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Abstract: This paper provides a comparative evaluation of two computational tools-Sleuth and DRIMSeq-for analyzing single-cell RNA 

sequencing data at the transcript level. Sleuth focuses on identifying differential expression in transcript abundance, integrating 

quantification uncertainty through bootstrapping methods. In contrast, DRIMSeq targets differential transcript usage by modeling isoform 

proportions using a Dirichlet-multinomial framework. The review outlines the statistical foundations, application contexts, and practical 

limitations of each tool, emphasizing their suitability for different research questions. By clarifying when and why to use each approach, 

this article supports informed decision-making in transcriptomic studies. 
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1. Introduction 
 

Single-cell RNA sequencing (scRNA-seq) has revolutionized 

the study of gene expression by enabling transcriptome 

analysis at the resolution of individual cells. This technology 

provides unprecedented insights into cellular heterogeneity, 

gene regulation and disease mechanisms. However, 

extracting meaningful biological information from scRNA-

seq data remains challenging, particularly when examining 

expression beyond the gene level. Many genes produce 

multiple transcript isoforms through alternative splicing, 

which may have distinct regulatory roles or produce distinct 

protein products. Simply analyzing gene expression can 

overlook important shifts in isoform usage or expression. 

 

To address this challenge, computational methods have been 

developed to analyze gene expression at the transcriptome 

level. Two such methods, Sleuth and DRIMSeq, offer unique 

approaches for interpreting transcriptomic data. Sleuth 

focuses on identifying transcripts whose overall expression 

levels change across conditions (differential expression), 

whereas DRIMSeq detects changes in the relative proportions 

of different isoforms produced by a gene (differential 

transcript usage). By capturing different aspects of gene 

regulation, these tools provide complementary insights into 

the dynamics of the transcriptome. Given the increasing 

complexity of transcriptomic datasets and the rising use of 

scRNA-seq, understanding the distinctions between Sleuth 

and DRIMSeq is critical for designing accurate and 

biologically meaningful analyses. 

 

This review adopts a comparative approach to examine two 

computational methods, Sleuth and DRIMSeq, for analyzing 

transcript-level gene expression in single-cell RNA 

sequencing (scRNA-seq) data. It introduces the importance of 

transcript-level analysis, compares the statistical frameworks 

of both methods, and contrasts their biological applications: 

Sleuth for identifying differentially expressed transcripts and 

DRIMSeq for detecting changes in relative isoform 

proportions. This review discusses the applications of these 

tools in scRNA-seq analysis, evaluates their respective 

strengths and limitations while highlighting the potential 

benefits of integrating multiple analytical methods for a more 

comprehensive understanding of transcriptional regulation. 

This comparative approach enables readers to understand the 

distinct features and applications of Sleuth and DRIMSeq, 

facilitating the selection of the most appropriate tool for 

specific research questions. This article aims to compare the 

capabilities, assumptions, and applicability of Sleuth and 

DRIMSeq for transcript-level analysis of single-cell RNA 

sequencing data. 

 

 
Figure 1: Differences between DGE, DTE, and DTU (Froussios et. al, 2019) 
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Sleuth  

Sleuth is a transcript-level statistical method for analyzing 

differential expression in RNA-seq data, with a specific focus 

on transcript-level changes. What makes Sleuth unique is that 

it does not just look at how much RNA is expressed; it also 

asks how confident one can be in that number. Unlike most 

tools that start with simplified count tables and make 

assumptions about gene expression, Sleuth is tested using 

more realistic simulations that begin with raw sequencing 

reads (Pimentel et. al, 2017). This better reflects the messy 

reality of RNA-seq data, such as reads that map ambiguously 

or to multiple isoforms that are difficult to tell apart. The 

authors of Sleuth, Pimentel et. al, benchmarked it against 

other tools and found that it consistently outperformed them, 

especially in situations where other methods claimed to be 

highly confident but actually had high error rates. Sleuth was 

shown to be cautious, even overly cautious, but this meant 

that the transcripts it identified as significantly different were 

far more likely to be truly different. 

 

 
Figure 2: Sleuth pipeline (Differential expression of 

transcripts using Sleuth., n.d.). 

