an Archimedean 

field 𝔽, then 𝑉 is Archimedean. 

 

Proof  

Let 𝑥 ≠  0 and 𝑦 ∈  𝑉. Since 𝔽 is Archimedean, there exists 

𝑛 ∈  ℕ such that 𝑛||𝑥|| > ||𝑦|| Then, ||𝑛 · 𝑥||  =  𝑛||𝑥|| >
||𝑦||, establishing the property. 

 

The Archimedean Property is essential in analysis, ensuring 

the compatibility between algebraic and topological 

structures. It guarantees that scaling operations behave 

predictably and that limits, convergence, and continuity can 

be understood through familiar real-number intuition.  

 

Summary Table 

Type of Space 
Underlying 

Field 
Archimedean? Remarks 

ℝⁿ with Euclidean 

norm 
ℝ Yes 

Standard 

normed vector 

space 

Any finite-

dimensional 

normed space over 

ℂ 

ℂ Yes 
Inherited from 

ℝ 

Banach space over 

ℝ 
ℝ Yes 

Complete and 

Archimedean 

ℚₚ with p-adic 

norm 
ℚₚ No 

Non-

Archimedean 

norm (ultra-

metric) 

 

Conclusion 

The Archimedean Property in normed vector spaces ensures 

that scaling by integers behaves consistently with real-

number intuition. This property is automatically satisfied in 

all real or complex normed spaces but fails in spaces over 

non-Archimedean fields such as the p-adic numbers. 

Understanding this distinction helps bridge algebraic 

structures with analytic intuition, highlighting the 

foundational role of the Archimedean Property in functional 

analysis. 

 

Non-Archimedean Fields 

 

Introduction 

In mathematics, a non-Archimedean field is a field equipped 

with a valuation or absolute value that does not satisfy the 

Archimedean property. Such fields play an important role in 

number theory, algebraic geometry, and p-adic analysis. 

Unlike real numbers, where the Archimedean property holds, 

non-Archimedean fields allow for the existence of 
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infinitesimals or infinitely large elements relative to the field 

norm. 

 

Definition 

A field F equipped with an absolute value | · | is said to be 

non-Archimedean if it satisfies the strong triangle inequality: 

|𝑥 +  𝑦|  ≤  𝑚𝑎𝑥(|𝑥|, |𝑦|) for all 𝑥, 𝑦 ∈  𝐹 

 

This inequality is stronger than the ordinary triangle 

inequality and defines a special kind of metric structure. An 

equivalent way to describe a non-Archimedean field is that it 

does not satisfy the Archimedean property, i.e., there exists 

an element 𝑥 in 𝐹 such that        |𝑛 · 𝑥|  ≤  1 for all integers 

𝑛. 

 

Examples of Non-Archimedean Fields 

1) p-adic Numbers (ℚₚ): 
The most common example of a non-Archimedean field 

is the field of p-adic numbers, denoted by ℚₚ. Here, the 

p-adic absolute value | · |ₚ is defined such that |𝑝|ₚ =
 1/𝑝, and the strong triangle inequality holds. 

2) Finite Fields with Trivial Valuation: 

Any finite field with the trivial absolute value (where 

|𝑥|  =  1 for all nonzero 𝑥) is non-Archimedean. 

3) Formal Laurent Series Field: 

The field of formal Laurent series over a field 𝐾, written 

𝐾((𝑡)), is non-Archimedean with valuation 𝑣(𝛴𝑎ᵢ𝑡ⁱ)  =
 𝑚𝑖𝑛{𝑖 | 𝑎ᵢ ≠  0}. 

4) Non-Archimedean Ordered Groups 

A group G is non-Archimedean if there exist 𝑎, 𝑏 >  0 

such that 𝑛𝑎 ≤  𝑏 for all 𝑛 ∈  ℕ.That means 𝑎 is 

infinitesimally small compared to 𝑏. 

5) The lexicographic ordered group ℝ ×  ℝ defined by 

(𝑎, 𝑏) <  (𝑐, 𝑑) iff 

[𝑎 <  𝑐]𝑜𝑟 [𝑎 =  𝑐 𝑎𝑛𝑑 𝑏 <  𝑑] 
is non-Archimedean. For example, (0,1) is positive but 

no multiple of it exceeds (1,0). 
 

P-adic Fields 

 

Introduction 

A p-adic field is a type of non-Archimedean field that arises 

by completing the field of rational numbers ℚ with respect to 

the p-adic norm, where p is a prime number. The term p-adic 

comes from “prime-adic,” meaning it is built relative to a 

specific prime number. 

 

The p-adic Absolute Value 

For a prime number 𝑝, any nonzero rational number 𝑥 can be 

written uniquely as: 

𝑥 =  𝑝𝑘(𝑎/𝑏) 

where 𝑎, 𝑏 are integers not divisible by 𝑝, and 𝑘 ∈  ℤ. Then 

the p-adic absolute value is defined as |𝑥|ₚ =  𝑝{−𝑘} and 

|0|ₚ =  0. 

