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Proofs of the Infinitude of Prime Numbers Using the
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Abstract: What's particularly striking about this collection of proofs is how elegantly they extend Euclid’s ancient logic using more
modern number-theoretic tools like the Euler’s totient and Mobius functions. Rather than simply reiterating the infinitude of primes, the
author reshapes the argument with a fresh lens-employing parity-based reasoning and properties of coprimality to construct numbers that
inevitably lead to contradiction if the list of primes were finite. This suggests that arithmetic functions-though defined based on known
primes-can paradoxically reveal unknown ones. It is evident that this approach bridges classical and contemporary methods, offering a
pedagogically rich and logically refined pathway to explore prime distribution. While some steps may benefit from tighter formalism,
especially in transitions between cases, the underlying structure showcases a meaningful fusion of intuition and rigor. That said, the way
parity, coprime constructs, and prime decomposition converge here opens up a thoughtful avenue for future inquiry-perhaps even toward
generalizations using other multiplicative functions. One cannot help but wonder: could similar logic extend to primes in specific

congruence classes or to more complex algebraic structures?
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Proof 1

Using the properties of Euler Totient function property
Property: ¢(n) isevenVn = 3

Let there be finitely many primes
Say D1, P2, 03, - Pk ( i.e. 2,3,5,7, ey pk)

Let N = p1p;ps - Pk
Consider the number N + 4, clearly N + 4 > 3 and is not a

prime number as 2 is its factor.

Any prime number that divides N + 4 will be among one of
the above finite numbers of prime numbers, say p; for
somel <i<k
ie.p)|(N+4),alsop;IN=>p)|(N+4—-N)=>p|4d=>p =
2

for if Ip; # 2 for some 1<j <k such that p;|(N +
4),alsop;|[N = pj|[(N+4—N)=>pjld=>p;=2=><

- the only prime factor of N + 4 is 2

=><p(N+4)=(N+4)(1—%)=(N+4)(%)

= P23 Py 2
considering p; = 2

= @(N +1)isodd = p,p; ...pr + 2 is odd =& (as p(n) is
evenvVn = 3)

Proof 2

Let there be finitely many primes
Say py, P2, D3, - P (i.€.2,3,5,7, ..., 01)

Let N = p1psps - Pi
Consider the number N + 1, clearly N +1 > 1

If N + 1 is a prime, then it is one among the listed primes say
pil1<i<k
But p; is also a factor of N = (N,N + 1) = p; =«

Also if N + 1 is composite, then any prime factor of N + 1
will be among one of the above finite number of primes listed
above, say p; forsome 1 < j <k

=>(NN+1)#1=>¢
Proof 3

Let there be finitely many primes

Say p1, 02,03, -, D (i.€.2,3,5,7, ..., 1)

Let N = p;p;p3 ... Pk

Then  @(N) = @(p1p2ps - Pi) = (P — D(p2 — D(ps —
1) ...(px — 1) (even)

Consider the number N + 1, clearly N +1 > 1

If N + 1 is a prime, then it is one among the listed primes say
p;forsome1 <i<k

Then (N + 1) = ¢(p;) = (p;i — 1) (even)

o(N(N+1)) =N +1) (1 - %) (1 - i) (1

1 1
1173) (1 ) pk) 1 1
p1— b2 — b3 — Pk —

N(N+1)( " )( D2 )( D3 )( Dr )
P —D@-D;—D...(p — D

N
=N+ — D —DEs— D ...(p — 1)
=pi(pr— D — Dz —1) ... (pi — 1 (e

—1) (1)
pN)p(N+1) =(p; — D — D — 1D ...(ps

“D@e—D@i—1
=@ - D@ - D@: -1 ..o —D* (o — 1) (2)
Since N and N + 1 are relatively prime, we have gcd(N, N +
D=1
= o(N(N+ 1)) = p(N)e(N + 1)
= pP - D@~ D@ —D ..o =D (e — D

= (p1 — D(p, — D(ps

“D.p-D* -1
>p=@E-1
= 1=0 >«
If N 4+ 1 is not a Prime number, and since N+ 1> 1= N +
1 is a composite number

