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Abstract: What's particularly striking about this collection of proofs is how elegantly they extend Euclid’s ancient logic using more 

modern number-theoretic tools like the Euler’s totient and Möbius functions. Rather than simply reiterating the infinitude of primes, the 

author reshapes the argument with a fresh lens-employing parity-based reasoning and properties of coprimality to construct numbers that 

inevitably lead to contradiction if the list of primes were finite. This suggests that arithmetic functions-though defined based on known 

primes-can paradoxically reveal unknown ones. It is evident that this approach bridges classical and contemporary methods, offering a 

pedagogically rich and logically refined pathway to explore prime distribution. While some steps may benefit from tighter formalism, 

especially in transitions between cases, the underlying structure showcases a meaningful fusion of intuition and rigor. That said, the way 

parity, coprime constructs, and prime decomposition converge here opens up a thoughtful avenue for future inquiry-perhaps even toward 

generalizations using other multiplicative functions. One cannot help but wonder: could similar logic extend to primes in specific 

congruence classes or to more complex algebraic structures? 

 

Keywords: Euler’s Totient Function, Mobius Function, Coprimality, Infinitude of Primes, Parity argument  

 

Proof 1 

 

Using the properties of Euler Totient function property 

Property: 𝜑(𝑛) is even ∀ 𝑛 ≥ 3 

 

Let there be finitely many primes 

Say 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 ( 𝑖. 𝑒. 2,3,5,7, … , 𝑝𝑘) 

 

Let 𝑁 = 𝑝1𝑝2𝑝3 … 𝑝𝑘  

Consider the number 𝑁 + 4, clearly 𝑁 + 4 > 3 and is not a 

prime number as 2 is its factor. 

 

Any prime number that divides 𝑁 + 4 will be among one of 

the above finite numbers of prime numbers, say 𝑝𝑖  for 

some 1 ≤ 𝑖 ≤ 𝑘 

i.e. 𝑝𝑖|(𝑁 + 4), also 𝑝𝑖|𝑁 ⇒ 𝑝𝑖|(𝑁 + 4 − 𝑁) ⇒ 𝑝𝑖|4 ⇒ 𝑝𝑖 =
2 

for if ∃ 𝑝𝑗 ≠ 2  for some 1 ≤ 𝑗 ≤ 𝑘 such that 𝑝𝑗|(𝑁 +

4), also 𝑝𝑗|𝑁 ⇒ 𝑝𝑗|(𝑁 + 4 − 𝑁) ⇒ 𝑝𝑗|4 ⇒ 𝑝𝑗 = 2 ⇒⇐ 

∴ the only prime factor of 𝑁 + 4 is 2 

⇒ 𝜑(𝑁 + 4) = (𝑁 + 4) (1 −
1

2
) = (𝑁 + 4) (

1

2
)

=  𝑝2𝑝3 … 𝑝𝑘 + 2 
 considering 𝑝1 = 2 

⇒ 𝜑(𝑁 + 1) is odd ∵ 𝑝2𝑝3 … 𝑝𝑘 + 2  is odd ⇒⇐ (as 𝜑(𝑛) is 

even ∀ 𝑛 ≥ 3) 

 

Proof 2 

 

Let there be finitely many primes 

Say 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 ( 𝑖. 𝑒. 2,3,5,7, … , 𝑝𝑘) 

Let 𝑁 = 𝑝1𝑝2𝑝3 … 𝑝𝑘  

Consider the number 𝑁 + 1, clearly 𝑁 + 1 > 1 

If 𝑁 + 1 is a prime, then it is one among the listed primes say 

𝑝𝑖  1 ≤ 𝑖 ≤ 𝑘 

But 𝑝𝑖  is also a factor of 𝑁 ⇒ (𝑁, 𝑁 + 1) = 𝑝𝑖  ⇒⇐ 

 

Also if 𝑁 + 1 is composite, then any prime factor of 𝑁 + 1 

will be among one of the above finite number of primes listed 

above, say 𝑝𝑗  for some 1 ≤ 𝑗 ≤ 𝑘 

⇒ (𝑁, 𝑁 + 1) ≠ 1 ⇒⇐ 

Proof 3 

 

Let there be finitely many primes 

Say 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 ( 𝑖. 𝑒. 2,3,5,7, … , 𝑝𝑘) 

Let 𝑁 = 𝑝1𝑝2𝑝3 … 𝑝𝑘  

Then 𝜑(𝑁) = 𝜑(𝑝1𝑝2𝑝3 … 𝑝𝑘) = (𝑝1 − 1)(𝑝2 − 1)(𝑝3 −
1) … (𝑝𝑘 − 1) (even) 

Consider the number 𝑁 + 1, clearly 𝑁 + 1 > 1 

If 𝑁 + 1 is a prime, then it is one among the listed primes say 

𝑝𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 

Then 𝜑(𝑁 + 1) = 𝜑(𝑝𝑖) = (𝑝𝑖 − 1) (even) 

