Proofs of the Infinitude of Prime Numbers Using the Euler Totient Function and the Mobius Function

Tabsum B

Assistant Professor, Department of Mathematics, Government College of Arts, Science and Commerce Quepem Goa, India

Abstract: What's particularly striking about this collection of proofs is how elegantly they extend Euclid's ancient logic using more modern number-theoretic tools like the Euler's totient and Möbius functions. Rather than simply reiterating the infinitude of primes, the author reshapes the argument with a fresh lens-employing parity-based reasoning and properties of coprimality to construct numbers that inevitably lead to contradiction if the list of primes were finite. This suggests that arithmetic functions-though defined based on known primes-can paradoxically reveal unknown ones. It is evident that this approach bridges classical and contemporary methods, offering a pedagogically rich and logically refined pathway to explore prime distribution. While some steps may benefit from tighter formalism, especially in transitions between cases, the underlying structure showcases a meaningful fusion of intuition and rigor. That said, the way parity, coprime constructs, and prime decomposition converge here opens up a thoughtful avenue for future inquiry-perhaps even toward generalizations using other multiplicative functions. One cannot help but wonder: could similar logic extend to primes in specific congruence classes or to more complex algebraic structures?

Keywords: Euler's Totient Function, Mobius Function, Coprimality, Infinitude of Primes, Parity argument

Proof 1

Using the properties of Euler Totient function property

Property: $\varphi(n)$ is even $\forall n \geq 3$

Let there be finitely many primes Say $p_1, p_2, p_3, ..., p_k$ (i.e. 2,3,5,7, ..., p_k)

Let $N = p_1 p_2 p_3 \dots p_k$

Consider the number N + 4, clearly N + 4 > 3 and is not a prime number as 2 is its factor.

Any prime number that divides N + 4 will be among one of the above finite numbers of prime numbers, say p_i for some $1 \le i \le k$

i.e. $p_i|(N+4)$, also $p_i|N \Rightarrow p_i|(N+4-N) \Rightarrow p_i|4 \Rightarrow p_i=$

for if $\exists p_i \neq 2$ for some $1 \leq j \leq k$ such that $p_i | (N + j) | (N + j) |$ 4), also $p_i|N \Rightarrow p_i|(N+4-N) \Rightarrow p_i|4 \Rightarrow p_i=2 \Rightarrow \Leftarrow$ \therefore the only prime factor of N + 4 is 2

$$\Rightarrow \varphi(N+4) = (N+4)\left(1 - \frac{1}{2}\right) = (N+4)\left(\frac{1}{2}\right) \\ = p_2 p_3 \dots p_k + 2$$

considering $p_1 = 2$ $\Rightarrow \varphi(N+1)$ is odd $: p_2p_3 ... p_k + 2$ is odd $\Rightarrow \in (as \varphi(n))$ is even $\forall n \geq 3$)

Proof 2

Let there be finitely many primes

Say $p_1, p_2, p_3, \ldots, p_k$ ($i.\,e.\,2,3,5,7,\ldots, p_k)$

Let $N = p_1 p_2 p_3 ... p_k$

Consider the number N + 1, clearly N + 1 > 1

If N + 1 is a prime, then it is one among the listed primes say $p_i \ 1 \le i \le k$

But p_i is also a factor of $N \Rightarrow (N, N + 1) = p_i \implies \Leftarrow$

Also if N + 1 is composite, then any prime factor of N + 1will be among one of the above finite number of primes listed above, say p_i for some $1 \le j \le k$

$$\Rightarrow$$
 $(N, N + 1) \neq 1 \Rightarrow \leftarrow$ **Proof 3**

Let there be finitely many primes

Say $p_1, p_2, p_3, ..., p_k$ (i.e. 2,3,5,7, ..., p_k)

Let $N = p_1 p_2 p_3 \dots p_k$

 $\varphi(N) = \varphi(p_1 p_2 p_3 \dots p_k) = (p_1 - 1)(p_2 - 1)(p_3 -$ Then 1) ... $(p_k - 1)$ (even)

Consider the number N + 1, clearly N + 1 > 1

If N + 1 is a prime, then it is one among the listed primes say p_i for some $1 \le i \le k$

Then $\varphi(N+1) = \varphi(p_i) = (p_i - 1)$ (even)