 

At the core of Sleuth is the additive response-error model, 

which separates the total variation in expression into two 

components: biological variance (real differences between 

samples) and inferential variance (measurement uncertainty). 

Inferential variance happens when it's hard to measure 

transcript levels accurately, like when sequences are very 

similar or there aren’t many reads. Sleuth estimates this using 

a method called bootstrapping via kallisto, a fast tool that 

quantifies RNA and repeats the measurement many times to 

see how much it varies. To avoid overreacting to noisy data, 

Sleuth also applies shrinkage, which pulls extreme or unstable 

variance values toward more average ones (Pimentel et. al, 

2017). This helps reduce false positives caused by random 

fluctuation. To test if a transcript is truly differentially 

expressed, Sleuth uses a likelihood-ratio test. In order to find 

transcripts that are truly different between conditions, Sleuth 

compares two models. One model assumes that the 

experimental condition (like treated vs. untreated) affects 

expression, and the other model assumes it doesn’t. Then, it 

checks which model fits the data better. If the model that 

includes the condition fits much better, even after accounting 

for noise, Sleuth decides that the transcript is likely 

differentially expressed.  

 

This method of separating measurement error from real 

biological change is what makes Sleuth so powerful. Most 

RNA-seq tools don’t account for uncertainty; they just 

assume the expression values are solid and proceed with 

statistical testing. But Sleuth asks: how shaky is this number, 

and would the same value be obtained if the analysis is run 

again? This approach leads to more trustworthy results, 

especially when working with small sample sizes or with 

transcripts that have ambiguous reads. In simulations 

performed by Pimentel et. al, where the true differentially 

expressed genes were known, Sleuth had higher sensitivity 

and a lower false discovery rate (FDR) than other tools. While 

most tools underestimated how often they make mistakes, 

Sleuth was honest, and even conservative, about its 

confidence. This transparency is crucial in studies where a 

false positive could send researchers down the wrong path. 

 

However, Sleuth is not perfect. One of its limitations is that 

it’s tightly coupled to algorithms that use bootstrap sampling, 

such as Sailfish, Salmon, and Kallisto. This makes it less 

flexible if a researcher prefers a different pipeline. Also, 

because it operates at the transcript level, it may not be the 

best fit for experiments that are designed only for gene-level 

analysis. Still, its speed, thanks to kallisto, and its ability to 

visualize results, give Sleuth an advantage. 

 
Figure 3: Sleuth variance determination (Pimentel et. al, 

2017). 

 

DRIMSeq 

When studying RNA-seq data, each gene can produce 

multiple transcripts or isoforms. DRIMSeq was developed to 

test whether the relative proportions of these transcripts differ 

between conditions; this type of analysis is called differential 

transcript usage (DTU). Instead of asking if a transcript’s 

expression changes on its own, DRIMSeq looks at whether 

the distribution of isoforms within a gene changes (Nowicka 

and Robinson, 2016). For example, if a healthy sample mostly 

expresses one isoform and a diseased sample expresses a 

different combination, DRIMSeq detects that change. This 

kind of data is often messy and shows more variation than 

expected, which is called overdispersion. Basic statistical 

models like the Poisson or multinomial distribution cannot 

account for this extra variability, so DRIMSeq employs a 

Dirichlet-multinomial (DM) model instead . This makes it 
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well suited for isoform-level analysis, especially in cases 

where transcript counts vary widely or when sample sizes are 

small. 

 

DRIMSeq looks at the full set of transcripts for each gene as 

a single group rather than analyzing each one on its own. It 

treats the transcript counts like a vector—a list of isoform-

specific counts—and uses a Dirichlet-multinomial model to 

study the overall proportions within that group. Since all the 

transcript proportions in a gene must add up to one, DRIMSeq 

models them together, which captures how a change in one 

isoform affects the others. To deal with noisy data or small 

sample sizes, DRIMSeq uses a method called empirical-

Bayes shrinkage, which helps make the estimates more stable 

and less sensitive to random variation (Papastamoulis and 

Rattray, 2017). This is especially helpful when there are only 

a few replicates. In contrast to other tools that test each 

transcript independently, DRIMSeq understands that 

isoforms within a gene are related, which makes it more 

accurate when studying changes in transcript usage. Another 

strength of DRIMSeq is that it works with count data from 

any RNA-seq quantification tool, like Salmon, kallisto, and 

others. Unlike Sleuth, which only works with kallisto outputs 

and performs separate tests for each transcript, DRIMSeq 

does one test per gene, which means fewer comparisons and 

enhances the likelihood of identifying biologically 

meaningful changes. 