 

Properties of the p-adic Norm 

1) Non-Archimedean (ultra-metric) property: |𝑥 +  𝑦|ₚ ≤
 𝑚𝑎𝑥(|𝑥|ₚ, |𝑦|ₚ) 

2) Multiplicativity: |𝑥𝑦|ₚ =  |𝑥|ₚ |𝑦|ₚ 

3) Normalization: |𝑝|ₚ =  1/𝑝 

 

 

The p-adic Metric and Completion 

The p-adic metric is defined by 𝑑ₚ(𝑥, 𝑦)  =  |𝑥 −  𝑦|ₚ. 
Completing the rational numbers ℚ with respect to this metric 

yields the p-adic number field ℚₚ. This process is analogous 

to how the real numbers ℝ are obtained by completing ℚ 

under the usual (Archimedean) absolute value. 

 

Representation of p-adic Numbers 

 

Every element of ℚₚ can be expressed as an infinite series: 

𝑥 =  𝑎₀ +  𝑎₁𝑝 +  𝑎₂𝑝² +  𝑎₃𝑝³ + ⋯ 

where each 𝑎ᵢ ∈  {0, 1, … , 𝑝 − 1}. This representation 

converges p-adically but not necessarily in the usual sense. 

 

Examples 

1) For p = 3, the number 1/4 has a 3-adic expansion: 

1/4 =  1 +  2 · 3 +  2 · 3² +  2 · 3³ +  ⋯ 

2) In ℚ₂, the 2-adic field, −1 can be written as: 

−1 =  1 +  2 +  2² +  2³ +  2⁴ + ⋯ 

Algebraic and Topological Properties 

1) ℚₚ is a complete field. 

2) It is a locally compact, totally disconnected, non-

Archimedean field. 

3) Its ring of integers is ℤₚ =  {𝑥 ∈  ℚₚ ∶  |𝑥|ₚ ≤  1}, with 

maximal ideal 𝑝ℤₚ and residue field 𝔽ₚ. 

 

Applications 

1) Number Theory: Solving Diophantine equations using 

local-global principles (Hasse–Minkowski theorem). 

2) Algebraic Geometry: Understanding varieties over local 

fields. 

3) p-adic Analysis: Defining p-adic analytic functions and p-

adic integrals. 

4) Modern Research: Used in p-adic Hodge theory, Iwasawa 

theory, and arithmetic geometry. 

 

Comparison with Real Numbers 

Property Real Numbers ℝ p-adic Numbers ℚₚ 

Norm type Archimedean Non-Archimedean 

Construction 
Completion of ℚ  

under |𝑥| 
Completion of ℚ  

under |𝑥|ₚ 

Topology Connected Totally disconnected 

 

Properties of Non-Archimedean Fields 

1) Ultra-metric Inequality: The absolute value satisfies |𝑥 +
 𝑦|  ≤  𝑚𝑎𝑥(|𝑥|, |𝑦|), making the geometry of the field 

quite different from that of Archimedean fields. 

2) Non-Archimedean Metric: The induced metric 𝑑(𝑥, 𝑦)  =
 |𝑥 −  𝑦| defines an ultra-metric space. 

3) Open and Closed Balls: In Non-Archimedean fields, every 

point in an open ball is also the center of that ball. 

4) Totally Disconnected Topology: The topology induced by 

a non-Archimedean absolute value is totally disconnected. 

 

Comparison with Archimedean Fields 

In Archimedean fields like the real numbers (ℝ), the 

Archimedean property ensures that no infinitesimally small 

or infinitely large elements exist. However, in non-

Archimedean fields, such elements do appear in a meaningful 

algebraic sense. For instance, in ℚₚ, the sequence 𝑝ⁿ tends to 

zero as n increases, reflecting a very different concept of 

smallness. 
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Applications of Non-Archimedean Fields 

1) Number Theory: p-adic numbers are fundamental in 

modern number theory, used in local-global principles 

and Hasse’s theorem. 

2) Algebraic Geometry: Non-Archimedean fields provide 

the base for rigid analytic spaces and Berkovich spaces. 

3) Representation Theory and Analysis: p-adic analysis and 

harmonic analysis over non-Archimedean fields are key 

in the study of automorphic forms. 

4) Mathematical Logic and Model Theory: They are useful 

in studying valued fields and ultra-metric structures. 

 

2. Conclusion 
 

Non-Archimedean fields broaden the concept of number 

systems by relaxing the Archimedean property. They provide 

a rich framework for understanding arithmetic, geometry, and 

topology in settings distinct from classical real or complex 

analysis. The study of such fields continues to have deep 

implications across various branches of pure mathematics. 

 

Non-Archimedean fields, on the other hand, allow the 

existence of infinitesimal and infinite elements, making them 

fundamentally different from ℝ. 

 

Summary Table 
Type of Structure Operation Archimedean? Remarks 

ℤ + Yes Basic integer ordering 

ℚ + Yes Rational numbers 

ℝ + Yes Real numbers 

ℝ ×  ℝ (lex order) + No Has infinitesimal elements 

Nonstandard reals *ℝ + No Contains infinite/infinitesimal elements 
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