 $\varphi(N(N+1)) = N(N+1) \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_3}\right) \dots \left(1 - \frac{1}{p_k}\right)$ $= N(N+1) \left(\frac{p_1 - 1}{p_1}\right) \left(\frac{p_2 - 1}{p_2}\right) \left(\frac{p_3 - 1}{p_3}\right) \dots \left(\frac{p_K - 1}{p_k}\right)$ $= N(N+1) \left(\frac{(p_1 - 1)(p_2 - 1)(p_3 - 1) \dots (p_K - 1)}{N}\right)$

= $(N+1)(p_1-1)(p_2-1)(p_3-1)...(p_k-1)$ $= p_i(p_1 - 1)(p_2 - 1)(p_3 - 1) \dots (p_i - 1) \dots (p_k$

 $-1) \cdots (1)$ $\varphi(N)\varphi(N+1) = (p_1 - 1)(p_2 - 1)(p_3 - 1) \dots (p_i - 1) \dots (p_k - 1)(p_i - 1)$

= $(p_1 - 1)(p_2 - 1)(p_3 - 1) \dots (p_i - 1)^2 \dots (p_k - 1) \dots (2)$ Since N and N + 1 are relatively prime, we have gcd(N, N +

1) = 1 $\Rightarrow \varphi(N(N+1)) = \varphi(N)\varphi(N+1)$

 $\Rightarrow p_{i}(p_{1}-1)(p_{2}-1)(p_{3}-1)\dots(p_{i}-1)\cdots(p_{k}-1)$ $= (p_{1}-1)(p_{2}-1)(p_{3}-1)\dots(p_{i}-1)^{2}\cdots(p_{k}-1)$

 $\Rightarrow p_i = (p_i - 1)$ $\Rightarrow 1 = 0 \Rightarrow \Leftarrow$

If N + 1 is not a Prime number, and since $N + 1 > 1 \Rightarrow N + 1 \Rightarrow N + 1 > 1 \Rightarrow N + 1 \Rightarrow N + 1 \Rightarrow N + 1 \Rightarrow$ 1 is a composite number

By fundamental Theorem of Arithmetic, N + 1 has a prime factor say p_i for some $1 \le j \le k$

Volume 14 Issue 11, November 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor 2024: 7.101

Clearly,

$$\begin{split} \varphi\big(N(N+1)\big) &= N(N+1)\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\left(1-\frac{1}{p_2}\right)\left(1-\frac{1}{p_3}\right)...\left(1-\frac{1}{p_k}\right) \\ &= N(N+1)\left(\frac{p_1-1}{p_1}\right)\left(\frac{p_2-1}{p_2}\right)\left(\frac{p_3-1}{p_3}\right)...\left(\frac{p_K-1}{p_k}\right) \\ &= N(N+1)\left(\frac{(p_1-1)(p_2-1)(p_3-1)...(p_k-1)}{N}\right) \\ &= (N+1)(p_1-1)(p_2-1)(p_3-1)...(p_k-1) \\ \varphi(N)\varphi(N+1) &= (p_1-1)(p_2-1)(p_3-1)...(p_i$$

Since N and N + 1 are relatively prime, we have gcd(N, N + 1) = 1

$$\Rightarrow \varphi(N(N+1)) = \varphi(N)\varphi(N+1)$$

$$\Rightarrow (N+1)(p_1-1)(p_2-1)(p_3-1)...(p_k-1)$$

$$= (p_1-1)(p_2-1)(p_3-1)...(p_i-1)...(p_k-1)$$

$$= N+1 = \varphi(N+1)$$

Proof 4

Suppose there are finitely many Prime numbers

Say
$$p_1, p_2, p_3, \dots, p_k$$
 ($i.\,e.\,2,3,5,7,\dots,p_k$)

Let $N = p_1 p_2 p_3 \dots p_k$

 \Rightarrow for any n > N, the only possible prime factors of n are $p_1, p_2, p_3, ...$ and p_k

n > N

 $\Rightarrow n > p_1 p_2 p_3 \dots p_k$

Suppose n is a Prime number

 $\Rightarrow N + 1 = 1 \Rightarrow N = 0 \Rightarrow \Leftarrow$

$$\Rightarrow n = p_i$$
 for some $1 \le j \le k$

$$\Rightarrow p_j > p_1 p_2 p_3 \dots p_k$$

$$\Rightarrow p_i > p_1 p_2 p_3 \dots p_k$$

$$\Rightarrow 1 > p_1 p_2 p_3 \cdots p_{j-1} p_{j+1} \cdots p_k$$

$$\Rightarrow 1 < \frac{1}{p_1 p_2 p_3 \cdots p_{j-1} p_{j+1} \cdots p_k}$$

$$\Rightarrow 1 < \frac{1}{p_1 p_2 p_3 \cdots p_{j-1} p_{j+1} \cdots p_k} \Rightarrow \in$$