 

 
Figure 4: Gene expression proportions expressed as a whole 

via DRIMSeq analysis (Nowicka and Robinson, 2025) 

 

DRIMSeq is especially valuable in studies focusing on 

alternative splicing or splicing quantitative trait loci (sQTLs). 

It can be used in many types of analyses, including PolyA-

seq, differential methylation, and allele-specific expression, 

showing its broad range of applications. DRIMSeq is also 

more conservative than some other tools, meaning it identifies 

fewer genes with significant changes. However, the genes it 

does detect are more likely to be biologically meaningful, 

particularly in relation to splicing. DRIMSeq looks at how the 

proportions of different isoforms change, rather than just the 

overall expression level of a gene (Nowicka and Robinson, 

2016). This allows it to detect complex cases where one 

isoform becomes more or less dominant, as long as that 

isoform is included in the reference file. It performs best when 

given transcript-level counts, although it can also work with 

exon-level counts, which tend to be noisier. 

 

 
Figure 5: Gene expression proportions expressed in a bar chart via DRIMSeq analysis (Nowicka and Robinson, 2025) 

 

One current limitation of DRIMSeq is that it treats transcript 

counts as fixed and does not take into account quantification 

uncertainty from upstream tools. For example, Sleuth handles 

this using kallisto’s bootstraps, which help measure the 

confidence in each count. DRIMSeq does not currently 

include this kind of uncertainty modeling. However, future 

versions may improve this by incorporating observation 

weights or bootstrapped estimates. Like other transcript-level 

tools, DRIMSeq also depends on a good reference annotation. 

It cannot detect novel isoforms that are not already included 

in the dataset. Still, DRIMSeq’s ability to model transcript 

proportions accurately, its flexible input requirements, and its 

support for a variety of analyses make it a powerful and 

widely applicable tool for understanding transcript-level 

changes in gene expression.  

Comparing Sleuth and DRIMSeq 

Both Sleuth and DRIMSeq are powerful tools for transcript-

level analysis of RNA-seq data, developed to capture changes 

in the transcriptome. Each tool helps reveal subtle yet 

meaningful shifts in transcript expression or usage, 

particularly in contexts like alternative splicing or isoform 

regulation. They are statistically rigorous and conservative in 

calling results, aiming to reduce false positives while 

extracting biologically relevant patterns. However, while they 

share the broader goal of analyzing transcriptomic variation 

across conditions, Sleuth and DRIMSeq differ in the specific 

questions they ask, the statistical models they apply, and the 

kinds of biological insights they offer. 
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Table 1: A comparison of Sleuth and DRIM-Seq based on various categories of operation 
Category Sleuth DRIMSeq 

Biological 

Question 

Detects differential expression (DE) - changes in the total 

expression level of individual transcripts across conditions. 

Detects differential transcript usage (DTU) - changes in 

the relative proportions of isoforms within a gene. 

Statistical 

Framework 

Uses an additive response-error linear model that separates 

variation into biological and inferential (technical) noise. 

Uses a Dirichlet-multinomial model that captures 

isoform proportions as a single distribution and models 

overdispersion. 

Handling 

Uncertainty 

Directly models uncertainty using bootstrap replicates from 

kallisto, allowing Sleuth to estimate confidence in transcript 

values. 

Does not model quantification uncertainty; treats 

transcript counts as fixed, which may limit reliability in 

noisy datasets. 

Test Level 
Performs independent tests for each transcript. This provides 

fine-tuned resolution but increases the number of comparisons. 

Performs one test per gene, improving statistical power 

and reducing the multiple testing burden. 

Transcript 

Relationships 

Treats transcripts independently, ignoring relationships 

between isoforms of the same gene. 

Models transcript proportions jointly, recognizing that 

changes in one isoform affect the proportions of others. 

Quantification 

Compatibility 

Works only with kallisto, as it relies on kallisto's bootstrapping 

for variance estimation. 