𝜑(𝑁(𝑁 + 1)) = 𝑁(𝑁 + 1) (1 −
1

𝑝1

) (1 −
1

𝑝2

) (1

−
1

𝑝3

) … (1 −
1

𝑝𝑘

) 

=  𝑁(𝑁 + 1) (
𝑝1 − 1

𝑝1

) (
𝑝2 − 1

𝑝2

) (
𝑝3 − 1

𝑝3

) … (
𝑝𝐾 − 1

𝑝𝑘

) 

= 𝑁(𝑁 + 1) (
(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑘 − 1)

𝑁
) 

= (𝑁 + 1)(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑘 − 1) 

= 𝑝𝑖(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑖 − 1) ⋯ (𝑝𝑘

− 1) ⋯ (1) 

𝜑(𝑁)𝜑(𝑁 + 1) = (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑖

− 1) ⋯ (𝑝𝑘 − 1) (𝑝𝑖 − 1) 

= (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑖 − 1)2 ⋯ (𝑝𝑘 − 1)  ⋯ (2) 

Since 𝑁 and 𝑁 + 1 are relatively prime, we have gcd(𝑁, 𝑁 +
1) = 1 

⇒  𝜑(𝑁(𝑁 + 1)) = 𝜑(𝑁)𝜑(𝑁 + 1) 

⇒  𝑝𝑖(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑖 − 1) ⋯ (𝑝𝑘 − 1)  
= (𝑝1 − 1)(𝑝2 − 1)(𝑝3

− 1) … (𝑝𝑖 − 1)2 ⋯ (𝑝𝑘 − 1) 

⇒  𝑝𝑖  = (𝑝𝑖 − 1) 

⇒  1 = 0 ⇒⇐ 

If 𝑁 + 1 is not a Prime number, and since 𝑁 + 1 > 1 ⇒ 𝑁 +
1 is a composite number 

 

By fundamental Theorem of Arithmetic, 𝑁 + 1 has a prime 

factor say 𝑝𝑗 for some 1 ≤ 𝑗 ≤ 𝑘 
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Clearly,  

𝜑(𝑁(𝑁 + 1)) = 𝑁(𝑁 + 1) (1 −
1

𝑝1

) (1 −
1

𝑝2

) (1

−
1

𝑝3

) … (1 −
1

𝑝𝑘

) 

=  𝑁(𝑁 + 1) (
𝑝1 − 1

𝑝1

) (
𝑝2 − 1

𝑝2

) (
𝑝3 − 1

𝑝3

) … (
𝑝𝐾 − 1

𝑝𝑘

) 

= 𝑁(𝑁 + 1) (
(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑘 − 1)

𝑁
) 

= (𝑁 + 1)(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑘 − 1) 

𝜑(𝑁)𝜑(𝑁 + 1) = (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑖

− 1) ⋯ (𝑝𝑘 − 1) 𝜑(𝑁 + 1) 

 

Since 𝑁 and 𝑁 + 1 are relatively prime, we have gcd(𝑁, 𝑁 +
1) = 1 

⇒  𝜑(𝑁(𝑁 + 1)) = 𝜑(𝑁)𝜑(𝑁 + 1) 

⇒  (𝑁 + 1)(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑘 − 1)  
= (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) … (𝑝𝑖

− 1) ⋯ (𝑝𝑘 − 1) 𝜑(𝑁 + 1) 

⇒  𝑁 + 1 =  𝜑(𝑁 + 1) 

⇒  𝑁 + 1 = 1 ⇒ 𝑁 = 0 ⇒⇐ 

 

Proof 4 

Suppose there are finitely many Prime numbers 

Say 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘  ( 𝑖. 𝑒. 2,3,5,7, … , 𝑝𝑘) 

Let 𝑁 = 𝑝1𝑝2𝑝3 … 𝑝𝑘  

⇒ for any 𝑛 > 𝑁, the only possible prime factors of 𝑛 are 

𝑝1, 𝑝2, 𝑝3, … and 𝑝𝑘  

𝑛 > 𝑁 

⇒ 𝑛 > 𝑝1𝑝2𝑝3 … 𝑝𝑘 

Suppose 𝑛 is a Prime number 

⇒ 𝑛 = 𝑝𝑗  for some 1 ≤ 𝑗 ≤ 𝑘 

⇒ 𝑝𝑗 > 𝑝1𝑝2𝑝3 … 𝑝𝑘 

⇒ 𝑝𝑗 > 𝑝1𝑝2𝑝3 … 𝑝𝑘 

⇒ 1 > 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑗−1𝑝𝑗+1 ⋯ 𝑝𝑘 

⇒ 1 <
1

𝑝1𝑝2𝑝3 ⋯ 𝑝𝑗−1𝑝𝑗+1 ⋯ 𝑝𝑘

 ⇒⇐ 

Suppose 𝑛 is not a prime number 

Clearly 𝑛 > 1 ⇒ 𝑛 is a composite number 

⇒ 𝑛 has a Prime factor say  𝑝𝑗  for some 1 ≤ 𝑗 ≤ 𝑘 

⇒ 𝑛 = 𝑚𝑝𝑗   

⇒  𝑚𝑝𝑗 > 𝑁(∵ 𝑛 ≥ 𝑁) 