N(N+1)<

By fundamental Theorem of Arithmetic, N + 1 has a prime
factor say p; forsome 1 < j <k
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Clearly,
o(N(N+1))=NWN+1) (1 —%) (1 —i) (1
EEAANES
P1_2193 Pz_lpkp3_1 pg— 1
ZN(N+1)( 12 )< P2 )( Ps )< D )
— NV +1) ((Pl - 1D(p, - 1)(}53 -1 ..(px — 1))

=(N+D@ - D@ — D@ -1 ...(p — 1)
p(N)e(N+1) =@ — D@, —Dp; - 1) ...(p;
D @e—1DoeN+1)

Since N and N + 1 are relatively prime, we have gcd(N, N +
=1
= o(N(N +1)) = p(N)p(N + 1)
> N+D@ —D@— D@z =D .. (e — 1)
=P - Dp.—Dps - ...(p;
— D —D eV +1)
> N+1= o(N+1)
> N+1=1=>N=0>¢«

Proof 4
Suppose there are finitely many Prime numbers
Say p1, D2, D3, -r P (1.€.2,3,5,7, ..., Dx)

Let N = p1p;ps - P
= for any n > N, the only possible prime factors of n are

P1, P2, P3, ---and py
n>N

=N > P1P2Ps - Pk
Suppose n is a Prime number

>n=pjforsomel <j<k
= Dj > P1D2P3 - Dk

= Dj > P1D2P3 - Dk

= 1> pip2ps ---p,-l_lp,-+1 " Dk

=2>1< Se
P1D2P3 " Pj-1Pj+1 """ Pk

Suppose n is not a prime number

Clearly n > 1 = n is a composite number

= n has a Prime factor say p; forsome 1 <j <k

= n = mp;

= mp; > N(~n=N)

= mpj > P1P2P3 ** Pj-1Pj Pj+1 " Pk

= m > Pp1P2P3 - Pj-1Pj+1 " Pk

If mis a Prime, by the previous argument, we get 1 <

%where Q is a product of prime numbers listed, a

contradiction

If m is not a prime then, it is composite, as m > 1

By the same argument we get

=My > P1P2P3 ** Dj-1Pj+1 " Pi-1Pi+1 " Pk

Where m = pym,,forsome 1 <[ <k

Continuing with the same argument, we reach a stage where
the smallest factor of m is prime and this prime number is
one of the prime numbers listed on the right-hand side of the
inequality

= 1 > product of primes =«

Proof 5
Suppose there are finitely many Prime numbers

Say py, 02, 03, -, Pk (i.€.2,3,5,7, ..., 01)

Let N = p1p2ps - Pk

u(N) = (-1

Consider N + 1

Clearly N+1>1

If N + 1 is a prime, then it must be one of prime numbers
listed above say p; forsome 1 <j<k.

= u(N +1) = p(p;) = -1

Also = both N and N + 1 have prime factor p;

= N(N + 1) has a factor p,?

S>u(N(N+1)=0

Since N and N + 1 are relatively prime, we have gcd(N, N +
1)=1

= u(N(N + 1)) = u(NuV +1)

=0=(—-D! =&

If N + 1 is not a prime, then it must be composite

Clearly it must have a prime factor which is one of prime
numbers listed above say p; forsome 1 <j <k.

Then there are three cases

UN+1D) =0oru(N+1)=1loru(N+1)=-1

Also = both N and N + 1 have prime factor p;

= N(N + 1) has a factor p;?

=>u(N(N+1)=0

Since N and N + 1 are relatively prime, we have gcd(N, N +
=1

= u(N(N + 1)) = u(Nu(N +1)

=0=(—1D*" whenu(N +1) = -1 >«

Or 0=(—=1)*whenu(N+1) =1 >«

For the third case 3 p;",r > 1 for some 1 < i < k such that
pi"I(N +1)

=>pil(N+1)

Alsop;INp;IIN+1-N)=>pll=ap =1

Results

The above proofs illustrate how the Euler totient function and
Mobius function, though defined in terms of the prime
factorization, can itself be used to produce a number coprime
to, ensuring the discovery of a new prime. The use of the
property even odd provides a simple parity argument
enhancing Euclid’s logic. The argument may inspire further
exploration of other multiplicative functions (such as the sum-
of-divisors function g(n)) in relation to the distribution of
primes.
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