Compatible with multiple quantifiers (such as kallisto 

and Salmon), offering more flexibility in RNA-seq 

pipelines. 

Use Case 

Strengths 

Ideal for detecting transcripts or genes that are upregulated or 

downregulated due to a condition or treatment. 

Best for detecting changes in isoform usage, especially 

in cases of alternative splicing or splicing QTLs. 

Conservativeness 
Cautious in calling DE because it accounts for inferential 

variance; avoids false positives but may miss subtle changes. 

Conservative in DTU detection, often reporting fewer 

significant genes, but those reported tend to be 

biologically meaningful. 

Annotation 

Dependency 

Requires a well-annotated transcript reference; cannot detect 

unannotated or novel isoforms. 

Same as Sleuth; performance depends on the 

completeness of transcript annotations. 

 

A research team is studying alternative splicing changes in a 

rare neurological disorder using single-cell RNA-seq data 

from patient and control brain samples. The sample size was 

small because of the rarity of the condition. 

 

Sleuth limitations: The team wants to use Sleuth for 

differential expression analysis but realizes that it only works 

with kallisto quantification. Their data were previously 

quantified using Salmon, which they preferred because of its 

handling of sequence bias. Rerunning quantification with 

Kallisto would require significant computational resources 

and time. 

 

DRIMSeq limitations: When using DRIMSeq to detect 

differential transcript usage, researchers have noticed high 

variability in their results. They suspect that this is partly due 

to DRIMSeq not accounting for transcript quantification 

uncertainty, which is particularly problematic with their 

limited sample size and the inherent noise in single-cell data. 

 

These limitations force the team to make compromises. 

1) Alternatively, time and resources can be invested to 

requantify with kallisto to enable Sleuth usage, which 

may introduce inconsistencies with other analyses. 

2) Alternatively, DRIMSeq can be used, knowing that the 

results may be less reliable due to unaccounted 

quantification uncertainty. 

 

This scenario highlights how tool-specific limitations can 

complicate analysis workflows and potentially impact the 

robustness of results, especially in challenging experimental 

contexts, such as rare diseases with limited samples. 

 

2. Conclusion 
 

As transcript-level analysis gains importance in single-cell 

RNA-seq, tools such as Sleuth and DRIMSeq offer 

complementary approaches to understanding gene regulation 

and expression. Sleuth excels at identifying the differential 

expression of individual transcripts using kallisto bootstraps 

to account for quantification uncertainty. This makes it 

particularly reliable for detecting changes in expression in 

noisy data. In contrast, DRIMSeq employs a Dirichlet-

multinomial model to analyze shifts in relative transcript 

usage, capturing isoform-level changes, such as alternative 

splicing. 

 

Although both tools are statistically rigorous and aim to 

reduce false positives, they have distinct strengths and 

limitations. Sleuth's ability to model quantification 

uncertainty is offset by its restriction to kallisto outputs and 

its inability to model isoform relationships. DRIMSeq offers 

flexibility in input sources but currently lacks the 

incorporation of quantification uncertainty. 

 

The choice of tool depends on the specific biological 

question. Researchers focusing on significant expression 

changes in individual transcripts may find Sleuth's statistical 

methods and visualizations more suitable. Those 

investigating shifts in isoform composition or splicing 

regulation may prefer the DRIMSeq approach. Together, 

Sleuth and DRIMSeq represent the growing sophistication of 

RNA-seq analysis tools, offering deeper insights into 

transcriptome dynamics than their predecessors. As these 

tools continue to evolve, addressing current limitations, such 

as improved uncertainty modeling in DRIMSeq or broader 

quantifier support for Sleuth, our ability to interpret 

transcript-level variations will become more refined and 

effective. 

 

Key Takeaways 

1) Sleuth excels at identifying transcripts with overall 

expression changes (differential expression), while 

DRIMSeq is designed to detect shifts in isoform 

proportions (differential transcript usage), making each 

tool suited to different aspects of gene regulation and 

alternative splicing. 

2) Sleuth is closely integrated with specific quantification 

tools and accounts for variance using bootstrapping, 

whereas DRIMSeq is more flexible with input data and 
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uses a Dirichlet multinomial model. Ultimately, the 

choice depends on the biological question. 
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