⇒ 𝑚𝑝𝑗 > 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑗−1𝑝𝑗  𝑝𝑗+1 ⋯ 𝑝𝑘 

⇒ 𝑚 > 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑗−1𝑝𝑗+1 ⋯ 𝑝𝑘 

If 𝑚 is a Prime, by the previous argument, we get 1 <

 
1

𝑄
 where 𝑄 is a product of prime numbers listed, a 

contradiction 

If 𝑚 is not a prime then, it is composite, as 𝑚 > 1 

By the same argument we get 

⇒ 𝑚1 > 𝑝1𝑝2𝑝3 ⋯ 𝑝𝑗−1𝑝𝑗+1 ⋯ 𝑝𝑙−1𝑝𝑙+1 ⋯ 𝑝𝑘 

Where 𝑚 = 𝑝𝑙𝑚1, for some 1 ≤ 𝑙 ≤ 𝑘 

Continuing with the same argument, we reach a stage where 

the smallest factor of 𝑚 is prime and this prime number is 

one of the prime numbers listed on the right-hand side of the 

inequality 

⇒ 1 > product of primes ⇒⇐ 

 

Proof 5 

Suppose there are finitely many Prime numbers 

Say 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑘 ( 𝑖. 𝑒. 2,3,5,7, … , 𝑝𝑘) 

Let 𝑁 = 𝑝1𝑝2𝑝3 … 𝑝𝑘  

𝜇(𝑁) = (−1)𝑘 

Consider 𝑁 + 1 

Clearly 𝑁 + 1 > 1 

If 𝑁 + 1 is a prime, then it must be one of prime numbers 

listed above say  𝑝𝑗  for some 1 ≤ 𝑗 ≤ 𝑘 . 

⇒ 𝜇(𝑁 + 1) = 𝜇(𝑝𝑗) = −1 

Also ∵ both 𝑁 and 𝑁 + 1 have prime factor 𝑝𝑗 

⇒ 𝑁(𝑁 + 1) has a factor 𝑝𝑗
2 

⇒ 𝜇(𝑁(𝑁 + 1)) = 0 

Since 𝑁 and 𝑁 + 1 are relatively prime, we have gcd(𝑁, 𝑁 +
1) = 1 

⇒  𝜇(𝑁(𝑁 + 1)) = 𝜇(𝑁)𝜇(𝑁 + 1) 

⇒ 0 = (−1)𝑘+1 ⇒⇐  

If 𝑁 + 1 is not a prime, then it must be composite 

Clearly it must have a prime factor which is one of prime 

numbers listed above say  𝑝𝑗  for some 1 ≤ 𝑗 ≤ 𝑘 . 

Then there are three cases  

𝜇(𝑁 + 1) = 0  or 𝜇(𝑁 + 1) = 1 or 𝜇(𝑁 + 1) = −1 

Also ∵ both 𝑁 and 𝑁 + 1 have prime factor 𝑝𝑗 

⇒ 𝑁(𝑁 + 1) has a factor 𝑝𝑗
2 

⇒ 𝜇(𝑁(𝑁 + 1)) = 0 

Since 𝑁 and 𝑁 + 1 are relatively prime, we have gcd(𝑁, 𝑁 +
1) = 1 

⇒  𝜇(𝑁(𝑁 + 1)) = 𝜇(𝑁)𝜇(𝑁 + 1) 

⇒ 0 = (−1)𝑘+1  when 𝜇(𝑁 + 1) = −1 ⇒⇐  

Or  0 = (−1)𝑘 when 𝜇(𝑁 + 1) = 1 ⇒⇐  

For the third case ∃ 𝑝𝑖
𝑟 , 𝑟 > 1 for some 1 ≤ 𝑖 ≤ 𝑘 such that 

𝑝𝑖
𝑟|(𝑁 + 1) 

⇒ 𝑝𝑖|(𝑁 + 1) 

Also 𝑝𝑖|𝑁 𝑝𝑖|(𝑁 + 1 − 𝑁) ⇒ 𝑝𝑖|1 ⇒ 𝑝𝑖 = 1 ⇒⇐ 

 

Results 
 

The above proofs illustrate how the Euler totient function and 

Mobius function, though defined in terms of the prime 

factorization, can itself be used to produce a number coprime 

to, ensuring the discovery of a new prime. The use of the 

property even odd provides a simple parity argument 

enhancing Euclid’s logic. The argument may inspire further 

exploration of other multiplicative functions (such as the sum-

of-divisors function 𝜎(𝑛)) in relation to the distribution of 

primes. 
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