Suppose n is not a prime number

Clearly $n > 1 \Rightarrow n$ is a composite number

 \Rightarrow n has a Prime factor say p_j for some $1 \le j \le k$

 $\Rightarrow n = mp_i$

 $\Rightarrow mp_i > N(: n \ge N)$

 $\Rightarrow mp_j > p_1p_2p_3 \cdots p_{j-1}p_j p_{j+1} \cdots p_k$

 $\Rightarrow m > p_1 p_2 p_3 \cdots p_{j-1} p_{j+1} \cdots p_k$

If m is a Prime, by the previous argument, we get $1 < \frac{1}{q}$ where Q is a product of prime numbers listed, a contradiction

If m is not a prime then, it is composite, as m > 1

By the same argument we get

 $\Rightarrow m_1 > p_1p_2p_3\cdots p_{j-1}p_{j+1}\cdots p_{l-1}p_{l+1}\cdots p_k$

Where $m = p_l m_1$, for some $1 \le l \le k$

Continuing with the same argument, we reach a stage where the smallest factor of m is prime and this prime number is one of the prime numbers listed on the right-hand side of the inequality

 \Rightarrow 1 > product of primes $\Rightarrow \Leftarrow$

Proof 5

Suppose there are finitely many Prime numbers Say $p_1, p_2, p_3, ..., p_k$ (i. e. 2,3,5,7, ..., p_k)

Let
$$N = p_1 p_2 p_3 \dots p_k$$

 $\mu(N) = (-1)^k$
Consider $N + 1$
Clearly $N + 1 > 1$

If N+1 is a prime, then it must be one of prime numbers listed above say p_j for some $1 \le j \le k$.

$$\Rightarrow \mu(N+1) = \mu(p_i) = -1$$

Also : both N and N + 1 have prime factor p_i

 $\Rightarrow N(N+1)$ has a factor p_i^2

 $\Rightarrow \mu(N(N+1)) = 0$

Since N and N + 1 are relatively prime, we have gcd(N, N + 1) = 1

$$\Rightarrow \mu(N(N+1)) = \mu(N)\mu(N+1)$$

$$\Rightarrow 0 = (-1)^{k+1} \Rightarrow \Leftarrow$$

If N + 1 is not a prime, then it must be composite

Clearly it must have a prime factor which is one of prime numbers listed above say p_j for some $1 \le j \le k$.

Then there are three cases

$$\mu(N+1) = 0$$
 or $\mu(N+1) = 1$ or $\mu(N+1) = -1$

Also : both N and N + 1 have prime factor p_i

 $\Rightarrow N(N+1)$ has a factor p_i^2

 $\Rightarrow \mu(N(N+1)) = 0$

Since N and N + 1 are relatively prime, we have gcd(N, N + 1) = 1

$$\Rightarrow \mu(N(N+1)) = \mu(N)\mu(N+1)$$

$$\Rightarrow 0 = (-1)^{k+1}$$
 when $\mu(N+1) = -1 \Rightarrow \Leftarrow$

Or
$$0 = (-1)^k$$
 when $\mu(N+1) = 1 \implies \in$

For the third case $\exists p_i^r, r > 1$ for some $1 \le i \le k$ such that $p_i^r | (N+1)$

 $\Rightarrow p_i | (N+1)$

Also $p_i | N p_i | (N + 1 - N) \Rightarrow p_i | 1 \Rightarrow p_i = 1 \Rightarrow \Leftarrow$

Results

The above proofs illustrate how the Euler totient function and Mobius function, though defined in terms of the prime factorization, can itself be used to produce a number coprime to, ensuring the discovery of a new prime. The use of the property even odd provides a simple parity argument enhancing Euclid's logic. The argument may inspire further exploration of other multiplicative functions (such as the sum-of-divisors function $\sigma(n)$) in relation to the distribution of primes.

References

- [1] Euclid, Elements, Book IX, Proposition 20.
- [2] H. Davenport, The Higher Arithmetic, Cambridge University Press, 2008.
- [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 2008.
- [4] W. Narkiewicz, The Development of Prime Number Theory: From Euclid to Hardy and Littlewood, Springer, 2000.
- [5] T. Apostol, Introduction to Analytic Number Theory, Springer, 1976.

Volume 14 Issue 11, November 2025
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
www.ijsr.net